partial_program.py 42.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from copy import deepcopy

17
import numpy as np
18

19
import paddle
20
from paddle import _legacy_C_ops
21
from paddle.amp.auto_cast import _in_amp_guard, _in_pure_fp16_guard
22
from paddle.fluid import backward, core, framework, program_guard
23
from paddle.fluid.compiler import BuildStrategy
24 25 26 27 28 29 30 31 32 33 34
from paddle.fluid.dygraph import layers
from paddle.fluid.dygraph.base import switch_to_static_graph
from paddle.fluid.executor import (
    _is_dy2st_enable_standalone_executor,
    _is_enable_standalone_executor,
)
from paddle.fluid.framework import _apply_pass
from paddle.fluid.layers.utils import _hash_with_id, flatten, pack_sequence_as

from . import logging_utils
from .return_transformer import RETURN_NO_VALUE_MAGIC_NUM
35

36 37
__all__ = []

38

39
class NestSequence:
40 41 42 43 44 45 46
    """
    A wrapper class that easily to flatten and restore the nest structure of
    given sequence.
    """

    def __init__(self, raw_input, need_check=False):
        self.__raw_input = raw_input
47
        self.__input_list = self.tolist()
48 49 50 51 52 53 54 55 56 57 58 59 60
        self.__var_ids = self._get_var_ids()
        self._check_non_variable(need_check)

    def tolist(self):
        """
        Flattens the nested sequences into single list.
        """
        return flatten(self.__raw_input)

    def restore(self, value_list):
        """
        Restores the nested sequence from value list.
        """
61
        assert len(self.__input_list) == len(value_list)
62 63 64 65
        return pack_sequence_as(self.__raw_input, value_list)

    def _get_var_ids(self):
        var_ids = []
66
        for idx, var in enumerate(self.__input_list):
67
            if isinstance(
68 69
                var, (framework.Variable, core.VarBase, core.eager.Tensor)
            ):
70 71 72 73 74 75 76 77 78 79
                var_ids.append(idx)

        return var_ids

    def _check_non_variable(self, need_check):
        """
        Raises warning if output of traced function contains non-tensor type values.
        """
        if need_check:
            warning_types = set()
80
            for var in self.__input_list:
81
                if not isinstance(
82 83
                    var, (framework.Variable, core.VarBase, core.eager.Tensor)
                ):
84 85
                    warning_types.add(type(var))
            if warning_types:
86
                logging_utils.warn(
87 88
                    "Output of traced function contains non-tensor type values: {}. "
                    "Currently, We don't support to update them while training and will return "
89 90 91 92
                    "what we first saw. Please try to return them as tensor.".format(
                        list(warning_types)
                    )
                )
93 94 95 96 97 98

    @property
    def var_ids(self):
        return self.__var_ids

    def __getitem__(self, item):
99
        return self.__input_list[item]
100

101

102
class LazyInitialized:
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
    """
    Descriptor to implement lazy initialization of property.
    """

    def __init__(self, function):
        self.function = function

    def __get__(self, instance, cls):
        val = self.function(instance)
        setattr(instance, self.function.__name__, val)
        return val


def _change_is_test_status(program, is_test):
    # change all `is_test` attributes
    for block in program.blocks:
        for op in block.ops:
            if op.has_attr('is_test'):
                op._set_attr('is_test', is_test)
    return program


125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
class ProgramInfo:
    """
    A helper class to recoder Program information
    """

    def __init__(self, mode='infer'):
        self.op_size = {
            'fp32': -1,
            'amp': -1,
            'fp16': -1,
        }
        assert mode in ['train', 'infer']
        self.mode = mode


140
class PartialProgramLayer:
141
    """
H
hjyp 已提交
142
    PartialProgramLayer wraps all the ops from layers decorated by `@to_static`
143 144 145
    and execute them as a static subgraph.

    .. note::
146 147 148
        **1. This is a very low level API. Users should not use this API
             directly. Please use `partial_program_from(concrete_program)`
             to create it.
149 150 151 152
        **2. LoDTensorArray is not currently supported in the output.

    Args:
        main_program(Program): The main program that contains ops need to be executed.
H
hjyp 已提交
153 154
        inputs(list[Variable]): The input list of the decorated function by `@to_static`.
        outputs(list[Variable]): The output list of the decorated function by `@to_static`.
155 156 157
        parameters(list[VarBase]|None): All trainable parameters included in the program. Default None.

    Returns:
158
        Layer: A Layer object that run all ops internally in static graph mode.
159 160
    """

161 162 163
    def __init__(
        self, main_program, inputs, outputs, parameters=None, **kwargs
    ):
164
        super().__init__()
165 166
        self._inputs = NestSequence(inputs)
        self._outputs = NestSequence(outputs, need_check=True)
167
        self._params = parameters if parameters is not None else []
168

169 170 171
        self._build_strategy = kwargs.get('build_strategy', BuildStrategy())
        assert isinstance(self._build_strategy, BuildStrategy)

172
        self._origin_main_program = self._verify_program(main_program)
173 174 175
        self._cuda_graph_vec = self._create_cuda_graph_vec()
        self._cuda_graph_capture_mode = ""
        self._cuda_graph_pool_id = 0
176
        # Set default mode to train
177
        self.training = True
178
        self._infer_info = ProgramInfo(mode='infer')
179

