strided_slice_op.cc 7.4 KB
Newer Older
F
feng_shuai 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"

namespace paddle {
namespace inference {
namespace tensorrt {

class StridedSliceOpConverter : public OpConverter {
 public:
  void operator()(const framework::proto::OpDesc& op,
24 25
                  const framework::Scope& scope,
                  bool test_mode) override {
26
    VLOG(4) << "convert strided_slice op to tensorrt layer";
F
feng_shuai 已提交
27
    framework::OpDesc op_desc(op, nullptr);
28
    // Declare inputs
F
feng_shuai 已提交
29
    auto* input = engine_->GetITensor(op_desc.Input("Input")[0]);
S
shentanyue 已提交
30
    auto output_name = op_desc.Output("Out")[0];
31 32 33

    // phi only allow axes[i] >= 0 && <rank, so we need not deal with minus
    // axes[i]
F
feng_shuai 已提交
34
    std::vector<int> axes =
R
Ruibiao Chen 已提交
35
        PADDLE_GET_CONST(std::vector<int>, op_desc.GetAttr("axes"));
F
feng_shuai 已提交
36
    std::vector<int> starts =
R
Ruibiao Chen 已提交
37
        PADDLE_GET_CONST(std::vector<int>, op_desc.GetAttr("starts"));
F
feng_shuai 已提交
38
    std::vector<int> ends =
R
Ruibiao Chen 已提交
39
        PADDLE_GET_CONST(std::vector<int>, op_desc.GetAttr("ends"));
F
feng_shuai 已提交
40
    std::vector<int> strides =
R
Ruibiao Chen 已提交
41
        PADDLE_GET_CONST(std::vector<int>, op_desc.GetAttr("strides"));
42 43
    std::vector<int> decrease_axises =
        PADDLE_GET_CONST(std::vector<int>, op_desc.GetAttr("decrease_axis"));
F
feng_shuai 已提交
44

45
    auto input_dims = input->getDimensions();
S
shentanyue 已提交
46
    if (!engine_->with_dynamic_shape()) {
47 48 49 50
      // notice that input shape is [CHW] without batch axis when input has
      // static shape
      for (size_t i = input_dims.nbDims; i > 0; i--) {
        input_dims.d[i] = input_dims.d[i - 1];
S
shentanyue 已提交
51
      }
52 53 54 55 56 57 58
      input_dims.d[0] = 1;  // fake batchsize, not useful here
      for (size_t i = 0; i < axes.size(); i++) {
        if (starts[i] < 0) {
          starts[i] = std::max(starts[i] + input_dims.d[axes[i]], 0);
        }
        if (ends[i] < 0) {
          ends[i] = std::max(ends[i] + input_dims.d[axes[i]], 0);
S
shentanyue 已提交
59
        }
60 61 62 63 64 65 66 67 68
        ends[i] = std::min(ends[i], input_dims.d[axes[i]]);
        PADDLE_ENFORCE_GT(
            ends[i],
            starts[i],
            platform::errors::InvalidArgument(
                "Attr(ends) should be greater than attr(starts) in "
                "slice op. But received ends = %d, starts = %d.",
                ends[i],
                starts[i]));
S
shentanyue 已提交
69
      }
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
    }

    nvinfer1::ILayer* layer = nullptr;
    if (engine_->with_dynamic_shape()) {
      auto nchw_input_dims = input->getDimensions();
      nvinfer1::Dims trt_start_dims;
      trt_start_dims.nbDims = nchw_input_dims.nbDims;
      memset(trt_start_dims.d, 0, sizeof(int32_t) * nchw_input_dims.nbDims);
      nvinfer1::Dims trt_size_dims = trt_start_dims;
      nvinfer1::Dims trt_end_dims = trt_start_dims;
      nvinfer1::Dims trt_step_dims = trt_start_dims;
      for (int i = 0; i < trt_step_dims.nbDims; i++) trt_step_dims.d[i] = 1;
      // input : [N,C,H,W]
      bool has_neg_indices = false;
      for (size_t i = 0; i < axes.size(); i++) {
        int trt_axis = axes[i];
        trt_start_dims.d[trt_axis] = starts[i];
        trt_end_dims.d[trt_axis] = ends[i];
        trt_step_dims.d[axes[i]] = strides[i];
        if (starts[i] < 0 || ends[i] < 0) has_neg_indices = true;
S
shentanyue 已提交
90
      }
91 92 93 94
      auto* shape_tensor = Shape(input);
      auto* start_tensor = Add1DConstantLayer(trt_start_dims);
      if (has_neg_indices) {
        start_tensor = FixNegIndices(shape_tensor, start_tensor);
S
shentanyue 已提交
95
      }
96 97 98 99

      std::vector<nvinfer1::ITensor*> end_vec_tensor;
      for (int i = 0; i < trt_end_dims.nbDims; i++) {
        end_vec_tensor.push_back(GetEleTensorOfShape(shape_tensor, i));
F
feng_shuai 已提交
100 101
      }

