partial_program.py 40.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from copy import deepcopy

17
import numpy as np
18

19
import paddle
20 21
from paddle import _legacy_C_ops
from paddle.fluid import backward, core, framework, program_guard
22
from paddle.fluid.compiler import BuildStrategy
23 24 25 26 27
from paddle.fluid.contrib.mixed_precision.decorator import (
    AutoMixedPrecisionLists,
)
from paddle.fluid.contrib.mixed_precision.fp16_utils import (
    cast_model_to_fp16,
28
    rewrite_program,
29
)
30
from paddle.fluid.dygraph import layers
31 32 33 34
from paddle.fluid.dygraph.amp.auto_cast import (
    _in_amp_guard,
    _in_pure_fp16_guard,
)
35 36 37 38 39 40 41 42 43 44
from paddle.fluid.dygraph.base import switch_to_static_graph
from paddle.fluid.executor import (
    _is_dy2st_enable_standalone_executor,
    _is_enable_standalone_executor,
)
from paddle.fluid.framework import _apply_pass
from paddle.fluid.layers.utils import _hash_with_id, flatten, pack_sequence_as

from . import logging_utils
from .return_transformer import RETURN_NO_VALUE_MAGIC_NUM
45

46 47
__all__ = []

48

49
class NestSequence:
50 51 52 53 54 55 56
    """
    A wrapper class that easily to flatten and restore the nest structure of
    given sequence.
    """

    def __init__(self, raw_input, need_check=False):
        self.__raw_input = raw_input
57
        self.__input_list = self.tolist()
58 59 60 61 62 63 64 65 66 67 68 69 70
        self.__var_ids = self._get_var_ids()
        self._check_non_variable(need_check)

    def tolist(self):
        """
        Flattens the nested sequences into single list.
        """
        return flatten(self.__raw_input)

    def restore(self, value_list):
        """
        Restores the nested sequence from value list.
        """
71
        assert len(self.__input_list) == len(value_list)
72 73 74 75
        return pack_sequence_as(self.__raw_input, value_list)

    def _get_var_ids(self):
        var_ids = []
76
        for idx, var in enumerate(self.__input_list):
77
            if isinstance(
78 79
                var, (framework.Variable, core.VarBase, core.eager.Tensor)
            ):
80 81 82 83 84 85 86 87 88 89
                var_ids.append(idx)

        return var_ids

    def _check_non_variable(self, need_check):
        """
        Raises warning if output of traced function contains non-tensor type values.
        """
        if need_check:
            warning_types = set()
90
            for var in self.__input_list:
91
                if not isinstance(
92 93
                    var, (framework.Variable, core.VarBase, core.eager.Tensor)
                ):
94 95
                    warning_types.add(type(var))
            if warning_types:
96
                logging_utils.warn(
97 98
                    "Output of traced function contains non-tensor type values: {}. "
                    "Currently, We don't support to update them while training and will return "
99 100 101 102
                    "what we first saw. Please try to return them as tensor.".format(
                        list(warning_types)
                    )
                )
103 104 105 106 107 108

    @property
    def var_ids(self):
        return self.__var_ids

    def __getitem__(self, item):
109
        return self.__input_list[item]
110

111

112
class LazyInitialized:
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
    """
    Descriptor to implement lazy initialization of property.
    """

    def __init__(self, function):
        self.function = function

    def __get__(self, instance, cls):
        val = self.function(instance)
        setattr(instance, self.function.__name__, val)
        return val


def _change_is_test_status(program, is_test):
    # change all `is_test` attributes
    for block in program.blocks:
        for op in block.ops:
            if op.has_attr('is_test'):
                op._set_attr('is_test', is_test)
    return program


135
class PartialProgramLayer:
136
    """
H
hjyp 已提交
137
    PartialProgramLayer wraps all the ops from layers decorated by `@to_static`
138 139 140
    and execute them as a static subgraph.

    .. note::
141 142 143
        **1. This is a very low level API. Users should not use this API
             directly. Please use `partial_program_from(concrete_program)`
             to create it.
144 145 146 147
        **2. LoDTensorArray is not currently supported in the output.

    Args:
        main_program(Program): The main program that contains ops need to be executed.
H
hjyp 已提交
148 149
        inputs(list[Variable]): The input list of the decorated function by `@to_static`.
        outputs(list[Variable]): The output list of the decorated function by `@to_static`.
150 151 152
        parameters(list[VarBase]|None): All trainable parameters included in the program. Default None.