180 181 182 183
        custom_white_list, custom_black_list = None, None
        tracer = framework._dygraph_tracer()
        if tracer:
            custom_white_list, custom_black_list = tracer._get_amp_op_list()
184
        # For AMP training
185
        self._amp_list = paddle.static.amp.fp16_lists.AutoMixedPrecisionLists(
186
            custom_white_list=custom_white_list,
187 188
            custom_black_list=custom_black_list,
        )
189

190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
        # program_id -> list(scope)
        self._scope_cache = {}

    def _get_scope(self, program_id=None, use_scope_cache=False):
        if use_scope_cache:
            if program_id not in self._scope_cache:
                scope = core.Scope()
                self._scope_cache[program_id] = [scope]
                return scope
            else:
                for scope in self._scope_cache[program_id]:
                    if scope._can_reuesd:
                        return scope
                scope = core.Scope()
                self._scope_cache[program_id].append(scope)
                return scope
        else:
            return core.Scope()

209 210 211 212 213 214 215 216
    @LazyInitialized
    def __fake_vars(self):
        return _create_fake_var()

    @LazyInitialized
    def _double_grads(self):
        return self._get_double_grads(self._origin_main_program)

217 218 219 220 221 222 223
    # whole
    @switch_to_static_graph
    def _create_program(self, is_infer_mode=False):
        if is_infer_mode:
            return self._origin_main_program.clone(for_test=is_infer_mode)
        else:
            train_program = self._append_backward_desc(
224 225
                self._origin_main_program
            )
226 227 228
            # Note: Only set grad type once after initializing train program. So we put it here.
            self._set_grad_type(self._params, train_program)
            return train_program
229

230 231 232 233
    @switch_to_static_graph
    def _create_amp_program(self, is_infer_mode=False):
        amp_program = self._origin_main_program.clone(for_test=is_infer_mode)
        with program_guard(amp_program):
234 235 236
            paddle.static.amp.fp16_utils.rewrite_program(
                amp_program, self._amp_list
            )
237 238 239 240 241 242
        if is_infer_mode:
            return amp_program
        else:
            train_amp_program = self._append_backward_desc(amp_program)
            self._set_grad_type(self._params, train_amp_program)
            return train_amp_program
243

244 245 246
    @switch_to_static_graph
    def _create_pure_fp16_program(self, is_infer_mode=False):
        pure_fp16_program = self._origin_main_program.clone(
247 248
            for_test=is_infer_mode
        )
249
        with program_guard(pure_fp16_program):
250
            paddle.static.amp.fp16_utils.cast_model_to_fp16(
251 252
                pure_fp16_program, self._amp_list, use_fp16_guard=False
            )
253 254 255 256
        if is_infer_mode:
            return pure_fp16_program
        else:
            train_pure_fp16_program = self._append_backward_desc(
257 258
                pure_fp16_program
            )
259 260
            self._set_grad_type(self._params, train_pure_fp16_program)
            return train_pure_fp16_program
261

262
    @switch_to_static_graph
263
    def _create_forward_backward_train_program(self):
264
        whole_program = self._train_program
265 266
        forward_end_op_index = self._infer_info.op_size['fp32']
        assert forward_end_op_index >= 0
267 268 269
        return self._get_forward_backward_program_form(
            whole_program, forward_end_op_index
        )
270

271 272
    @switch_to_static_graph
    def _create_forward_backward_train_amp_program(self):
273
        whole_program = self._train_amp_program
274 275
        forward_end_op_index = self._infer_info.op_size['amp']
        assert forward_end_op_index >= 0
276 277 278
        return self._get_forward_backward_program_form(
            whole_program, forward_end_op_index
        )
279 280 281

    @switch_to_static_graph
    def _create_forward_backward_train_pure_fp16_program(self):
282
        whole_program = self._train_pure_fp16_program
283 284
        forward_end_op_index = self._infer_info.op_size['fp16']
        assert forward_end_op_index >= 0
285 286 287
        return self._get_forward_backward_program_form(
            whole_program, forward_end_op_index
        )
288 289

    @LazyInitialized
290 291
    def _train_program(self):
        return self._create_program()
292

293
    @LazyInitialized
294
    def _infer_program(self):
295 296 297 298 299
        program = self._create_program(is_infer_mode=True)
        self._infer_info.op_size['fp32'] = program.desc.block(0).op_size()
        return self._build_infer_program(
            program, self._infer_info.op_size['fp32']
        )
300

301 302 303 304 305 306
    @LazyInitialized
    def _train_amp_program(self):
        return self._create_amp_program()

    @LazyInitialized
    def _infer_amp_program(self):
307 308 309 310 311
        program = self._create_amp_program(is_infer_mode=True)
        self._infer_info.op_size['amp'] = program.desc.block(0).op_size()
        return self._build_infer_program(
            program, self._infer_info.op_size['amp']
        )
312 313 314

    @LazyInitialized
    def _train_pure_fp16_program(self):
315
        return self._create_pure_fp16_program()
316

