partial_program.py 42.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from copy import deepcopy

17
import numpy as np
18

19
import paddle
20
from paddle import _legacy_C_ops
21
from paddle.amp.auto_cast import _in_amp_guard, _in_pure_fp16_guard
22
from paddle.fluid import backward, core, framework, program_guard
23
from paddle.fluid.compiler import BuildStrategy
24 25 26 27 28
from paddle.fluid.contrib.mixed_precision.decorator import (
    AutoMixedPrecisionLists,
)
from paddle.fluid.contrib.mixed_precision.fp16_utils import (
    cast_model_to_fp16,
29
    rewrite_program,
30
)
31 32 33 34 35 36 37 38 39 40 41
from paddle.fluid.dygraph import layers
from paddle.fluid.dygraph.base import switch_to_static_graph
from paddle.fluid.executor import (
    _is_dy2st_enable_standalone_executor,
    _is_enable_standalone_executor,
)
from paddle.fluid.framework import _apply_pass
from paddle.fluid.layers.utils import _hash_with_id, flatten, pack_sequence_as

from . import logging_utils
from .return_transformer import RETURN_NO_VALUE_MAGIC_NUM
42

43 44
__all__ = []

45

46
class NestSequence:
47 48 49 50 51 52 53
    """
    A wrapper class that easily to flatten and restore the nest structure of
    given sequence.
    """

    def __init__(self, raw_input, need_check=False):
        self.__raw_input = raw_input
54
        self.__input_list = self.tolist()
55 56 57 58 59 60 61 62 63 64 65 66 67
        self.__var_ids = self._get_var_ids()
        self._check_non_variable(need_check)

    def tolist(self):
        """
        Flattens the nested sequences into single list.
        """
        return flatten(self.__raw_input)

    def restore(self, value_list):
        """
        Restores the nested sequence from value list.
        """
68
        assert len(self.__input_list) == len(value_list)
69 70 71 72
        return pack_sequence_as(self.__raw_input, value_list)

    def _get_var_ids(self):
        var_ids = []
73
        for idx, var in enumerate(self.__input_list):
74
            if isinstance(
75 76
                var, (framework.Variable, core.VarBase, core.eager.Tensor)
            ):
77 78 79 80 81 82 83 84 85 86
                var_ids.append(idx)

        return var_ids

    def _check_non_variable(self, need_check):
        """
        Raises warning if output of traced function contains non-tensor type values.
        """
        if need_check:
            warning_types = set()
87
            for var in self.__input_list:
88
                if not isinstance(
89 90
                    var, (framework.Variable, core.VarBase, core.eager.Tensor)
                ):
91 92
                    warning_types.add(type(var))
            if warning_types:
93
                logging_utils.warn(
94 95
                    "Output of traced function contains non-tensor type values: {}. "
                    "Currently, We don't support to update them while training and will return "
96 97 98 99
                    "what we first saw. Please try to return them as tensor.".format(
                        list(warning_types)
                    )
                )
100 101 102 103 104 105

    @property
    def var_ids(self):
        return self.__var_ids

    def __getitem__(self, item):
106
        return self.__input_list[item]
107

108

109
class LazyInitialized:
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
    """
    Descriptor to implement lazy initialization of property.
    """

    def __init__(self, function):
        self.function = function

    def __get__(self, instance, cls):
        val = self.function(instance)
        setattr(instance, self.function.__name__, val)
        return val


def _change_is_test_status(program, is_test):
    # change all `is_test` attributes
    for block in program.blocks:
        for op in block.ops:
            if op.has_attr('is_test'):
                op._set_attr('is_test', is_test)
    return program


132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
class ProgramInfo:
    """
    A helper class to recoder Program information
    """

    def __init__(self, mode='infer'):
        self.op_size = {
            'fp32': -1,
            'amp': -1,
            'fp16': -1,
        }
        assert mode in ['train', 'infer']
        self.mode = mode


147
class PartialProgramLayer:
148
    """
H
hjyp 已提交
149
    PartialProgramLayer wraps all the ops from layers decorated by `@to_static`
150 151 152
    and execute them as a static subgraph.

    .. note::
153 154 155
        **1. This is a very low level API. Users should not use this API
             directly. Please use `partial_program_from(concrete_program)`
             to create it.
156 157 158 159
        **2. LoDTensorArray is not currently supported in the output.

    Args:
        main_program(Program): The main program that contains ops need to be executed.
H
hjyp 已提交
160 161
        inputs(list[Variable]): The input list of the decorated function by `@to_static`.
        outputs(list[Variable]): The output list of the decorated function by `@to_static`.
162 163 164
        parameters(list[VarBase]|None): All trainable parameters included in the program. Default None.