    Returns:
153
        Layer: A Layer object that run all ops internally in static graph mode.
154 155
    """

156 157 158
    def __init__(
        self, main_program, inputs, outputs, parameters=None, **kwargs
    ):
159
        super().__init__()
160 161
        self._inputs = NestSequence(inputs)
        self._outputs = NestSequence(outputs, need_check=True)
162
        self._params = parameters if parameters is not None else []
163

164 165 166
        self._build_strategy = kwargs.get('build_strategy', BuildStrategy())
        assert isinstance(self._build_strategy, BuildStrategy)

167
        self._origin_main_program = self._verify_program(main_program)
168 169 170
        self._cuda_graph_vec = self._create_cuda_graph_vec()
        self._cuda_graph_capture_mode = ""
        self._cuda_graph_pool_id = 0
171
        # Set default mode to train
172
        self.training = True
173

174 175 176 177
        custom_white_list, custom_black_list = None, None
        tracer = framework._dygraph_tracer()
        if tracer:
            custom_white_list, custom_black_list = tracer._get_amp_op_list()
178
        # For AMP training
179 180
        self._amp_list = AutoMixedPrecisionLists(
            custom_white_list=custom_white_list,
181 182
            custom_black_list=custom_black_list,
        )
183

184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
        # program_id -> list(scope)
        self._scope_cache = {}

    def _get_scope(self, program_id=None, use_scope_cache=False):
        if use_scope_cache:
            if program_id not in self._scope_cache:
                scope = core.Scope()
                self._scope_cache[program_id] = [scope]
                return scope
            else:
                for scope in self._scope_cache[program_id]:
                    if scope._can_reuesd:
                        return scope
                scope = core.Scope()
                self._scope_cache[program_id].append(scope)
                return scope
        else:
            return core.Scope()

203 204 205 206 207 208 209 210
    @LazyInitialized
    def __fake_vars(self):
        return _create_fake_var()

    @LazyInitialized
    def _double_grads(self):
        return self._get_double_grads(self._origin_main_program)

211 212 213 214 215 216 217
    # whole
    @switch_to_static_graph
    def _create_program(self, is_infer_mode=False):
        if is_infer_mode:
            return self._origin_main_program.clone(for_test=is_infer_mode)
        else:
            train_program = self._append_backward_desc(
218 219
                self._origin_main_program
            )
220 221 222
            # Note: Only set grad type once after initializing train program. So we put it here.
            self._set_grad_type(self._params, train_program)
            return train_program
223

224 225 226 227 228 229 230 231 232 233 234
    @switch_to_static_graph
    def _create_amp_program(self, is_infer_mode=False):
        amp_program = self._origin_main_program.clone(for_test=is_infer_mode)
        with program_guard(amp_program):
            rewrite_program(amp_program, self._amp_list)
        if is_infer_mode:
            return amp_program
        else:
            train_amp_program = self._append_backward_desc(amp_program)
            self._set_grad_type(self._params, train_amp_program)
            return train_amp_program
235

236 237 238
    @switch_to_static_graph
    def _create_pure_fp16_program(self, is_infer_mode=False):
        pure_fp16_program = self._origin_main_program.clone(
239 240
            for_test=is_infer_mode
        )
241
        with program_guard(pure_fp16_program):
242 243 244
            cast_model_to_fp16(
                pure_fp16_program, self._amp_list, use_fp16_guard=False
            )
245 246 247 248
        if is_infer_mode:
            return pure_fp16_program
        else:
            train_pure_fp16_program = self._append_backward_desc(
249 250
                pure_fp16_program
            )
251 252
            self._set_grad_type(self._params, train_pure_fp16_program)
            return train_pure_fp16_program
253

254
    @switch_to_static_graph
255
    def _create_forward_backward_train_program(self):
256
        whole_program = self._train_program
257
        forward_end_op_index = self._infer_program.desc.block(0).op_size()
258 259 260
        return self._get_forward_backward_program_form(
            whole_program, forward_end_op_index
        )
261

262 263
    @switch_to_static_graph
    def _create_forward_backward_train_amp_program(self):
264
        whole_program = self._train_amp_program
265
        forward_end_op_index = self._infer_amp_program.desc.block(0).op_size()
266 267 268
        return self._get_forward_backward_program_form(
            whole_program, forward_end_op_index
        )
269 270 271

    @switch_to_static_graph
    def _create_forward_backward_train_pure_fp16_program(self):
272
        whole_program = self._train_pure_fp16_program
273
        forward_end_op_index = self._infer_pure_fp16_program.desc.block(
274 275 276 277 278
            0
        ).op_size()
        return self._get_forward_backward_program_form(
            whole_program, forward_end_op_index
        )
279 280

    @LazyInitialized
281 282
    def _train_program(self):
        return self._create_program()
283

284
    @LazyInitialized
285 286
    def _infer_program(self):
        return self._create_program(is_infer_mode=True)
287

288 289 290 291 292 293 294
    @LazyInitialized
    def _train_amp_program(self):
        return self._create_amp_program()

    @LazyInitialized
    def _infer_amp_program(self):
        return self._create_amp_program(is_infer_mode=True)
295 296 297

    @LazyInitialized
    def _train_pure_fp16_program(self):
298
        return self._create_pure_fp16_program()
299

300
    @LazyInitialized
301 302
    def _infer_pure_fp16_program(self):
        return self._create_pure_fp16_program(is_infer_mode=True)
303