317
    @LazyInitialized
318
    def _infer_pure_fp16_program(self):
319 320 321 322 323
        program = self._create_pure_fp16_program(is_infer_mode=True)
        self._infer_info.op_size['fp16'] = program.desc.block(0).op_size()
        return self._build_infer_program(
            program, self._infer_info.op_size['fp16']
        )
324

325
    @LazyInitialized
326 327 328
    def _train_forward_backward_program(self):
        program = self._create_forward_backward_train_program()
        return program
329 330

    @LazyInitialized
331 332 333 334
    def _train_amp_forward_backward_program(self):
        program = self._create_forward_backward_train_amp_program()
        return program

335 336 337 338
    @LazyInitialized
    def _empty_backward_program_for_eval(self):
        return paddle.static.Program()

339 340 341 342 343
    @LazyInitialized
    def _train_pure_fp16_forward_backward_program(self):
        program = self._create_forward_backward_train_pure_fp16_program()
        return program

344 345
    @LazyInitialized
    def _train_program_id(self):
346
        program_id = _hash_with_id(self._train_program, self)
347 348 349
        core._set_cached_executor_build_strategy(
            program_id, self._build_strategy
        )
350
        return program_id
351

352 353 354 355
    @LazyInitialized
    def _infer_program_id(self):
        return _hash_with_id(self._infer_program, self)

356 357 358
    @LazyInitialized
    def _train_amp_program_id(self):
        program_id = _hash_with_id(self._train_amp_program, self)
359 360 361
        core._set_cached_executor_build_strategy(
            program_id, self._build_strategy
        )
362 363
        return program_id

364 365 366 367
    @LazyInitialized
    def _infer_amp_program_id(self):
        return _hash_with_id(self._infer_amp_program, self)

368 369 370
    @LazyInitialized
    def _train_pure_fp16_program_id(self):
        program_id = _hash_with_id(self._train_pure_fp16_program, self)
371 372 373
        core._set_cached_executor_build_strategy(
            program_id, self._build_strategy
        )
374 375
        return program_id

376 377 378 379
    @LazyInitialized
    def _infer_pure_fp16_program_id(self):
        return _hash_with_id(self._infer_pure_fp16_program, self)

380 381 382 383 384 385 386 387
    @LazyInitialized
    def _param_grad_names(self):
        names = []
        # NOTE: `names` and `self._params` must be in the same order so that
        # the param grad name can be set correctly in the run_program.
        for param in self._params:
            candidate = [
                var_name
388
                for var_name in self._train_program.block(0).vars.keys()
389 390 391 392 393 394 395 396 397 398 399 400
                if var_name.endswith(param.name + '@GRAD')
            ]
            if candidate:
                names.append(
                    max(candidate, key=lambda name: name.count('grad/'))
                )
            else:
                names.append(param.name + '@GRAD')
        return names

    @LazyInitialized
    def _out_grad_names(self):
401 402 403
        """
        Parse Out@GARD name from original train and infer program.
        """
404
        names = []
405 406 407
        origin_infer_program = self._create_program(is_infer_mode=True)
        origin_train_program = self._train_program
        fwd_end_op_index = len(origin_infer_program.block(0).ops)
408 409 410 411
        for i in range(
            fwd_end_op_index + 1,
            min(
                fwd_end_op_index + 2 * len(self._outputs.var_ids),
412
                len(origin_train_program.block(0).ops),
413 414 415
            ),
            2,
        ):
416
            op = origin_train_program.block(0).ops[i]
417 418 419
            if op.type == 'fill_constant':
                var_name = op.output('Out')[0]
                names.append(var_name)
420

421 422
        return names

423
    @property
424 425 426 427 428 429 430 431 432 433 434 435 436 437
    def program(self):
        """
        Return current train or eval program.
        """
        if self.training:
            return self.train_program
        else:
            return self.infer_program

    @property
    def program_id(self):
        """
        Return current train or eval program hash id.
        """
438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
        if self.training:
            if _in_amp_guard():
                return self._train_amp_program_id
            elif _in_pure_fp16_guard():
                return self._train_pure_fp16_program_id
            else:
                return self._train_program_id
        else:
            if _in_amp_guard():
                return self._infer_amp_program_id
            elif _in_pure_fp16_guard():
                return self._infer_pure_fp16_program_id
            else:
                return self._infer_program_id

453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
    @property
    def train_program(self):
        if _in_amp_guard():
            return self._train_amp_program
        elif _in_pure_fp16_guard():
            return self._train_pure_fp16_program
        else:
            return self._train_program

    @property
    def infer_program(self):
        if _in_amp_guard():
            return self._infer_amp_program
        elif _in_pure_fp16_guard():
            return self._infer_pure_fp16_program
        else:
            return self._infer_program

    @property
    def forward_program(self):
        if self.training:
            if _in_amp_guard():
                progs = self._train_amp_forward_backward_program
            elif _in_pure_fp16_guard():
                progs = self._train_pure_fp16_forward_backward_program
            else:
                progs = self._train_forward_backward_program
            return progs[0]
        else:
            return self.infer_program

    @property
    def backward_program(self):
        if self.training:
            if _in_amp_guard():
                progs = self._train_amp_forward_backward_program
            elif _in_pure_fp16_guard():
                progs = self._train_pure_fp16_forward_backward_program
            else:
                progs = self._train_forward_backward_program
            return progs[1]
        else:
            """
            Can't just return paddle.static.Program(), because self.backward_program is a property,
            whenever we call this method, a tmp Program() object is created and is gc immediatly
            after executed the following line in PartialProgramLayer.__call__.