    Returns:
165
        Layer: A Layer object that run all ops internally in static graph mode.
166 167
    """

168 169 170
    def __init__(
        self, main_program, inputs, outputs, parameters=None, **kwargs
    ):
171
        super().__init__()
172 173
        self._inputs = NestSequence(inputs)
        self._outputs = NestSequence(outputs, need_check=True)
174
        self._params = parameters if parameters is not None else []
175

176 177 178
        self._build_strategy = kwargs.get('build_strategy', BuildStrategy())
        assert isinstance(self._build_strategy, BuildStrategy)

179
        self._origin_main_program = self._verify_program(main_program)
180 181 182
        self._cuda_graph_vec = self._create_cuda_graph_vec()
        self._cuda_graph_capture_mode = ""
        self._cuda_graph_pool_id = 0
183
        # Set default mode to train
184
        self.training = True
185
        self._infer_info = ProgramInfo(mode='infer')
186

187 188 189 190
        custom_white_list, custom_black_list = None, None
        tracer = framework._dygraph_tracer()
        if tracer:
            custom_white_list, custom_black_list = tracer._get_amp_op_list()
191
        # For AMP training
192 193
        self._amp_list = AutoMixedPrecisionLists(
            custom_white_list=custom_white_list,
194 195
            custom_black_list=custom_black_list,
        )
196

197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
        # program_id -> list(scope)
        self._scope_cache = {}

    def _get_scope(self, program_id=None, use_scope_cache=False):
        if use_scope_cache:
            if program_id not in self._scope_cache:
                scope = core.Scope()
                self._scope_cache[program_id] = [scope]
                return scope
            else:
                for scope in self._scope_cache[program_id]:
                    if scope._can_reuesd:
                        return scope
                scope = core.Scope()
                self._scope_cache[program_id].append(scope)
                return scope
        else:
            return core.Scope()

216 217 218 219 220 221 222 223
    @LazyInitialized
    def __fake_vars(self):
        return _create_fake_var()

    @LazyInitialized
    def _double_grads(self):
        return self._get_double_grads(self._origin_main_program)

224 225 226 227 228 229 230
    # whole
    @switch_to_static_graph
    def _create_program(self, is_infer_mode=False):
        if is_infer_mode:
            return self._origin_main_program.clone(for_test=is_infer_mode)
        else:
            train_program = self._append_backward_desc(
231 232
                self._origin_main_program
            )
233 234 235
            # Note: Only set grad type once after initializing train program. So we put it here.
            self._set_grad_type(self._params, train_program)
            return train_program
236

237 238 239 240 241 242 243 244 245 246 247
    @switch_to_static_graph
    def _create_amp_program(self, is_infer_mode=False):
        amp_program = self._origin_main_program.clone(for_test=is_infer_mode)
        with program_guard(amp_program):
            rewrite_program(amp_program, self._amp_list)
        if is_infer_mode:
            return amp_program
        else:
            train_amp_program = self._append_backward_desc(amp_program)
            self._set_grad_type(self._params, train_amp_program)
            return train_amp_program
248

249 250 251
    @switch_to_static_graph
    def _create_pure_fp16_program(self, is_infer_mode=False):
        pure_fp16_program = self._origin_main_program.clone(
252 253
            for_test=is_infer_mode
        )
254
        with program_guard(pure_fp16_program):
255 256 257
            cast_model_to_fp16(
                pure_fp16_program, self._amp_list, use_fp16_guard=False
            )
258 259 260 261
        if is_infer_mode:
            return pure_fp16_program
        else:
            train_pure_fp16_program = self._append_backward_desc(
262 263
                pure_fp16_program
            )
264 265
            self._set_grad_type(self._params, train_pure_fp16_program)
            return train_pure_fp16_program
266

267
    @switch_to_static_graph
268
    def _create_forward_backward_train_program(self):
269
        whole_program = self._train_program
270 271
        forward_end_op_index = self._infer_info.op_size['fp32']
        assert forward_end_op_index >= 0
272 273 274
        return self._get_forward_backward_program_form(
            whole_program, forward_end_op_index
        )
275

276 277
    @switch_to_static_graph
    def _create_forward_backward_train_amp_program(self):
278
        whole_program = self._train_amp_program
279 280
        forward_end_op_index = self._infer_info.op_size['amp']
        assert forward_end_op_index >= 0
281 282 283
        return self._get_forward_backward_program_form(
            whole_program, forward_end_op_index
        )
284 285 286

    @switch_to_static_graph
    def _create_forward_backward_train_pure_fp16_program(self):
287
        whole_program = self._train_pure_fp16_program
288 289
        forward_end_op_index = self._infer_info.op_size['fp16']
        assert forward_end_op_index >= 0
290 291 292
        return self._get_forward_backward_program_form(
            whole_program, forward_end_op_index
        )
293 294

    @LazyInitialized
295 296
    def _train_program(self):
        return self._create_program()
297

298
    @LazyInitialized
299
    def _infer_program(self):
300 301 302 303 304
        program = self._create_program(is_infer_mode=True)
        self._infer_info.op_size['fp32'] = program.desc.block(0).op_size()
        return self._build_infer_program(
            program, self._infer_info.op_size['fp32']
        )
305

306 307 308 309 310 311
    @LazyInitialized
    def _train_amp_program(self):
        return self._create_amp_program()

    @LazyInitialized
    def _infer_amp_program(self):
312 313 314 315 316
        program = self._create_amp_program(is_infer_mode=True)
        self._infer_info.op_size['amp'] = program.desc.block(0).op_size()
        return self._build_infer_program(
            program, self._infer_info.op_size['amp']
        )
317 318 319

    @LazyInitialized
    def _train_pure_fp16_program(self):
320
        return self._create_pure_fp16_program()
321