304
    @LazyInitialized
305 306 307
    def _train_forward_backward_program(self):
        program = self._create_forward_backward_train_program()
        return program
308 309

    @LazyInitialized
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
    def _train_amp_forward_backward_program(self):
        program = self._create_forward_backward_train_amp_program()
        return program

    @LazyInitialized
    def _train_pure_fp16_forward_backward_program(self):
        program = self._create_forward_backward_train_pure_fp16_program()
        return program

    @property
    def whole_program(self):
        if self.training:
            if _in_amp_guard():
                return self._train_amp_program
            elif _in_pure_fp16_guard():
                return self._train_pure_fp16_program
            else:
                return self._train_program
        else:
            if _in_amp_guard():
                return self._infer_amp_program
            elif _in_pure_fp16_guard():
                return self._infer_pure_fp16_program
            else:
                return self._infer_program

    @property
    def forward_program(self):
        if self.training:
            if _in_amp_guard():
                program = self._train_amp_forward_backward_program
                return program[0]
            elif _in_pure_fp16_guard():
                program = self._train_pure_fp16_forward_backward_program
                return program[0]
            else:
                program = self._train_forward_backward_program
                return program[0]
        else:
            if _in_amp_guard():
                return self._infer_amp_program
            elif _in_pure_fp16_guard():
                return self._infer_pure_fp16_program
            else:
                return self._infer_program

    @property
    def backward_program(self):
        if self.training:
            if _in_amp_guard():
                program = self._train_amp_forward_backward_program
                return program[1]
            elif _in_pure_fp16_guard():
                program = self._train_pure_fp16_forward_backward_program
                return program[1]
            else:
                program = self._train_forward_backward_program
                return program[1]
        else:
            return paddle.static.Program()
370

371 372
    @LazyInitialized
    def _train_program_id(self):
373
        program_id = _hash_with_id(self._train_program, self)
374 375 376
        core._set_cached_executor_build_strategy(
            program_id, self._build_strategy
        )
377
        return program_id
378

379 380 381 382
    @LazyInitialized
    def _infer_program_id(self):
        return _hash_with_id(self._infer_program, self)

383 384 385
    @LazyInitialized
    def _train_amp_program_id(self):
        program_id = _hash_with_id(self._train_amp_program, self)
386 387 388
        core._set_cached_executor_build_strategy(
            program_id, self._build_strategy
        )
389 390
        return program_id

391 392 393 394
    @LazyInitialized
    def _infer_amp_program_id(self):
        return _hash_with_id(self._infer_amp_program, self)

395 396 397
    @LazyInitialized
    def _train_pure_fp16_program_id(self):
        program_id = _hash_with_id(self._train_pure_fp16_program, self)
398 399 400
        core._set_cached_executor_build_strategy(
            program_id, self._build_strategy
        )
401 402
        return program_id

403 404 405 406
    @LazyInitialized
    def _infer_pure_fp16_program_id(self):
        return _hash_with_id(self._infer_pure_fp16_program, self)

407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
    @LazyInitialized
    def _param_grad_names(self):
        names = []
        # NOTE: `names` and `self._params` must be in the same order so that
        # the param grad name can be set correctly in the run_program.
        for param in self._params:
            candidate = [
                var_name
                for var_name in self.backward_program.block(0).vars.keys()
                if var_name.endswith(param.name + '@GRAD')
            ]
            if candidate:
                names.append(
                    max(candidate, key=lambda name: name.count('grad/'))
                )
            else:
                names.append(param.name + '@GRAD')
        return names

    @LazyInitialized
    def _out_grad_names(self):
        names = []
        fwd_end_op_index = self._get_end_op_index()
        for i in range(
            fwd_end_op_index + 1,
            min(
                fwd_end_op_index + 2 * len(self._outputs.var_ids),
                len(self.program.block(0).ops),
            ),
            2,
        ):
            op = self.program.block(0).ops[i]
            if op.type == 'fill_constant':
                var_name = op.output('Out')[0]
                names.append(var_name)
        return names

444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
    @property
    def whole_program_id(self):
        if self.training:
            if _in_amp_guard():
                return self._train_amp_program_id
            elif _in_pure_fp16_guard():
                return self._train_pure_fp16_program_id
            else:
                return self._train_program_id
        else:
            if _in_amp_guard():
                return self._infer_amp_program_id
            elif _in_pure_fp16_guard():
                return self._infer_pure_fp16_program_id
            else:
                return self._infer_program_id

461 462 463 464 465 466 467 468 469 470 471 472
    def _verify_program(self, main_program):
        """
        Verify that the program parameter is initialized, prune some unused params,
        and remove redundant op callstack.
        """
        # 1. Check all params from main program can be found in self._params
        self._check_params_all_inited(main_program)
        # 2. Prune the parameters not used anywhere in the program.
        self._prune_unused_params(main_program)

        return main_program

473 474 475
    def prepare_gradient_aggregation(
        self, start_idx, main_program, target_program
    ):
476 477 478 479 480 481 482
        """
        Why we need add gradient aggregation operation ?
        In some cases, if non leaf nodes are used as output, gradient overwriting will occur, such as
        def forward(self, in):
            x = 2 * in  # <---- x is a non-leaf node in program.
            y = x + 3
            return x, y
483