            >>> self.backward_program.desc.block(0),

            When we access RunProgramAPI, it's possible to get an invalid backward_program address.
            """
            return self._empty_backward_program_for_eval

506 507 508 509 510 511 512 513 514 515 516 517
    def _verify_program(self, main_program):
        """
        Verify that the program parameter is initialized, prune some unused params,
        and remove redundant op callstack.
        """
        # 1. Check all params from main program can be found in self._params
        self._check_params_all_inited(main_program)
        # 2. Prune the parameters not used anywhere in the program.
        self._prune_unused_params(main_program)

        return main_program

518 519 520
    def prepare_gradient_aggregation(
        self, start_idx, main_program, target_program
    ):
521 522 523 524 525 526 527
        """
        Why we need add gradient aggregation operation ?
        In some cases, if non leaf nodes are used as output, gradient overwriting will occur, such as
        def forward(self, in):
            x = 2 * in  # <---- x is a non-leaf node in program.
            y = x + 3
            return x, y
528

529 530 531 532 533 534 535 536 537
        loss = forward(in)[0].sum()
        loss.backward()  # <----- x@grad will be overwrited by elementwise_add_grad Op
        """

        def _need_aggregation(var):
            """
            if exist a op whose inputs is var, then return True
            """
            if not isinstance(var, framework.Variable) or var.type not in [
538 539
                core.VarDesc.VarType.LOD_TENSOR,
                core.VarDesc.VarType.SELECTED_ROWS,
540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555
            ]:
                return False
            if var.dtype not in [paddle.float32, paddle.float64]:
                return False
            for op in main_program.block(0).ops:
                for in_arg in op.input_arg_names:
                    if in_arg == var.name:
                        return True
            return False

        def _insert_aggregation_ops_for_var(target_program, var):
            suffix = "@dy2static"
            var_grad_name = var.grad_name
            new_grad_name = var.name + suffix + "@GRAD"
            finded_ops = list(
                filter(
556 557 558 559 560 561 562 563 564 565
                    lambda x: x[0] >= start_idx
                    and any(
                        [
                            out_arg == var_grad_name
                            for out_arg in x[1].output_arg_names
                        ]
                    ),
                    enumerate(target_program.block(0).ops),
                )
            )
566 567 568 569 570 571

            # len(finded_ops) may equals zero when stop_gradient works.
            # len(finded_ops) may > 1, because we may have fill_constant op.
            if len(finded_ops) == 0:
                return None
            # step1: create a new var named var.name@GRAD
572 573 574 575 576 577
            target_program.block(0).create_var(
                name=new_grad_name,
                type=var.type,
                dtype=var.dtype,
                shape=var.shape,
            )
578 579 580 581 582 583 584 585 586 587
            # step2: rename the var.name@GRAD to var.name@GRAD@dy2static
            for idx, op in finded_ops:
                op._rename_input(var_grad_name, new_grad_name)
                op._rename_output(var_grad_name, new_grad_name)
            # step3: insert sum op to aggregate the gradient.
            #        var.name@GRAD = sum(var.name@dy2static@GRAD, var.name@GRAD)
            target_program.block(0)._insert_op(
                finded_ops[-1][0] + 1,
                type='sum',
                inputs={'X': [var_grad_name, new_grad_name]},
588 589
                outputs={"Out": var_grad_name},
            )
590 591 592
            return None

        to_processed_vars = list(
593 594
            filter(_need_aggregation, self._outputs.tolist())
        )
595 596 597
        for _var in to_processed_vars:
            _insert_aggregation_ops_for_var(target_program, _var)

598
    @switch_to_static_graph
599
    def _append_backward_desc(self, main_program):
600 601
        # make sure all status of is_test are False in train mode.
        program = _change_is_test_status(main_program.clone(), is_test=False)
602
        targets = []
603
        for out in self._outputs.tolist():
604 605 606 607 608 609
            if isinstance(out, framework.Variable):
                targets.append(program.global_block().var(out.name))

        if targets and self._params:
            backward.gradients(targets=targets, inputs=[])

610 611 612
        start_idx = len(main_program.block(0).ops) + 2 * len(
            self._outputs.tolist()
        )
613 614

        self.prepare_gradient_aggregation(start_idx, main_program, program)
615

616 617
        return program

618 619 620
    def _prune_unused_params(self, program):
        """
        Prune the parameters not used anywhere in the program.
H
hjyp 已提交
621
        The `@to_static` may only decorated a sub function which
622 623 624 625 626 627
        contains some unused parameters created in `__init__`.
        So prune these parameters to avoid unnecessary operations in
        `run_program_op`.
        """
        required_params = []
        for param in self._params:
628
            found_param = False
629
            for block in program.blocks:
630
                for op in block.ops:
631 632 633 634
                    if (
                        param.name in op.input_arg_names
                        or param.name in op.output_arg_names
                    ):
635 636 637 638
                        required_params.append(param)
                        found_param = True
                        break
                if found_param:
639 640 641 642
                    break