322
    @LazyInitialized
323
    def _infer_pure_fp16_program(self):
324 325 326 327 328
        program = self._create_pure_fp16_program(is_infer_mode=True)
        self._infer_info.op_size['fp16'] = program.desc.block(0).op_size()
        return self._build_infer_program(
            program, self._infer_info.op_size['fp16']
        )
329

330
    @LazyInitialized
331 332 333
    def _train_forward_backward_program(self):
        program = self._create_forward_backward_train_program()
        return program
334 335

    @LazyInitialized
336 337 338 339
    def _train_amp_forward_backward_program(self):
        program = self._create_forward_backward_train_amp_program()
        return program

340 341 342 343
    @LazyInitialized
    def _empty_backward_program_for_eval(self):
        return paddle.static.Program()

344 345 346 347 348
    @LazyInitialized
    def _train_pure_fp16_forward_backward_program(self):
        program = self._create_forward_backward_train_pure_fp16_program()
        return program

349 350
    @LazyInitialized
    def _train_program_id(self):
351
        program_id = _hash_with_id(self._train_program, self)
352 353 354
        core._set_cached_executor_build_strategy(
            program_id, self._build_strategy
        )
355
        return program_id
356

357 358 359 360
    @LazyInitialized
    def _infer_program_id(self):
        return _hash_with_id(self._infer_program, self)

361 362 363
    @LazyInitialized
    def _train_amp_program_id(self):
        program_id = _hash_with_id(self._train_amp_program, self)
364 365 366
        core._set_cached_executor_build_strategy(
            program_id, self._build_strategy
        )
367 368
        return program_id

369 370 371 372
    @LazyInitialized
    def _infer_amp_program_id(self):
        return _hash_with_id(self._infer_amp_program, self)

373 374 375
    @LazyInitialized
    def _train_pure_fp16_program_id(self):
        program_id = _hash_with_id(self._train_pure_fp16_program, self)
376 377 378
        core._set_cached_executor_build_strategy(
            program_id, self._build_strategy
        )
379 380
        return program_id

381 382 383 384
    @LazyInitialized
    def _infer_pure_fp16_program_id(self):
        return _hash_with_id(self._infer_pure_fp16_program, self)

385 386 387 388 389 390 391 392
    @LazyInitialized
    def _param_grad_names(self):
        names = []
        # NOTE: `names` and `self._params` must be in the same order so that
        # the param grad name can be set correctly in the run_program.
        for param in self._params:
            candidate = [
                var_name
393
                for var_name in self._train_program.block(0).vars.keys()
394 395 396 397 398 399 400 401 402 403 404 405
                if var_name.endswith(param.name + '@GRAD')
            ]
            if candidate:
                names.append(
                    max(candidate, key=lambda name: name.count('grad/'))
                )
            else:
                names.append(param.name + '@GRAD')
        return names

    @LazyInitialized
    def _out_grad_names(self):
406 407 408
        """
        Parse Out@GARD name from original train and infer program.
        """
409
        names = []
410 411 412
        origin_infer_program = self._create_program(is_infer_mode=True)
        origin_train_program = self._train_program
        fwd_end_op_index = len(origin_infer_program.block(0).ops)
413 414 415 416
        for i in range(
            fwd_end_op_index + 1,
            min(
                fwd_end_op_index + 2 * len(self._outputs.var_ids),
417
                len(origin_train_program.block(0).ops),
418 419 420
            ),
            2,
        ):
421
            op = origin_train_program.block(0).ops[i]
422 423 424
            if op.type == 'fill_constant':
                var_name = op.output('Out')[0]
                names.append(var_name)
425

426 427
        return names

428
    @property
429 430 431 432 433 434 435 436 437 438 439 440 441 442
    def program(self):
        """
        Return current train or eval program.
        """
        if self.training:
            return self.train_program
        else:
            return self.infer_program

    @property
    def program_id(self):
        """
        Return current train or eval program hash id.
        """
443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
        if self.training:
            if _in_amp_guard():
                return self._train_amp_program_id
            elif _in_pure_fp16_guard():
                return self._train_pure_fp16_program_id
            else:
                return self._train_program_id
        else:
            if _in_amp_guard():
                return self._infer_amp_program_id
            elif _in_pure_fp16_guard():
                return self._infer_pure_fp16_program_id
            else:
                return self._infer_program_id

458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
    @property
    def train_program(self):
        if _in_amp_guard():
            return self._train_amp_program
        elif _in_pure_fp16_guard():
            return self._train_pure_fp16_program
        else:
            return self._train_program

    @property
    def infer_program(self):
        if _in_amp_guard():
            return self._infer_amp_program
        elif _in_pure_fp16_guard():
            return self._infer_pure_fp16_program
        else:
            return self._infer_program

    @property
    def forward_program(self):
        if self.training:
            if _in_amp_guard():
                progs = self._train_amp_forward_backward_program
            elif _in_pure_fp16_guard():
                progs = self._train_pure_fp16_forward_backward_program
            else:
                progs = self._train_forward_backward_program
            return progs[0]
        else:
            return self.infer_program

    @property
    def backward_program(self):
        if self.training:
            if _in_amp_guard():
                progs = self._train_amp_forward_backward_program
            elif _in_pure_fp16_guard():
                progs = self._train_pure_fp16_forward_backward_program
            else:
                progs = self._train_forward_backward_program
            return progs[1]
        else:
            """
            Can't just return paddle.static.Program(), because self.backward_program is a property,
            whenever we call this method, a tmp Program() object is created and is gc immediatly
            after executed the following line in PartialProgramLayer.__call__.