484 485 486 487 488 489 490 491 492
        loss = forward(in)[0].sum()
        loss.backward()  # <----- x@grad will be overwrited by elementwise_add_grad Op
        """

        def _need_aggregation(var):
            """
            if exist a op whose inputs is var, then return True
            """
            if not isinstance(var, framework.Variable) or var.type not in [
493 494
                core.VarDesc.VarType.LOD_TENSOR,
                core.VarDesc.VarType.SELECTED_ROWS,
495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
            ]:
                return False
            if var.dtype not in [paddle.float32, paddle.float64]:
                return False
            for op in main_program.block(0).ops:
                for in_arg in op.input_arg_names:
                    if in_arg == var.name:
                        return True
            return False

        def _insert_aggregation_ops_for_var(target_program, var):
            suffix = "@dy2static"
            var_grad_name = var.grad_name
            new_grad_name = var.name + suffix + "@GRAD"
            finded_ops = list(
                filter(
511 512 513 514 515 516 517 518 519 520
                    lambda x: x[0] >= start_idx
                    and any(
                        [
                            out_arg == var_grad_name
                            for out_arg in x[1].output_arg_names
                        ]
                    ),
                    enumerate(target_program.block(0).ops),
                )
            )
521 522 523 524 525 526

            # len(finded_ops) may equals zero when stop_gradient works.
            # len(finded_ops) may > 1, because we may have fill_constant op.
            if len(finded_ops) == 0:
                return None
            # step1: create a new var named var.name@GRAD
527 528 529 530 531 532
            target_program.block(0).create_var(
                name=new_grad_name,
                type=var.type,
                dtype=var.dtype,
                shape=var.shape,
            )
533 534 535 536 537 538 539 540 541 542
            # step2: rename the var.name@GRAD to var.name@GRAD@dy2static
            for idx, op in finded_ops:
                op._rename_input(var_grad_name, new_grad_name)
                op._rename_output(var_grad_name, new_grad_name)
            # step3: insert sum op to aggregate the gradient.
            #        var.name@GRAD = sum(var.name@dy2static@GRAD, var.name@GRAD)
            target_program.block(0)._insert_op(
                finded_ops[-1][0] + 1,
                type='sum',
                inputs={'X': [var_grad_name, new_grad_name]},
543 544
                outputs={"Out": var_grad_name},
            )
545 546 547
            return None

        to_processed_vars = list(
548 549
            filter(_need_aggregation, self._outputs.tolist())
        )
550 551 552
        for _var in to_processed_vars:
            _insert_aggregation_ops_for_var(target_program, _var)

553
    @switch_to_static_graph
554
    def _append_backward_desc(self, main_program):
555 556
        # make sure all status of is_test are False in train mode.
        program = _change_is_test_status(main_program.clone(), is_test=False)
557
        targets = []
558
        for out in self._outputs.tolist():
559 560 561 562 563 564
            if isinstance(out, framework.Variable):
                targets.append(program.global_block().var(out.name))

        if targets and self._params:
            backward.gradients(targets=targets, inputs=[])

565 566 567
        start_idx = len(main_program.block(0).ops) + 2 * len(
            self._outputs.tolist()
        )
568 569

        self.prepare_gradient_aggregation(start_idx, main_program, program)
570

571 572
        return program

573 574 575
    def _prune_unused_params(self, program):
        """
        Prune the parameters not used anywhere in the program.
H
hjyp 已提交
576
        The `@to_static` may only decorated a sub function which
577 578 579 580 581 582
        contains some unused parameters created in `__init__`.
        So prune these parameters to avoid unnecessary operations in
        `run_program_op`.
        """
        required_params = []
        for param in self._params:
583
            found_param = False
584
            for block in program.blocks:
585
                for op in block.ops:
586 587 588 589
                    if (
                        param.name in op.input_arg_names
                        or param.name in op.output_arg_names
                    ):
590 591 592 593
                        required_params.append(param)
                        found_param = True
                        break
                if found_param:
594 595 596 597
                    break

        self._params = required_params

598 599 600 601 602 603
    def _get_double_grads(self, program):
        double_grads = []
        for block in program.blocks:
            for name in block.vars:
                if "@GRAD" in name:
                    var_desc = block.vars[name].desc
J
Jiabin Yang 已提交
604
                    var_base = None
J
Jiabin Yang 已提交
605
                    if not framework._in_eager_mode_:
606 607 608 609 610 611 612
                        var_base = core.VarBase(
                            var_desc.dtype(),
                            var_desc.shape(),
                            var_desc.name(),
                            var_desc.type(),
                            False,
                        )
J
Jiabin Yang 已提交
613
                    else:
614 615 616 617 618 619 620
                        var_base = core.eager.Tensor(
                            var_desc.dtype(),
                            var_desc.shape(),
                            var_desc.name(),
                            var_desc.type(),
                            False,
                        )
621
                    double_grads.append(var_base)
622
        return self._valid_vars(double_grads)
623