        self._params = required_params

643 644 645 646 647 648
    def _get_double_grads(self, program):
        double_grads = []
        for block in program.blocks:
            for name in block.vars:
                if "@GRAD" in name:
                    var_desc = block.vars[name].desc
J
Jiabin Yang 已提交
649
                    var_base = None
J
Jiabin Yang 已提交
650
                    if not framework._in_eager_mode_:
651 652 653 654 655 656 657
                        var_base = core.VarBase(
                            var_desc.dtype(),
                            var_desc.shape(),
                            var_desc.name(),
                            var_desc.type(),
                            False,
                        )
J
Jiabin Yang 已提交
658
                    else:
659 660 661 662 663 664 665
                        var_base = core.eager.Tensor(
                            var_desc.dtype(),
                            var_desc.shape(),
                            var_desc.name(),
                            var_desc.type(),
                            False,
                        )
666
                    double_grads.append(var_base)
667
        return self._valid_vars(double_grads)
668

669
    def _get_end_op_index(self):
670 671 672 673 674
        if _in_amp_guard():
            infer_program = self._infer_amp_program
        elif _in_pure_fp16_guard():
            infer_program = self._infer_pure_fp16_program
        else:
675
            infer_program = self._infer_program
676 677
        return infer_program.desc.block(0).op_size()

678 679
    def __call__(self, inputs):
        in_vars, out_vars = self._prepare(inputs)
680

681 682
        self._cast_fp16_if_pure_fp16(in_vars)

683
        attrs = [
684
            'global_block',
685 686 687 688 689 690 691 692 693
            self.program.desc.block(0),
            'start_op_index',
            0,
            'end_op_index',
            self._get_end_op_index(),
            'is_test',
            not self.training,
            'program_id',
            self.program_id,
694
        ]
695 696 697 698 699 700 701 702 703 704 705 706
        if self.training:
            # NOTE: In the case of higher-order gradient, the names of the parameter grads may be like
            # `grad/grad/grad/linear_0.w_0@GRAD` instead of simply `linear_0.w_0@GRAD`, so we get
            # the correct names of the parameter grads from program. And out grads are similar to above.
            attrs.extend(
                (
                    'param_grad_names',
                    self._param_grad_names,
                    'out_grad_names',
                    self._out_grad_names,
                )
            )
707 708
        if self._cuda_graph_capture_mode:
            attrs.extend(
709 710 711 712 713 714 715 716 717 718 719 720
                (
                    'cuda_graph_capture_mode',
                    self._cuda_graph_capture_mode,
                    'cuda_graph_pool_id',
                    self._cuda_graph_pool_id,
                )
            )

        use_interpretorcore = (
            _is_enable_standalone_executor()
            and _is_dy2st_enable_standalone_executor()
        )
721 722 723
        attrs.extend(('use_interpretorcore', use_interpretorcore))
        if use_interpretorcore:
            attrs.extend(
724 725 726 727 728 729 730
                (
                    'forward_global_block',
                    self.forward_program.desc.block(0),
                    'backward_global_block',
                    self.backward_program.desc.block(0),
                )
            )
731

732
            _legacy_C_ops.run_program(
733 734
                self._valid_vars(in_vars),
                self._valid_vars(self._params),
735
                self._valid_vars(out_vars),
736 737 738 739 740 741 742
                self._create_scope_vec(
                    program_id=self.program_id, use_scope_cache=True
                ),
                self._double_grads,
                self._cuda_graph_vec,
                *attrs
            )
743
        else:
744 745 746 747 748 749 750 751 752
            _legacy_C_ops.run_program(
                self._valid_vars(in_vars),
                self._valid_vars(self._params),
                self._valid_vars(out_vars),
                self._create_scope_vec(),
                self._double_grads,
                self._cuda_graph_vec,
                *attrs
            )
753 754
        restored_nest_out = self._restore_out(out_vars)
        return self._remove_no_value(restored_nest_out)
755

756 757 758 759
    def _cast_fp16_if_pure_fp16(self, in_vars):
        if _in_pure_fp16_guard():
            for i, var in enumerate(in_vars):
                name = var.name
760 761 762 763 764
                if (
                    self.program.global_block().has_var(name)
                    and self.program.global_block().var(name).dtype
                    == paddle.float16
                ):
765 766 767
                    in_vars[i] = var.astype('float16')
                    in_vars[i].name = name

768 769 770 771 772 773 774 775 776 777 778 779
    @switch_to_static_graph
    def _build_infer_program(self, infer_program, forward_end_op_index):
        forward_skip_vars = self._parse_skip_gc_vars(infer_program)
        builded_infer_program = add_build_strategy_for(
            infer_program,
            0,
            forward_end_op_index,
            self._build_strategy,
            forward_skip_vars,
        )
        self._apply_inplace_pass(builded_infer_program, None)
        return builded_infer_program
780