            >>> self.backward_program.desc.block(0),

            When we access RunProgramAPI, it's possible to get an invalid backward_program address.
            """
            return self._empty_backward_program_for_eval

511 512 513 514 515 516 517 518 519 520 521 522
    def _verify_program(self, main_program):
        """
        Verify that the program parameter is initialized, prune some unused params,
        and remove redundant op callstack.
        """
        # 1. Check all params from main program can be found in self._params
        self._check_params_all_inited(main_program)
        # 2. Prune the parameters not used anywhere in the program.
        self._prune_unused_params(main_program)

        return main_program

523 524 525
    def prepare_gradient_aggregation(
        self, start_idx, main_program, target_program
    ):
526 527 528 529 530 531 532
        """
        Why we need add gradient aggregation operation ?
        In some cases, if non leaf nodes are used as output, gradient overwriting will occur, such as
        def forward(self, in):
            x = 2 * in  # <---- x is a non-leaf node in program.
            y = x + 3
            return x, y
533

534 535 536 537 538 539 540 541 542
        loss = forward(in)[0].sum()
        loss.backward()  # <----- x@grad will be overwrited by elementwise_add_grad Op
        """

        def _need_aggregation(var):
            """
            if exist a op whose inputs is var, then return True
            """
            if not isinstance(var, framework.Variable) or var.type not in [
543 544
                core.VarDesc.VarType.LOD_TENSOR,
                core.VarDesc.VarType.SELECTED_ROWS,
545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
            ]:
                return False
            if var.dtype not in [paddle.float32, paddle.float64]:
                return False
            for op in main_program.block(0).ops:
                for in_arg in op.input_arg_names:
                    if in_arg == var.name:
                        return True
            return False

        def _insert_aggregation_ops_for_var(target_program, var):
            suffix = "@dy2static"
            var_grad_name = var.grad_name
            new_grad_name = var.name + suffix + "@GRAD"
            finded_ops = list(
                filter(
561 562 563 564 565 566 567 568 569 570
                    lambda x: x[0] >= start_idx
                    and any(
                        [
                            out_arg == var_grad_name
                            for out_arg in x[1].output_arg_names
                        ]
                    ),
                    enumerate(target_program.block(0).ops),
                )
            )
571 572 573 574 575 576

            # len(finded_ops) may equals zero when stop_gradient works.
            # len(finded_ops) may > 1, because we may have fill_constant op.
            if len(finded_ops) == 0:
                return None
            # step1: create a new var named var.name@GRAD
577 578 579 580 581 582
            target_program.block(0).create_var(
                name=new_grad_name,
                type=var.type,
                dtype=var.dtype,
                shape=var.shape,
            )
583 584 585 586 587 588 589 590 591 592
            # step2: rename the var.name@GRAD to var.name@GRAD@dy2static
            for idx, op in finded_ops:
                op._rename_input(var_grad_name, new_grad_name)
                op._rename_output(var_grad_name, new_grad_name)
            # step3: insert sum op to aggregate the gradient.
            #        var.name@GRAD = sum(var.name@dy2static@GRAD, var.name@GRAD)
            target_program.block(0)._insert_op(
                finded_ops[-1][0] + 1,
                type='sum',
                inputs={'X': [var_grad_name, new_grad_name]},
593 594
                outputs={"Out": var_grad_name},
            )
595 596 597
            return None

        to_processed_vars = list(
598 599
            filter(_need_aggregation, self._outputs.tolist())
        )
600 601 602
        for _var in to_processed_vars:
            _insert_aggregation_ops_for_var(target_program, _var)

603
    @switch_to_static_graph
604
    def _append_backward_desc(self, main_program):
605 606
        # make sure all status of is_test are False in train mode.
        program = _change_is_test_status(main_program.clone(), is_test=False)
607
        targets = []
608
        for out in self._outputs.tolist():
609 610 611 612 613 614
            if isinstance(out, framework.Variable):
                targets.append(program.global_block().var(out.name))

        if targets and self._params:
            backward.gradients(targets=targets, inputs=[])