624
    def _get_end_op_index(self):
625 626 627 628 629
        if _in_amp_guard():
            infer_program = self._infer_amp_program
        elif _in_pure_fp16_guard():
            infer_program = self._infer_pure_fp16_program
        else:
630
            infer_program = self.infer_program
631 632
        return infer_program.desc.block(0).op_size()

633 634
    def __call__(self, inputs):
        in_vars, out_vars = self._prepare(inputs)
635

636 637
        self._cast_fp16_if_pure_fp16(in_vars)

638
        attrs = [
639
            'global_block',
640 641 642 643 644 645 646 647 648
            self.program.desc.block(0),
            'start_op_index',
            0,
            'end_op_index',
            self._get_end_op_index(),
            'is_test',
            not self.training,
            'program_id',
            self.program_id,
649
        ]
650 651 652 653 654 655 656 657 658 659 660 661
        if self.training:
            # NOTE: In the case of higher-order gradient, the names of the parameter grads may be like
            # `grad/grad/grad/linear_0.w_0@GRAD` instead of simply `linear_0.w_0@GRAD`, so we get
            # the correct names of the parameter grads from program. And out grads are similar to above.
            attrs.extend(
                (
                    'param_grad_names',
                    self._param_grad_names,
                    'out_grad_names',
                    self._out_grad_names,
                )
            )
662 663
        if self._cuda_graph_capture_mode:
            attrs.extend(
664 665 666 667 668 669 670 671 672 673 674 675
                (
                    'cuda_graph_capture_mode',
                    self._cuda_graph_capture_mode,
                    'cuda_graph_pool_id',
                    self._cuda_graph_pool_id,
                )
            )

        use_interpretorcore = (
            _is_enable_standalone_executor()
            and _is_dy2st_enable_standalone_executor()
        )
676 677 678
        attrs.extend(('use_interpretorcore', use_interpretorcore))
        if use_interpretorcore:
            attrs.extend(
679 680 681 682 683 684 685
                (
                    'forward_global_block',
                    self.forward_program.desc.block(0),
                    'backward_global_block',
                    self.backward_program.desc.block(0),
                )
            )
686

687
            _legacy_C_ops.run_program(
688 689
                self._valid_vars(in_vars),
                self._valid_vars(self._params),
690
                self._valid_vars(out_vars),
691 692 693 694 695 696 697
                self._create_scope_vec(
                    program_id=self.program_id, use_scope_cache=True
                ),
                self._double_grads,
                self._cuda_graph_vec,
                *attrs
            )
698
        else:
699 700 701 702 703 704 705 706 707
            _legacy_C_ops.run_program(
                self._valid_vars(in_vars),
                self._valid_vars(self._params),
                self._valid_vars(out_vars),
                self._create_scope_vec(),
                self._double_grads,
                self._cuda_graph_vec,
                *attrs
            )
708 709
        restored_nest_out = self._restore_out(out_vars)
        return self._remove_no_value(restored_nest_out)
710

711 712 713 714
    def _cast_fp16_if_pure_fp16(self, in_vars):
        if _in_pure_fp16_guard():
            for i, var in enumerate(in_vars):
                name = var.name
715 716 717 718 719
                if (
                    self.program.global_block().has_var(name)
                    and self.program.global_block().var(name).dtype
                    == paddle.float16
                ):
720 721 722
                    in_vars[i] = var.astype('float16')
                    in_vars[i].name = name

723 724
    @property
    def program(self):
725
        return self.whole_program
726

727 728
    @property
    def program_id(self):
729
        return self.whole_program_id
730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747

    @property
    def train_program(self):
        if _in_amp_guard():
            return self._train_amp_program
        elif _in_pure_fp16_guard():
            return self._train_pure_fp16_program
        else:
            return self._train_program

    @property
    def infer_program(self):
        if _in_amp_guard():
            return self._infer_amp_program
        elif _in_pure_fp16_guard():
            return self._infer_pure_fp16_program
        else:
            return self._infer_program
748

749
    @switch_to_static_graph
750 751 752
    def _get_forward_backward_program_form(
        self, whole_program, forward_end_op_index
    ):
753 754
        # NOTE(dev): We apply build_strategy for backward firstly to
        # avoid skipping more gc variables.
755
        backward_start_op_index = forward_end_op_index + 2 * len(
756 757
            self._outputs.var_ids
        )
758
        backward_end_op_index = whole_program.desc.block(0).op_size()
759
        backward_skip_vars = self._parse_skip_gc_vars(whole_program)
760
        backward_builded_program = add_build_strategy_for(
761 762 763 764
            whole_program,
            backward_start_op_index,
            backward_end_op_index,
            self._build_strategy,
765 766 767 768 769 770 771 772 773 774 775 776
            backward_skip_vars,
        )

        forward_skip_vars = self._parse_skip_gc_vars(
            whole_program, backward_builded_program
        )
        forward_builded_program = add_build_strategy_for(
            whole_program,
            0,
            forward_end_op_index,
            self._build_strategy,
            forward_skip_vars,
777
        )
778