781
    @switch_to_static_graph
782 783 784
    def _get_forward_backward_program_form(
        self, whole_program, forward_end_op_index
    ):
785 786
        # NOTE(dev): We apply build_strategy for backward firstly to
        # avoid skipping more gc variables.
787
        backward_start_op_index = forward_end_op_index + 2 * len(
788 789
            self._outputs.var_ids
        )
790
        backward_end_op_index = whole_program.desc.block(0).op_size()
791 792 793 794 795
        # For Backward process in CINN, all param@GRAD shoule be skipped for GC, because
        # they will be shared in scope and used by optimizer.
        backward_skip_vars = (
            self._parse_skip_gc_vars(whole_program) + self._param_grad_names
        )
796
        backward_builded_program = add_build_strategy_for(
797 798 799 800
            whole_program,
            backward_start_op_index,
            backward_end_op_index,
            self._build_strategy,
801 802 803 804 805 806 807 808 809 810 811 812
            backward_skip_vars,
        )

        forward_skip_vars = self._parse_skip_gc_vars(
            whole_program, backward_builded_program
        )
        forward_builded_program = add_build_strategy_for(
            whole_program,
            0,
            forward_end_op_index,
            self._build_strategy,
            forward_skip_vars,
813
        )
814

815 816 817
        self._apply_inplace_pass(
            forward_builded_program, backward_builded_program
        )
818 819 820 821 822 823
        return [forward_builded_program, backward_builded_program]

    def _apply_inplace_pass(self, forward_program, backward_program):
        attr_types = {
            "use_cuda": "bool",
            "mem_opt_skip_vars": "list[str]",
824
            "for_partial_block": "bool",
825 826 827 828
        }
        empty_startup_program = paddle.static.Program()
        use_cuda = True if core.is_compiled_with_cuda() else False
        # skip data var
829 830 831 832
        forward_mem_opt_skip_vars = self._parse_skip_gc_vars(
            forward_program, backward_program
        )
        backward_mem_opt_skip_vars = self._parse_skip_gc_vars(forward_program)
833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858
        if forward_program:
            attrs = {
                "use_cuda": use_cuda,
                "mem_opt_skip_vars": forward_mem_opt_skip_vars,
                "for_partial_block": True,
            }
            _apply_pass(
                forward_program,
                empty_startup_program,
                "buffer_shared_inplace_pass",
                attrs,
                attr_types,
            )
        if backward_program:
            attrs = {
                "use_cuda": use_cuda,
                "mem_opt_skip_vars": backward_mem_opt_skip_vars,
                "for_partial_block": True,
            }
            _apply_pass(
                backward_program,
                empty_startup_program,
                "buffer_shared_inplace_pass",
                attrs,
                attr_types,
            )
859

860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886
    @LazyInitialized
    def _inout_var_names(self):
        """
        Returns Variable Names from self._inputs and self.outputs
        """
        var_names = []
        for var in self._inputs:
            if isinstance(var, paddle.fluid.framework.Variable):
                var_names.append(var.desc.name())
        for var in self._outputs:
            if isinstance(var, paddle.fluid.framework.Variable):
                var_names.append(var.desc.name())
        return var_names

    def _parse_skip_gc_vars(self, program, backward_program=None):
        """
        Parse variables that need to skip GC after execute it.
        If specify backward_program, it will keep the variables used in backward.
        """
        # skip data var, DO NOT ignore this deepcopy
        skip_vars = deepcopy(self._inout_var_names)
        for var_name, var in program.global_block().vars.items():
            if var.is_data:
                skip_vars.append(var_name)

        if backward_program:
            for var_name in core.parse_safe_eager_deletion_skip_vars(
887
                backward_program.desc, True
888 889 890 891
            ):
                skip_vars.append(var_name)
        return skip_vars

892 893 894 895 896
    def _prepare(self, inputs):
        """
        Prepare inputs, outputs, attrs.
        """
        assert isinstance(inputs, (tuple, list))
897 898
        # Flatten inputs with nested structure into single list.
        flatten_inputs = flatten(inputs)
899 900
        # Convert variable into VarBase and feed in training data.
        input_vars = []
901
        expected_place = framework._current_expected_place()
902
        for i, value in enumerate(flatten_inputs):
903
            if isinstance(value, np.ndarray):
J
Jiabin Yang 已提交
904
                var = None
J
Jiabin Yang 已提交
905
                if not framework._in_eager_mode_:
906 907 908 909 910 911 912
                    var = core.VarBase(
                        value=value,
                        name=self._inputs[i].desc.name(),
                        persistable=False,
                        place=expected_place,
                        zero_copy=True,
                    )
J
Jiabin Yang 已提交
913
                else:
914 915 916 917 918 919 920
                    var = core.eager.Tensor(
                        value=value,
                        name=self._inputs[i].desc.name(),
                        persistable=False,
                        place=expected_place,
                        zero_copy=True,
                    )
J
Jiabin Yang 已提交
921
            elif isinstance(value, (core.VarBase, core.eager.Tensor)):
922 923 924 925
                # NOTE(Aurelius84): If var is on CPUPlace, it will be transformed multi times
                # into CUDAPlace when it's as input of multi Ops. so we move it in advance
                # to avoid this problem.
                if value.stop_gradient and not value.place._equals(
926 927
                    expected_place
                ):
928 929
                    var = value._copy_to(expected_place, False)
                    var.stop_gradient = True
930 931
                else:
                    var = value
932
                var.name = self._inputs[i].desc.name()
933 934 935
            else:
                continue
            input_vars.append(var)
936