615 616 617
        start_idx = len(main_program.block(0).ops) + 2 * len(
            self._outputs.tolist()
        )
618 619

        self.prepare_gradient_aggregation(start_idx, main_program, program)
620

621 622
        return program

623 624 625
    def _prune_unused_params(self, program):
        """
        Prune the parameters not used anywhere in the program.
H
hjyp 已提交
626
        The `@to_static` may only decorated a sub function which
627 628 629 630 631 632
        contains some unused parameters created in `__init__`.
        So prune these parameters to avoid unnecessary operations in
        `run_program_op`.
        """
        required_params = []
        for param in self._params:
633
            found_param = False
634
            for block in program.blocks:
635
                for op in block.ops:
636 637 638 639
                    if (
                        param.name in op.input_arg_names
                        or param.name in op.output_arg_names
                    ):
640 641 642 643
                        required_params.append(param)
                        found_param = True
                        break
                if found_param:
644 645 646 647
                    break

        self._params = required_params

648 649 650 651 652 653
    def _get_double_grads(self, program):
        double_grads = []
        for block in program.blocks:
            for name in block.vars:
                if "@GRAD" in name:
                    var_desc = block.vars[name].desc
J
Jiabin Yang 已提交
654
                    var_base = None
J
Jiabin Yang 已提交
655
                    if not framework._in_eager_mode_:
656 657 658 659 660 661 662
                        var_base = core.VarBase(
                            var_desc.dtype(),
                            var_desc.shape(),
                            var_desc.name(),
                            var_desc.type(),
                            False,
                        )
J
Jiabin Yang 已提交
663
                    else:
664 665 666 667 668 669 670
                        var_base = core.eager.Tensor(
                            var_desc.dtype(),
                            var_desc.shape(),
                            var_desc.name(),
                            var_desc.type(),
                            False,
                        )
671
                    double_grads.append(var_base)
672
        return self._valid_vars(double_grads)
673

674
    def _get_end_op_index(self):
675 676 677 678 679
        if _in_amp_guard():
            infer_program = self._infer_amp_program
        elif _in_pure_fp16_guard():
            infer_program = self._infer_pure_fp16_program
        else:
680
            infer_program = self._infer_program
681 682
        return infer_program.desc.block(0).op_size()

683 684
    def __call__(self, inputs):
        in_vars, out_vars = self._prepare(inputs)
685

686 687
        self._cast_fp16_if_pure_fp16(in_vars)

688
        attrs = [
689
            'global_block',
690 691 692 693 694 695 696 697 698
            self.program.desc.block(0),
            'start_op_index',
            0,
            'end_op_index',
            self._get_end_op_index(),
            'is_test',
            not self.training,
            'program_id',
            self.program_id,
699
        ]
700 701 702 703 704 705 706 707 708 709 710 711
        if self.training:
            # NOTE: In the case of higher-order gradient, the names of the parameter grads may be like
            # `grad/grad/grad/linear_0.w_0@GRAD` instead of simply `linear_0.w_0@GRAD`, so we get
            # the correct names of the parameter grads from program. And out grads are similar to above.
            attrs.extend(
                (
                    'param_grad_names',
                    self._param_grad_names,
                    'out_grad_names',
                    self._out_grad_names,
                )
            )
712 713
        if self._cuda_graph_capture_mode:
            attrs.extend(
714 715 716 717 718 719 720 721 722 723 724 725
                (
                    'cuda_graph_capture_mode',
                    self._cuda_graph_capture_mode,
                    'cuda_graph_pool_id',
                    self._cuda_graph_pool_id,
                )
            )

        use_interpretorcore = (
            _is_enable_standalone_executor()
            and _is_dy2st_enable_standalone_executor()
        )
726 727 728
        attrs.extend(('use_interpretorcore', use_interpretorcore))
        if use_interpretorcore:
            attrs.extend(
729 730 731 732 733 734 735
                (
                    'forward_global_block',
                    self.forward_program.desc.block(0),
                    'backward_global_block',
                    self.backward_program.desc.block(0),
                )
            )
736

737
            _legacy_C_ops.run_program(
738 739
                self._valid_vars(in_vars),
                self._valid_vars(self._params),
740
                self._valid_vars(out_vars),
741 742 743 744 745 746 747
                self._create_scope_vec(
                    program_id=self.program_id, use_scope_cache=True
                ),
                self._double_grads,
                self._cuda_graph_vec,
                *attrs
            )
748
        else:
749 750 751 752 753 754 755 756 757
            _legacy_C_ops.run_program(
                self._valid_vars(in_vars),
                self._valid_vars(self._params),
                self._valid_vars(out_vars),
                self._create_scope_vec(),
                self._double_grads,
                self._cuda_graph_vec,
                *attrs
            )
758 759
        restored_nest_out = self._restore_out(out_vars)
        return self._remove_no_value(restored_nest_out)
760

761 762 763 764
    def _cast_fp16_if_pure_fp16(self, in_vars):
        if _in_pure_fp16_guard():
            for i, var in enumerate(in_vars):
                name = var.name
765 766 767 768 769
                if (
                    self.program.global_block().has_var(name)
                    and self.program.global_block().var(name).dtype
                    == paddle.float16
                ):
770 771 772
                    in_vars[i] = var.astype('float16')
                    in_vars[i].name = name

773 774 775 776 777 778 779 780 781 782 783 784
    @switch_to_static_graph
    def _build_infer_program(self, infer_program, forward_end_op_index):
        forward_skip_vars = self._parse_skip_gc_vars(infer_program)
        builded_infer_program = add_build_strategy_for(
            infer_program,
            0,
            forward_end_op_index,
            self._build_strategy,
            forward_skip_vars,
        )
        self._apply_inplace_pass(builded_infer_program, None)
        return builded_infer_program
785