779 780 781
        self._apply_inplace_pass(
            forward_builded_program, backward_builded_program
        )
782 783 784 785 786 787
        return [forward_builded_program, backward_builded_program]

    def _apply_inplace_pass(self, forward_program, backward_program):
        attr_types = {
            "use_cuda": "bool",
            "mem_opt_skip_vars": "list[str]",
788
            "for_partial_block": "bool",
789 790 791 792
        }
        empty_startup_program = paddle.static.Program()
        use_cuda = True if core.is_compiled_with_cuda() else False
        # skip data var
793 794 795 796
        forward_mem_opt_skip_vars = self._parse_skip_gc_vars(
            forward_program, backward_program
        )
        backward_mem_opt_skip_vars = self._parse_skip_gc_vars(forward_program)
797 798 799
        attrs = {
            "use_cuda": use_cuda,
            "mem_opt_skip_vars": forward_mem_opt_skip_vars,
800
            "for_partial_block": True,
801
        }
802 803 804 805 806 807 808
        _apply_pass(
            forward_program,
            empty_startup_program,
            "buffer_shared_inplace_pass",
            attrs,
            attr_types,
        )
809 810 811
        attrs = {
            "use_cuda": use_cuda,
            "mem_opt_skip_vars": backward_mem_opt_skip_vars,
812
            "for_partial_block": True,
813
        }
814 815 816 817 818 819 820
        _apply_pass(
            backward_program,
            empty_startup_program,
            "buffer_shared_inplace_pass",
            attrs,
            attr_types,
        )
821

822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853
    @LazyInitialized
    def _inout_var_names(self):
        """
        Returns Variable Names from self._inputs and self.outputs
        """
        var_names = []
        for var in self._inputs:
            if isinstance(var, paddle.fluid.framework.Variable):
                var_names.append(var.desc.name())
        for var in self._outputs:
            if isinstance(var, paddle.fluid.framework.Variable):
                var_names.append(var.desc.name())
        return var_names

    def _parse_skip_gc_vars(self, program, backward_program=None):
        """
        Parse variables that need to skip GC after execute it.
        If specify backward_program, it will keep the variables used in backward.
        """
        # skip data var, DO NOT ignore this deepcopy
        skip_vars = deepcopy(self._inout_var_names)
        for var_name, var in program.global_block().vars.items():
            if var.is_data:
                skip_vars.append(var_name)

        if backward_program:
            for var_name in core.parse_safe_eager_deletion_skip_vars(
                backward_program.desc
            ):
                skip_vars.append(var_name)
        return skip_vars

854 855 856 857 858
    def _prepare(self, inputs):
        """
        Prepare inputs, outputs, attrs.
        """
        assert isinstance(inputs, (tuple, list))
859 860
        # Flatten inputs with nested structure into single list.
        flatten_inputs = flatten(inputs)
861 862
        # Convert variable into VarBase and feed in training data.
        input_vars = []
863
        expected_place = framework._current_expected_place()
864
        for i, value in enumerate(flatten_inputs):
865
            if isinstance(value, np.ndarray):
J
Jiabin Yang 已提交
866
                var = None
J
Jiabin Yang 已提交
867
                if not framework._in_eager_mode_:
868 869 870 871 872 873 874
                    var = core.VarBase(
                        value=value,
                        name=self._inputs[i].desc.name(),
                        persistable=False,
                        place=expected_place,
                        zero_copy=True,
                    )
J
Jiabin Yang 已提交
875
                else:
876 877 878 879 880 881 882
                    var = core.eager.Tensor(
                        value=value,
                        name=self._inputs[i].desc.name(),
                        persistable=False,
                        place=expected_place,
                        zero_copy=True,
                    )
J
Jiabin Yang 已提交
883
            elif isinstance(value, (core.VarBase, core.eager.Tensor)):
884 885 886 887
                # NOTE(Aurelius84): If var is on CPUPlace, it will be transformed multi times
                # into CUDAPlace when it's as input of multi Ops. so we move it in advance
                # to avoid this problem.
                if value.stop_gradient and not value.place._equals(
888 889
                    expected_place
                ):
890 891
                    var = value._copy_to(expected_place, False)
                    var.stop_gradient = True
892 893
                else:
                    var = value
894
                var.name = self._inputs[i].desc.name()
895 896 897
            else:
                continue
            input_vars.append(var)
898

899 900 901
        # mapping from name(string) -> VarBase
        out_varbase_map = {}