102 103 104 105 106 107 108
      for (size_t i = 0; i < axes.size(); i++) {
        int trt_axis = axes[i];
        if (ends[i] >= 0) {
          end_vec_tensor[trt_axis] = Add1DConstantLayer(ends[i]);
        } else {
          end_vec_tensor[trt_axis] =
              Sum(end_vec_tensor[trt_axis], Add1DConstantLayer(ends[i]));
S
shentanyue 已提交
109 110
        }
      }
F
feng_shuai 已提交
111

112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
      auto* size_tensor =
          Sub(start_tensor, Min(Concat(end_vec_tensor), shape_tensor));
      auto zero_t =
          Add1DConstantLayer(std::vector<int>(nchw_input_dims.nbDims, 0));
      auto step_tensor = Add1DConstantLayer(trt_step_dims);
      size_tensor = Sub(zero_t, FloorDiv(size_tensor, step_tensor));

      layer = TRT_ENGINE_ADD_LAYER(
          engine_, Slice, *input, trt_start_dims, trt_size_dims, trt_step_dims);
      layer->setInput(1, *start_tensor);
      layer->setInput(2, *size_tensor);
      layer->setInput(3, *step_tensor);

      if (decrease_axises.size() > 0) {
        std::vector<int32_t> gather_indices;
        for (int i = 0; i < trt_size_dims.nbDims; i++) {
          if (decrease_axises.end() !=
              std::find(decrease_axises.begin(), decrease_axises.end(), i))
            continue;
          gather_indices.push_back(i);
        }
        if (gather_indices.empty())
          gather_indices.push_back(decrease_axises[0]);
        auto real_size_tensor = Gather(size_tensor, gather_indices);
        layer = TRT_ENGINE_ADD_LAYER(engine_, Shuffle, *layer->getOutput(0));
        layer->setInput(1, *real_size_tensor);
      }
    } else {
      auto chw_input_dims = input->getDimensions();
      nvinfer1::Dims trt_start_dims;
      trt_start_dims.nbDims = chw_input_dims.nbDims;
      memset(trt_start_dims.d, 0, sizeof(int32_t) * chw_input_dims.nbDims);
      nvinfer1::Dims trt_size_dims = chw_input_dims;
      nvinfer1::Dims trt_step_dims;
      trt_step_dims.nbDims = chw_input_dims.nbDims;
      for (int i = 0; i < trt_step_dims.nbDims; i++) trt_step_dims.d[i] = 1;

      // input : [C,H,W]
      for (size_t i = 0; i < axes.size(); i++) {
        int trt_axis = axes[i] - 1;
        trt_start_dims.d[trt_axis] = starts[i];
        trt_size_dims.d[trt_axis] =
            (ends[i] - starts[i] + strides[i] - 1) / strides[i];
        trt_step_dims.d[trt_axis] = strides[i];
      }
      layer = TRT_ENGINE_ADD_LAYER(
          engine_, Slice, *input, trt_start_dims, trt_size_dims, trt_step_dims);
      nvinfer1::Dims real_trt_size_dims;
      real_trt_size_dims.nbDims = 0;

      if (decrease_axises.size() > 0) {
        for (size_t i = 0; i < decrease_axises.size(); i++) {
          decrease_axises[i]--;
        }
        for (int i = 0; i < trt_size_dims.nbDims; i++) {
          if (decrease_axises.end() !=
              std::find(decrease_axises.begin(), decrease_axises.end(), i))
            continue;
          real_trt_size_dims.d[real_trt_size_dims.nbDims] = trt_size_dims.d[i];
          real_trt_size_dims.nbDims++;
        }
        if (real_trt_size_dims.nbDims == 0) {
          real_trt_size_dims.nbDims = 1;
          real_trt_size_dims.d[0] = 1;
        }
        auto reshape_layer =
            TRT_ENGINE_ADD_LAYER(engine_, Shuffle, *layer->getOutput(0));
        reshape_layer->setReshapeDimensions(real_trt_size_dims);
        layer = static_cast<nvinfer1::ILayer*>(reshape_layer);
      }
F
feng_shuai 已提交
182
    }
183
    RreplenishLayerAndOutput(layer, "strided_slice", {output_name}, test_mode);
F
feng_shuai 已提交
184 185 186 187 188 189 190 191
  }
};

}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle

REGISTER_TRT_OP_CONVERTER(strided_slice, StridedSliceOpConverter);