786
    @switch_to_static_graph
787 788 789
    def _get_forward_backward_program_form(
        self, whole_program, forward_end_op_index
    ):
790 791
        # NOTE(dev): We apply build_strategy for backward firstly to
        # avoid skipping more gc variables.
792
        backward_start_op_index = forward_end_op_index + 2 * len(
793 794
            self._outputs.var_ids
        )
795
        backward_end_op_index = whole_program.desc.block(0).op_size()
796 797 798 799 800
        # For Backward process in CINN, all param@GRAD shoule be skipped for GC, because
        # they will be shared in scope and used by optimizer.
        backward_skip_vars = (
            self._parse_skip_gc_vars(whole_program) + self._param_grad_names
        )
801
        backward_builded_program = add_build_strategy_for(
802 803 804 805
            whole_program,
            backward_start_op_index,
            backward_end_op_index,
            self._build_strategy,
806 807 808 809 810 811 812 813 814 815 816 817
            backward_skip_vars,
        )

        forward_skip_vars = self._parse_skip_gc_vars(
            whole_program, backward_builded_program
        )
        forward_builded_program = add_build_strategy_for(
            whole_program,
            0,
            forward_end_op_index,
            self._build_strategy,
            forward_skip_vars,
818
        )
819

820 821 822
        self._apply_inplace_pass(
            forward_builded_program, backward_builded_program
        )
823 824 825 826 827 828
        return [forward_builded_program, backward_builded_program]

    def _apply_inplace_pass(self, forward_program, backward_program):
        attr_types = {
            "use_cuda": "bool",
            "mem_opt_skip_vars": "list[str]",
829
            "for_partial_block": "bool",
830 831 832 833
        }
        empty_startup_program = paddle.static.Program()
        use_cuda = True if core.is_compiled_with_cuda() else False
        # skip data var
834 835 836 837
        forward_mem_opt_skip_vars = self._parse_skip_gc_vars(
            forward_program, backward_program
        )
        backward_mem_opt_skip_vars = self._parse_skip_gc_vars(forward_program)
838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863
        if forward_program:
            attrs = {
                "use_cuda": use_cuda,
                "mem_opt_skip_vars": forward_mem_opt_skip_vars,
                "for_partial_block": True,
            }
            _apply_pass(
                forward_program,
                empty_startup_program,
                "buffer_shared_inplace_pass",
                attrs,
                attr_types,
            )
        if backward_program:
            attrs = {
                "use_cuda": use_cuda,
                "mem_opt_skip_vars": backward_mem_opt_skip_vars,
                "for_partial_block": True,
            }
            _apply_pass(
                backward_program,
                empty_startup_program,
                "buffer_shared_inplace_pass",
                attrs,
                attr_types,
            )
864

865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891
    @LazyInitialized
    def _inout_var_names(self):
        """
        Returns Variable Names from self._inputs and self.outputs
        """
        var_names = []
        for var in self._inputs:
            if isinstance(var, paddle.fluid.framework.Variable):
                var_names.append(var.desc.name())
        for var in self._outputs:
            if isinstance(var, paddle.fluid.framework.Variable):
                var_names.append(var.desc.name())
        return var_names

    def _parse_skip_gc_vars(self, program, backward_program=None):
        """
        Parse variables that need to skip GC after execute it.
        If specify backward_program, it will keep the variables used in backward.
        """
        # skip data var, DO NOT ignore this deepcopy
        skip_vars = deepcopy(self._inout_var_names)
        for var_name, var in program.global_block().vars.items():
            if var.is_data:
                skip_vars.append(var_name)

        if backward_program:
            for var_name in core.parse_safe_eager_deletion_skip_vars(
892
                backward_program.desc, True
893 894 895 896
            ):
                skip_vars.append(var_name)
        return skip_vars

897 898 899 900 901
    def _prepare(self, inputs):
        """
        Prepare inputs, outputs, attrs.
        """
        assert isinstance(inputs, (tuple, list))
902 903
        # Flatten inputs with nested structure into single list.
        flatten_inputs = flatten(inputs)
904 905
        # Convert variable into VarBase and feed in training data.
        input_vars = []
906
        expected_place = framework._current_expected_place()
907
        for i, value in enumerate(flatten_inputs):
908
            if isinstance(value, np.ndarray):
J
Jiabin Yang 已提交
909
                var = None
J
Jiabin Yang 已提交
910
                if not framework._in_eager_mode_:
911 912 913 914 915 916 917
                    var = core.VarBase(
                        value=value,
                        name=self._inputs[i].desc.name(),
                        persistable=False,
                        place=expected_place,
                        zero_copy=True,
                    )
J
Jiabin Yang 已提交
918
                else:
919 920 921 922 923 924 925
                    var = core.eager.Tensor(
                        value=value,
                        name=self._inputs[i].desc.name(),
                        persistable=False,
                        place=expected_place,
                        zero_copy=True,
                    )
J
Jiabin Yang 已提交
926
            elif isinstance(value, (core.VarBase, core.eager.Tensor)):
927 928 929 930
                # NOTE(Aurelius84): If var is on CPUPlace, it will be transformed multi times
                # into CUDAPlace when it's as input of multi Ops. so we move it in advance
                # to avoid this problem.
                if value.stop_gradient and not value.place._equals(
931 932
                    expected_place
                ):
933 934
                    var = value._copy_to(expected_place, False)
                    var.stop_gradient = True
935 936
                else:
                    var = value
937
                var.name = self._inputs[i].desc.name()
938 939 940
            else:
                continue
            input_vars.append(var)
941