902 903
        def create_out(var_id):
            var = self._outputs[var_id]
904
            assert isinstance(var, framework.Variable)
905
            var_desc = var.desc
J
Jiabin Yang 已提交
906
            varbase = None
907 908 909 910

            if var_desc.name() in out_varbase_map:
                return out_varbase_map[var_desc.name()]

J
Jiabin Yang 已提交
911
            if not framework._in_eager_mode_:
912 913 914 915 916 917 918
                var_base = core.VarBase(
                    var_desc.dtype(),
                    var_desc.shape(),
                    var_desc.name(),
                    var_desc.type(),
                    False,
                )
J
Jiabin Yang 已提交
919
            else:
920 921 922 923 924 925 926
                var_base = core.eager.Tensor(
                    var_desc.dtype(),
                    var_desc.shape(),
                    var_desc.name(),
                    var_desc.type(),
                    False,
                )
927
            var_base.stop_gradient = var.stop_gradient
928
            out_varbase_map[var_desc.name()] = var_base
929 930 931 932 933 934
            return var_base

        # Create VarBase to receive output data.
        out_vars = list(map(create_out, self._outputs.var_ids))

        return input_vars, out_vars
935

936
    def _create_scope_vec(self, program_id=None, use_scope_cache=False):
937
        # Hold forward variables
J
Jiabin Yang 已提交
938
        tmp_scope_vec = None
939 940 941
        inner_scope = self._get_scope(
            program_id=program_id, use_scope_cache=use_scope_cache
        )
J
Jiabin Yang 已提交
942
        if not framework._in_eager_mode_:
943 944 945 946 947 948 949
            tmp_scope_vec = core.VarBase(
                core.VarDesc.VarType.FP32,
                [],
                "program_out_scope",
                core.VarDesc.VarType.STEP_SCOPES,
                True,
            )
J
Jiabin Yang 已提交
950
            tmp_scope_vec.value().set_scope(inner_scope)
951 952
        else:
            tmp_scope_vec = [inner_scope]
953
        return tmp_scope_vec
954

955
    def _create_cuda_graph_vec(self):
956 957 958 959 960 961 962
        var = core.VarBase(
            core.VarDesc.VarType.FP32,
            [],
            "cuda_graph",
            core.VarDesc.VarType.RAW,
            True,
        )
963 964 965
        var.stop_gradient = True
        return var

966 967 968 969 970 971 972 973 974
    def _restore_out(self, out_vars):
        """
        Restores same nested outputs by only replacing the Variable with VarBase.
        """

        flatten_outputs = self._outputs.tolist()
        for i, idx in enumerate(self._outputs.var_ids):
            flatten_outputs[idx] = out_vars[i]
        outs = self._outputs.restore(flatten_outputs)
975
        if outs is not None and len(outs) == 1:
976 977 978 979
            outs = outs[0]

        return outs

980 981 982 983
    @switch_to_static_graph
    def _clone_for_test(self, main_program):
        return main_program.clone(for_test=True)

984
    def _is_no_value(self, var):
985 986 987
        if isinstance(var, (core.VarBase, core.eager.Tensor)) and var.shape == [
            1
        ]:
988 989
            # NOTE: .numpy() will insert MemcpySync operation, it hits performance.
            if var.numpy()[0] == RETURN_NO_VALUE_MAGIC_NUM:
990 991 992 993 994 995 996
                return True
        return False

    def _remove_no_value(self, out_vars):
        """
        Removes invalid value for various-length return statement
        """
J
Jiabin Yang 已提交
997
        if isinstance(out_vars, (core.VarBase, core.eager.Tensor)):
998 999 1000 1001 1002
            if self._is_no_value(out_vars):
                return None
            return out_vars
        elif isinstance(out_vars, (tuple, list)):
            if isinstance(out_vars, tuple):
1003 1004 1005
                res = tuple(
                    var for var in out_vars if not self._is_no_value(var)
                )
1006 1007 1008 1009
            else:
                # isinstance(out_vars, list)
                res = [var for var in out_vars if not self._is_no_value(var)]

1010
            has_removed = len(out_vars) > len(res)
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
            # len(out_vars) > len(res) means we have removed var. This is
            # preventing out_vars is empty or just one element at the beginning
            if len(res) == 0 and has_removed:
                return None
            elif len(res) == 1 and has_removed:
                return res[0]
            return res

        return out_vars

1021
    def _set_grad_type(self, params, train_program):
1022 1023 1024 1025 1026 1027 1028 1029
        # NOTE: if user set sparse gradient mode, the param's gradient
        # will be SelectedRows, not LoDTensor. But tracer will just
        # set param grad VarBase by forward VarBase(LoDTensor)
        # If we don't change grad_var type here, RunProgramOp need
        # transform SelectedRows to LoDTensor forcibly, it may not
        # be user wanted result.
        for param in params:
            grad_name = param.name + core.grad_var_suffix()
1030
            grad_var = train_program.desc.block(0).find_var(grad_name.encode())
1031 1032 1033 1034 1035
            # NOTE: cannot find var desc maybe no problem, such as in batch_norm
            if grad_var is None:
                continue
            param._set_grad_type(grad_var.type())