937 938 939
        # mapping from name(string) -> VarBase
        out_varbase_map = {}

940 941
        def create_out(var_id):
            var = self._outputs[var_id]
942
            assert isinstance(var, framework.Variable)
943
            var_desc = var.desc
J
Jiabin Yang 已提交
944
            varbase = None
945 946 947 948

            if var_desc.name() in out_varbase_map:
                return out_varbase_map[var_desc.name()]

J
Jiabin Yang 已提交
949
            if not framework._in_eager_mode_:
950 951 952 953 954 955 956
                var_base = core.VarBase(
                    var_desc.dtype(),
                    var_desc.shape(),
                    var_desc.name(),
                    var_desc.type(),
                    False,
                )
J
Jiabin Yang 已提交
957
            else:
958 959 960 961 962 963 964
                var_base = core.eager.Tensor(
                    var_desc.dtype(),
                    var_desc.shape(),
                    var_desc.name(),
                    var_desc.type(),
                    False,
                )
965
            var_base.stop_gradient = var.stop_gradient
966
            out_varbase_map[var_desc.name()] = var_base
967 968 969 970 971 972
            return var_base

        # Create VarBase to receive output data.
        out_vars = list(map(create_out, self._outputs.var_ids))

        return input_vars, out_vars
973

974
    def _create_scope_vec(self, program_id=None, use_scope_cache=False):
975
        # Hold forward variables
J
Jiabin Yang 已提交
976
        tmp_scope_vec = None
977 978 979
        inner_scope = self._get_scope(
            program_id=program_id, use_scope_cache=use_scope_cache
        )
J
Jiabin Yang 已提交
980
        if not framework._in_eager_mode_:
981 982 983 984 985 986 987
            tmp_scope_vec = core.VarBase(
                core.VarDesc.VarType.FP32,
                [],
                "program_out_scope",
                core.VarDesc.VarType.STEP_SCOPES,
                True,
            )
J
Jiabin Yang 已提交
988
            tmp_scope_vec.value().set_scope(inner_scope)
989 990
        else:
            tmp_scope_vec = [inner_scope]
991
        return tmp_scope_vec
992

993
    def _create_cuda_graph_vec(self):
994 995 996 997 998 999 1000
        var = core.VarBase(
            core.VarDesc.VarType.FP32,
            [],
            "cuda_graph",
            core.VarDesc.VarType.RAW,
            True,
        )
1001 1002 1003
        var.stop_gradient = True
        return var

1004 1005 1006 1007 1008 1009 1010 1011 1012
    def _restore_out(self, out_vars):
        """
        Restores same nested outputs by only replacing the Variable with VarBase.
        """

        flatten_outputs = self._outputs.tolist()
        for i, idx in enumerate(self._outputs.var_ids):
            flatten_outputs[idx] = out_vars[i]
        outs = self._outputs.restore(flatten_outputs)
1013
        if outs is not None and len(outs) == 1:
1014 1015 1016 1017
            outs = outs[0]

        return outs

1018 1019 1020 1021
    @switch_to_static_graph
    def _clone_for_test(self, main_program):
        return main_program.clone(for_test=True)

1022
    def _is_no_value(self, var):
1023 1024 1025
        if isinstance(var, (core.VarBase, core.eager.Tensor)) and var.shape == [
            1
        ]:
1026 1027
            # NOTE: .numpy() will insert MemcpySync operation, it hits performance.
            if var.numpy()[0] == RETURN_NO_VALUE_MAGIC_NUM:
1028 1029 1030 1031 1032 1033 1034
                return True
        return False

    def _remove_no_value(self, out_vars):
        """
        Removes invalid value for various-length return statement
        """
J
Jiabin Yang 已提交
1035
        if isinstance(out_vars, (core.VarBase, core.eager.Tensor)):
1036 1037 1038 1039 1040
            if self._is_no_value(out_vars):
                return None
            return out_vars
        elif isinstance(out_vars, (tuple, list)):
            if isinstance(out_vars, tuple):
1041 1042 1043
                res = tuple(
                    var for var in out_vars if not self._is_no_value(var)
                )
1044 1045 1046 1047
            else:
                # isinstance(out_vars, list)
                res = [var for var in out_vars if not self._is_no_value(var)]

1048
            has_removed = len(out_vars) > len(res)
1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
            # len(out_vars) > len(res) means we have removed var. This is
            # preventing out_vars is empty or just one element at the beginning
            if len(res) == 0 and has_removed:
                return None
            elif len(res) == 1 and has_removed:
                return res[0]
            return res

        return out_vars

1059
    def _set_grad_type(self, params, train_program):
1060 1061 1062 1063 1064 1065 1066 1067
        # NOTE: if user set sparse gradient mode, the param's gradient
        # will be SelectedRows, not LoDTensor. But tracer will just
        # set param grad VarBase by forward VarBase(LoDTensor)
        # If we don't change grad_var type here, RunProgramOp need
        # transform SelectedRows to LoDTensor forcibly, it may not
        # be user wanted result.
        for param in params:
            grad_name = param.name + core.grad_var_suffix()
1068
            grad_var = train_program.desc.block(0).find_var(grad_name.encode())
1069 1070 1071 1072 1073
            # NOTE: cannot find var desc maybe no problem, such as in batch_norm
            if grad_var is None:
                continue
            param._set_grad_type(grad_var.type())