942 943 944
        # mapping from name(string) -> VarBase
        out_varbase_map = {}

945 946
        def create_out(var_id):
            var = self._outputs[var_id]
947
            assert isinstance(var, framework.Variable)
948
            var_desc = var.desc
J
Jiabin Yang 已提交
949
            varbase = None
950 951 952 953

            if var_desc.name() in out_varbase_map:
                return out_varbase_map[var_desc.name()]

J
Jiabin Yang 已提交
954
            if not framework._in_eager_mode_:
955 956 957 958 959 960 961
                var_base = core.VarBase(
                    var_desc.dtype(),
                    var_desc.shape(),
                    var_desc.name(),
                    var_desc.type(),
                    False,
                )
J
Jiabin Yang 已提交
962
            else:
963 964 965 966 967 968 969
                var_base = core.eager.Tensor(
                    var_desc.dtype(),
                    var_desc.shape(),
                    var_desc.name(),
                    var_desc.type(),
                    False,
                )
970
            var_base.stop_gradient = var.stop_gradient
971
            out_varbase_map[var_desc.name()] = var_base
972 973 974 975 976 977
            return var_base

        # Create VarBase to receive output data.
        out_vars = list(map(create_out, self._outputs.var_ids))

        return input_vars, out_vars
978

979
    def _create_scope_vec(self, program_id=None, use_scope_cache=False):
980
        # Hold forward variables
J
Jiabin Yang 已提交
981
        tmp_scope_vec = None
982 983 984
        inner_scope = self._get_scope(
            program_id=program_id, use_scope_cache=use_scope_cache
        )
J
Jiabin Yang 已提交
985
        if not framework._in_eager_mode_:
986 987 988 989 990 991 992
            tmp_scope_vec = core.VarBase(
                core.VarDesc.VarType.FP32,
                [],
                "program_out_scope",
                core.VarDesc.VarType.STEP_SCOPES,
                True,
            )
J
Jiabin Yang 已提交
993
            tmp_scope_vec.value().set_scope(inner_scope)
994 995
        else:
            tmp_scope_vec = [inner_scope]
996
        return tmp_scope_vec
997

998
    def _create_cuda_graph_vec(self):
999 1000 1001 1002 1003 1004 1005
        var = core.VarBase(
            core.VarDesc.VarType.FP32,
            [],
            "cuda_graph",
            core.VarDesc.VarType.RAW,
            True,
        )
1006 1007 1008
        var.stop_gradient = True
        return var

1009 1010 1011 1012 1013 1014 1015 1016 1017
    def _restore_out(self, out_vars):
        """
        Restores same nested outputs by only replacing the Variable with VarBase.
        """

        flatten_outputs = self._outputs.tolist()
        for i, idx in enumerate(self._outputs.var_ids):
            flatten_outputs[idx] = out_vars[i]
        outs = self._outputs.restore(flatten_outputs)
1018
        if outs is not None and len(outs) == 1:
1019 1020 1021 1022
            outs = outs[0]

        return outs

1023 1024 1025 1026
    @switch_to_static_graph
    def _clone_for_test(self, main_program):
        return main_program.clone(for_test=True)

1027
    def _is_no_value(self, var):
1028 1029 1030
        if isinstance(var, (core.VarBase, core.eager.Tensor)) and var.shape == [
            1
        ]:
1031 1032
            # NOTE: .numpy() will insert MemcpySync operation, it hits performance.
            if var.numpy()[0] == RETURN_NO_VALUE_MAGIC_NUM:
1033 1034 1035 1036 1037 1038 1039
                return True
        return False

    def _remove_no_value(self, out_vars):
        """
        Removes invalid value for various-length return statement
        """
J
Jiabin Yang 已提交
1040
        if isinstance(out_vars, (core.VarBase, core.eager.Tensor)):
1041 1042 1043 1044 1045
            if self._is_no_value(out_vars):
                return None
            return out_vars
        elif isinstance(out_vars, (tuple, list)):
            if isinstance(out_vars, tuple):
1046 1047 1048
                res = tuple(
                    var for var in out_vars if not self._is_no_value(var)
                )
1049 1050 1051 1052
            else:
                # isinstance(out_vars, list)
                res = [var for var in out_vars if not self._is_no_value(var)]

1053
            has_removed = len(out_vars) > len(res)
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
            # len(out_vars) > len(res) means we have removed var. This is
            # preventing out_vars is empty or just one element at the beginning
            if len(res) == 0 and has_removed:
                return None
            elif len(res) == 1 and has_removed:
                return res[0]
            return res

        return out_vars

1064
    def _set_grad_type(self, params, train_program):
1065 1066 1067 1068 1069 1070 1071 1072
        # NOTE: if user set sparse gradient mode, the param's gradient
        # will be SelectedRows, not LoDTensor. But tracer will just
        # set param grad VarBase by forward VarBase(LoDTensor)
        # If we don't change grad_var type here, RunProgramOp need
        # transform SelectedRows to LoDTensor forcibly, it may not
        # be user wanted result.
        for param in params:
            grad_name = param.name + core.grad_var_suffix()
1073
            grad_var = train_program.desc.block(0).find_var(grad_name.encode())
1074 1075 1076 1077 1078
            # NOTE: cannot find var desc maybe no problem, such as in batch_norm
            if grad_var is None:
                continue
            param._set_grad_type(grad_var.type())