1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
    def _remove_op_call_stack(self, main_program):
        """
        Remove op's python call stack with redundant low-level error messages related to
        transforamtions to avoid confusing users.
        """
        assert isinstance(main_program, framework.Program)
        for block in main_program.blocks:
            for op in block.ops:
                if op.has_attr("op_callstack"):
                    op._remove_attr("op_callstack")

        return main_program

1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
    def _check_params_all_inited(self, main_program):
        """
        Check all params from main program are already initialized, see details as follows:
            1. all parameters in self._params should be type `framework.ParamBase` which are created in dygraph.
            2. all parameters from transformed program can be found in self._params.
               Because they share same data with ParamBase of original dygraph.
        """
        if not isinstance(self._params, (list, tuple)):
            raise TypeError(
                "Type of self._params in PartialProgramLayer should be list or tuple, but received %s."
1059 1060
                % type(self._params)
            )
1061

1062 1063 1064
        param_and_buffer_names_set = set()
        for i, var in enumerate(self._params):
            # self._params constains parameters and buffers with persistable=True.
J
Jiabin Yang 已提交
1065
            if not isinstance(var, (core.VarBase, core.eager.Tensor)):
1066
                raise TypeError(
1067 1068 1069 1070
                    'Type of self._params[{}] in PartialProgramLayer should be Parameter or Variable, but received {}.'.format(
                        i, type(var)
                    )
                )
1071
            param_and_buffer_names_set.add(var.name)
1072 1073

        for block in main_program.blocks:
1074
            for name, var in block.vars.items():
1075
                if isinstance(var, framework.Parameter):
1076
                    if name not in param_and_buffer_names_set:
1077
                        raise ValueError(
1078 1079 1080 1081 1082 1083
                            "\n\tWe don't support to define layer with parameters in the function decorated by `@to_static`."
                            "\n\tBut we found parameter(%s) was created in the decorated function."
                            "\n"
                            "\n\tRevise suggestion: "
                            "\n\t\t1. Please ensure all your sublayers are inheritted from nn.Layer."
                            "\n\t\t2. Please use nn.ParameterList and nn.LayerList as container instead of using a native Python container such as List"
1084 1085
                            % name
                        )
1086

1087 1088 1089 1090 1091 1092 1093 1094
    def _valid_vars(self, vars):
        """
        Note: run_program_op.InferShape requires `X`/'Out' not be null.
        But it's common in dy2static, fake varBase is created to handle the
        problem.
        """
        return vars if vars else self.__fake_vars

1095

1096
def _create_fake_var():
1097
    """
1098
    Create a fake_var (force on CPU) to handle empty input or output
1099
    """
J
Jiabin Yang 已提交
1100
    if not framework._in_eager_mode_:
J
Jiabin Yang 已提交
1101
        return [
1102 1103 1104 1105 1106 1107 1108
            core.VarBase(
                core.VarDesc.VarType.FP32,
                [],
                "Fake_var",
                core.VarDesc.VarType.RAW,
                False,
            )
J
Jiabin Yang 已提交
1109 1110
        ]
    else:
1111
        return [
1112 1113 1114 1115 1116 1117 1118
            core.eager.Tensor(
                core.VarDesc.VarType.FP32,
                [],
                "Fake_var",
                core.VarDesc.VarType.RAW,
                False,
            )
1119
        ]
1120 1121 1122 1123 1124 1125 1126


def partial_program_from(concrete_program):
    inputs = concrete_program.inputs
    if inputs and isinstance(inputs[0], layers.Layer):
        inputs = inputs[1:]

1127 1128 1129 1130 1131 1132 1133
    return PartialProgramLayer(
        concrete_program.main_program,
        inputs,
        concrete_program.outputs,
        concrete_program.parameters,
        **concrete_program.kwargs
    )
1134 1135 1136


@switch_to_static_graph
1137
def add_build_strategy_for(
1138
    program, start_op_index, end_op_index, build_strategy=None, skip_vars=None
1139 1140
):
    if start_op_index < end_op_index:
1141 1142
        compiled_program = paddle.static.CompiledProgram(
            core.Graph(program.desc, start_op_index, end_op_index),
1143 1144
            build_strategy=build_strategy,
        )
1145 1146 1147
        if skip_vars:
            # TODO(Aurelius84): Need to unify name with C++, such as kSkipVarNames.
            compiled_program._graph.set("skip_gc_vars", set(skip_vars))
1148 1149 1150
        compiled_program._compile(
            core.Scope(), framework._current_expected_place()
        )
1151 1152 1153 1154 1155 1156 1157
        ir_graph = framework.IrGraph(compiled_program._graph)
        builded_program = ir_graph.to_program()
        if hasattr(compiled_program._program, 'lr_sheduler'):
            builded_program.lr_sheduler = compiled_program._program.lr_sheduler
    else:
        builded_program = program
    return builded_program