1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
    def _remove_op_call_stack(self, main_program):
        """
        Remove op's python call stack with redundant low-level error messages related to
        transforamtions to avoid confusing users.
        """
        assert isinstance(main_program, framework.Program)
        for block in main_program.blocks:
            for op in block.ops:
                if op.has_attr("op_callstack"):
                    op._remove_attr("op_callstack")

        return main_program

1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
    def _check_params_all_inited(self, main_program):
        """
        Check all params from main program are already initialized, see details as follows:
            1. all parameters in self._params should be type `framework.ParamBase` which are created in dygraph.
            2. all parameters from transformed program can be found in self._params.
               Because they share same data with ParamBase of original dygraph.
        """
        if not isinstance(self._params, (list, tuple)):
            raise TypeError(
                "Type of self._params in PartialProgramLayer should be list or tuple, but received %s."
1097 1098
                % type(self._params)
            )
1099

1100 1101 1102
        param_and_buffer_names_set = set()
        for i, var in enumerate(self._params):
            # self._params constains parameters and buffers with persistable=True.
J
Jiabin Yang 已提交
1103
            if not isinstance(var, (core.VarBase, core.eager.Tensor)):
1104
                raise TypeError(
1105 1106 1107 1108
                    'Type of self._params[{}] in PartialProgramLayer should be Parameter or Variable, but received {}.'.format(
                        i, type(var)
                    )
                )
1109
            param_and_buffer_names_set.add(var.name)
1110 1111

        for block in main_program.blocks:
1112
            for name, var in block.vars.items():
1113
                if isinstance(var, framework.Parameter):
1114
                    if name not in param_and_buffer_names_set:
1115
                        raise ValueError(
1116 1117 1118 1119 1120 1121
                            "\n\tWe don't support to define layer with parameters in the function decorated by `@to_static`."
                            "\n\tBut we found parameter(%s) was created in the decorated function."
                            "\n"
                            "\n\tRevise suggestion: "
                            "\n\t\t1. Please ensure all your sublayers are inheritted from nn.Layer."
                            "\n\t\t2. Please use nn.ParameterList and nn.LayerList as container instead of using a native Python container such as List"
1122 1123
                            % name
                        )
1124

1125 1126 1127 1128 1129 1130 1131 1132
    def _valid_vars(self, vars):
        """
        Note: run_program_op.InferShape requires `X`/'Out' not be null.
        But it's common in dy2static, fake varBase is created to handle the
        problem.
        """
        return vars if vars else self.__fake_vars

1133

1134
def _create_fake_var():
1135
    """
1136
    Create a fake_var (force on CPU) to handle empty input or output
1137
    """
J
Jiabin Yang 已提交
1138
    if not framework._in_eager_mode_:
J
Jiabin Yang 已提交
1139
        return [
1140 1141 1142 1143 1144 1145 1146
            core.VarBase(
                core.VarDesc.VarType.FP32,
                [],
                "Fake_var",
                core.VarDesc.VarType.RAW,
                False,
            )
J
Jiabin Yang 已提交
1147 1148
        ]
    else:
1149
        return [
1150 1151 1152 1153 1154 1155 1156
            core.eager.Tensor(
                core.VarDesc.VarType.FP32,
                [],
                "Fake_var",
                core.VarDesc.VarType.RAW,
                False,
            )
1157
        ]
1158 1159 1160 1161 1162 1163 1164


def partial_program_from(concrete_program):
    inputs = concrete_program.inputs
    if inputs and isinstance(inputs[0], layers.Layer):
        inputs = inputs[1:]

1165 1166 1167 1168 1169 1170 1171
    return PartialProgramLayer(
        concrete_program.main_program,
        inputs,
        concrete_program.outputs,
        concrete_program.parameters,
        **concrete_program.kwargs
    )
1172 1173 1174


@switch_to_static_graph
1175
def add_build_strategy_for(
1176
    program, start_op_index, end_op_index, build_strategy=None, skip_vars=None
1177 1178
):
    if start_op_index < end_op_index:
1179 1180
        compiled_program = paddle.static.CompiledProgram(
            core.Graph(program.desc, start_op_index, end_op_index),
1181 1182
            build_strategy=build_strategy,
        )
1183 1184 1185
        if skip_vars:
            # TODO(Aurelius84): Need to unify name with C++, such as kSkipVarNames.
            compiled_program._graph.set("skip_gc_vars", set(skip_vars))
1186 1187 1188
        compiled_program._compile(
            core.Scope(), framework._current_expected_place()
        )
1189 1190 1191 1192 1193 1194 1195
        ir_graph = framework.IrGraph(compiled_program._graph)
        builded_program = ir_graph.to_program()
        if hasattr(compiled_program._program, 'lr_sheduler'):
            builded_program.lr_sheduler = compiled_program._program.lr_sheduler
    else:
        builded_program = program
    return builded_program