1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
    def _remove_op_call_stack(self, main_program):
        """
        Remove op's python call stack with redundant low-level error messages related to
        transforamtions to avoid confusing users.
        """
        assert isinstance(main_program, framework.Program)
        for block in main_program.blocks:
            for op in block.ops:
                if op.has_attr("op_callstack"):
                    op._remove_attr("op_callstack")

        return main_program

1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
    def _check_params_all_inited(self, main_program):
        """
        Check all params from main program are already initialized, see details as follows:
            1. all parameters in self._params should be type `framework.ParamBase` which are created in dygraph.
            2. all parameters from transformed program can be found in self._params.
               Because they share same data with ParamBase of original dygraph.
        """
        if not isinstance(self._params, (list, tuple)):
            raise TypeError(
                "Type of self._params in PartialProgramLayer should be list or tuple, but received %s."
1102 1103
                % type(self._params)
            )
1104

1105 1106 1107
        param_and_buffer_names_set = set()
        for i, var in enumerate(self._params):
            # self._params constains parameters and buffers with persistable=True.
J
Jiabin Yang 已提交
1108
            if not isinstance(var, (core.VarBase, core.eager.Tensor)):
1109
                raise TypeError(
1110 1111 1112 1113
                    'Type of self._params[{}] in PartialProgramLayer should be Parameter or Variable, but received {}.'.format(
                        i, type(var)
                    )
                )
1114
            param_and_buffer_names_set.add(var.name)
1115 1116

        for block in main_program.blocks:
1117
            for name, var in block.vars.items():
1118
                if isinstance(var, framework.Parameter):
1119
                    if name not in param_and_buffer_names_set:
1120
                        raise ValueError(
1121 1122 1123 1124 1125 1126
                            "\n\tWe don't support to define layer with parameters in the function decorated by `@to_static`."
                            "\n\tBut we found parameter(%s) was created in the decorated function."
                            "\n"
                            "\n\tRevise suggestion: "
                            "\n\t\t1. Please ensure all your sublayers are inheritted from nn.Layer."
                            "\n\t\t2. Please use nn.ParameterList and nn.LayerList as container instead of using a native Python container such as List"
1127 1128
                            % name
                        )
1129

1130 1131 1132 1133 1134 1135 1136 1137
    def _valid_vars(self, vars):
        """
        Note: run_program_op.InferShape requires `X`/'Out' not be null.
        But it's common in dy2static, fake varBase is created to handle the
        problem.
        """
        return vars if vars else self.__fake_vars

1138

1139
def _create_fake_var():
1140
    """
1141
    Create a fake_var (force on CPU) to handle empty input or output
1142
    """
J
Jiabin Yang 已提交
1143
    if not framework._in_eager_mode_:
J
Jiabin Yang 已提交
1144
        return [
1145 1146 1147 1148 1149 1150 1151
            core.VarBase(
                core.VarDesc.VarType.FP32,
                [],
                "Fake_var",
                core.VarDesc.VarType.RAW,
                False,
            )
J
Jiabin Yang 已提交
1152 1153
        ]
    else:
1154
        return [
1155 1156 1157 1158 1159 1160 1161
            core.eager.Tensor(
                core.VarDesc.VarType.FP32,
                [],
                "Fake_var",
                core.VarDesc.VarType.RAW,
                False,
            )
1162
        ]
1163 1164 1165 1166 1167 1168 1169


def partial_program_from(concrete_program):
    inputs = concrete_program.inputs
    if inputs and isinstance(inputs[0], layers.Layer):
        inputs = inputs[1:]

1170 1171 1172 1173 1174 1175 1176
    return PartialProgramLayer(
        concrete_program.main_program,
        inputs,
        concrete_program.outputs,
        concrete_program.parameters,
        **concrete_program.kwargs
    )
1177 1178 1179


@switch_to_static_graph
1180
def add_build_strategy_for(
1181
    program, start_op_index, end_op_index, build_strategy=None, skip_vars=None
1182 1183
):
    if start_op_index < end_op_index:
1184 1185
        compiled_program = paddle.static.CompiledProgram(
            core.Graph(program.desc, start_op_index, end_op_index),
1186 1187
            build_strategy=build_strategy,
        )
1188 1189 1190
        if skip_vars:
            # TODO(Aurelius84): Need to unify name with C++, such as kSkipVarNames.
            compiled_program._graph.set("skip_gc_vars", set(skip_vars))
1191 1192 1193
        compiled_program._compile(
            core.Scope(), framework._current_expected_place()
        )
1194 1195 1196 1197 1198 1199 1200
        ir_graph = framework.IrGraph(compiled_program._graph)
        builded_program = ir_graph.to_program()
        if hasattr(compiled_program._program, 'lr_sheduler'):
            builded_program.lr_sheduler = compiled_program._program.lr_sheduler
    else:
        builded_program = program
    return builded_program