strided_slice_op.cc 6.0 KB
Newer Older
F
feng_shuai 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"

namespace paddle {
namespace framework {
class Scope;
namespace proto {
class OpDesc;
}  // namespace proto
}  // namespace framework
}  // namespace paddle

namespace paddle {
namespace inference {
namespace tensorrt {

/*
 * Stack converter from fluid to tensorRT.
 */
class StridedSliceOpConverter : public OpConverter {
 public:
  void operator()(const framework::proto::OpDesc& op,
                  const framework::Scope& scope, bool test_mode) override {
    VLOG(4) << "convert fluid StridedSlice op to tensorrt Slice layer";

    framework::OpDesc op_desc(op, nullptr);
    auto* input = engine_->GetITensor(op_desc.Input("Input")[0]);
    nvinfer1::Dims input_dims = input->getDimensions();
S
shentanyue 已提交
42
    auto output_name = op_desc.Output("Out")[0];
F
feng_shuai 已提交
43 44 45 46 47 48 49 50 51
    std::vector<int> axes =
        BOOST_GET_CONST(std::vector<int>, op_desc.GetAttr("axes"));
    std::vector<int> starts =
        BOOST_GET_CONST(std::vector<int>, op_desc.GetAttr("starts"));
    std::vector<int> ends =
        BOOST_GET_CONST(std::vector<int>, op_desc.GetAttr("ends"));
    std::vector<int> strides =
        BOOST_GET_CONST(std::vector<int>, op_desc.GetAttr("strides"));
    int axes_size = axes.size();
S
shentanyue 已提交
52
    nvinfer1::Dims start;
F
feng_shuai 已提交
53 54
    nvinfer1::Dims stride;
    nvinfer1::Dims size;
S
shentanyue 已提交
55 56
    start.nbDims = input_dims.nbDims;
    stride.nbDims = input_dims.nbDims;
F
feng_shuai 已提交
57
    size.nbDims = input_dims.nbDims;
S
shentanyue 已提交
58 59 60 61
    for (int i = 0; i < input_dims.nbDims; i++) {
      start.d[i] = 0;
      stride.d[i] = 1;
      size.d[i] = input_dims.d[i];
F
feng_shuai 已提交
62 63
    }

S
shentanyue 已提交
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
    if (!engine_->with_dynamic_shape()) {
      for (int i = 0; i < axes_size; i++) {
        start.d[axes[i] - 1] = starts[i];
      }
      for (int i = 0; i < axes_size; i++) {
        stride.d[axes[i] - 1] = strides[i];
      }
      for (int i = 0; i < axes_size; ++i) {
        int dim = size.d[axes[i] - 1];
        if (dim > 0) {
          int start = starts[i] < 0 ? (starts[i] + dim) : starts[i];
          int end = ends[i] < 0 ? (ends[i] + dim) : ends[i];
          int stride = std::abs(strides[i]);
          start = std::max(start, 0);
          end = std::max(end, 0);
          end = std::min(end, dim);
          size.d[axes[i] - 1] = (std::abs(end - start) + stride - 1) / stride;
        }
      }
      auto* layer =
          TRT_ENGINE_ADD_LAYER(engine_, Slice, *input, start, size, stride);
      RreplenishLayerAndOutput(layer, "strided_slice", {output_name},
                               test_mode);
    } else {
      for (int i = 0; i < axes_size; i++) {
        start.d[axes[i]] = starts[i];
      }
      for (int i = 0; i < axes_size; i++) {
        stride.d[axes[i]] = strides[i];
      }
      for (int i = 0; i < axes_size; ++i) {
        int dim = size.d[axes[i]];
        if (dim > 0) {
          int start = starts[i] < 0 ? (starts[i] + dim) : starts[i];
          int end = ends[i] < 0 ? (ends[i] + dim) : ends[i];
          int stride = std::abs(strides[i]);
          start = std::max(start, 0);
          end = std::max(end, 0);
          end = std::min(end, dim);
          size.d[axes[i]] = (std::abs(end - start) + stride - 1) / stride;
        }
F
feng_shuai 已提交
105 106
      }

S
shentanyue 已提交
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
      auto create_weights = [&](const std::vector<int>& data,
                                const std::string& type) -> int* {
        std::unique_ptr<framework::Tensor> tmp_tensor(new framework::Tensor());
        int data_size = data.size();
        tmp_tensor->Resize({data_size});
        auto* tmp_data = tmp_tensor->mutable_data<int>(platform::CPUPlace());
        for (int i = 0; i < data_size; i++) {
          tmp_data[i] = data[i];
        }

        engine_->SetWeights(output_name + "_add_slice_op_" + type,
                            std::move(tmp_tensor));
        return tmp_data;
      };

      std::vector<int> const_weight(input_dims.nbDims, 0);
      for (int i = 0; i < axes_size; i++) {
        int dim = input_dims.d[axes[i]];
        int start = starts[i] < 0 ? (starts[i] + dim) : starts[i];
        int end = ends[i] < 0 ? (ends[i] + dim) : ends[i];
        int stride = std::abs(strides[i]);
        start = std::max(start, 0);
        end = std::max(end, 0);
        end = std::min(end, dim);
        const_weight[axes[i]] =
            dim - ((std::abs(end - start) + stride - 1) / stride);
      }
F
feng_shuai 已提交
134

S
shentanyue 已提交
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
      int* weight_data = create_weights(const_weight, "size");

      TensorRTEngine::Weight weight{nvinfer1::DataType::kINT32,
                                    static_cast<void*>(weight_data),
                                    static_cast<size_t>(input_dims.nbDims)};

      int input_dim_size = input_dims.nbDims;
      nvinfer1::Dims input_shape;
      input_shape.nbDims = 1;
      input_shape.d[0] = input_dim_size;

      auto const_layer =
          TRT_ENGINE_ADD_LAYER(engine_, Constant, input_shape, weight.get());

      auto shape_layer = TRT_ENGINE_ADD_LAYER(engine_, Shape, *input);
      // slice layer
      auto* layer =
          TRT_ENGINE_ADD_LAYER(engine_, Slice, *input, start, size, stride);
      // elementwise layer for get size tensor
      auto size_layer = TRT_ENGINE_ADD_LAYER(
          engine_, ElementWise, *shape_layer->getOutput(0),
          *const_layer->getOutput(0), nvinfer1::ElementWiseOperation::kSUB);
      layer->setInput(2, *size_layer->getOutput(0));
      RreplenishLayerAndOutput(layer, "strided_slice", {output_name},
                               test_mode);
F
feng_shuai 已提交
160 161 162 163 164 165 166 167 168
    }
  }
};

}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle

REGISTER_TRT_OP_CONVERTER(strided_slice, StridedSliceOpConverter);