strided_slice_op.cc 6.1 KB
Newer Older
F
feng_shuai 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"

namespace paddle {
namespace framework {
class Scope;
namespace proto {
class OpDesc;
}  // namespace proto
}  // namespace framework
}  // namespace paddle

namespace paddle {
namespace inference {
namespace tensorrt {

/*
 * Stack converter from fluid to tensorRT.
 */
class StridedSliceOpConverter : public OpConverter {
 public:
  void operator()(const framework::proto::OpDesc& op,
36 37
                  const framework::Scope& scope,
                  bool test_mode) override {
F
feng_shuai 已提交
38 39 40 41 42
    VLOG(4) << "convert fluid StridedSlice op to tensorrt Slice layer";

    framework::OpDesc op_desc(op, nullptr);
    auto* input = engine_->GetITensor(op_desc.Input("Input")[0]);
    nvinfer1::Dims input_dims = input->getDimensions();
S
shentanyue 已提交
43
    auto output_name = op_desc.Output("Out")[0];
F
feng_shuai 已提交
44 45 46 47 48 49 50 51 52
    std::vector<int> axes =
        BOOST_GET_CONST(std::vector<int>, op_desc.GetAttr("axes"));
    std::vector<int> starts =
        BOOST_GET_CONST(std::vector<int>, op_desc.GetAttr("starts"));
    std::vector<int> ends =
        BOOST_GET_CONST(std::vector<int>, op_desc.GetAttr("ends"));
    std::vector<int> strides =
        BOOST_GET_CONST(std::vector<int>, op_desc.GetAttr("strides"));
    int axes_size = axes.size();
S
shentanyue 已提交
53
    nvinfer1::Dims start;
F
feng_shuai 已提交
54 55
    nvinfer1::Dims stride;
    nvinfer1::Dims size;
S
shentanyue 已提交
56 57
    start.nbDims = input_dims.nbDims;
    stride.nbDims = input_dims.nbDims;
F
feng_shuai 已提交
58
    size.nbDims = input_dims.nbDims;
S
shentanyue 已提交
59 60 61 62
    for (int i = 0; i < input_dims.nbDims; i++) {
      start.d[i] = 0;
      stride.d[i] = 1;
      size.d[i] = input_dims.d[i];
F
feng_shuai 已提交
63 64
    }

S
shentanyue 已提交
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
    if (!engine_->with_dynamic_shape()) {
      for (int i = 0; i < axes_size; i++) {
        start.d[axes[i] - 1] = starts[i];
      }
      for (int i = 0; i < axes_size; i++) {
        stride.d[axes[i] - 1] = strides[i];
      }
      for (int i = 0; i < axes_size; ++i) {
        int dim = size.d[axes[i] - 1];
        if (dim > 0) {
          int start = starts[i] < 0 ? (starts[i] + dim) : starts[i];
          int end = ends[i] < 0 ? (ends[i] + dim) : ends[i];
          int stride = std::abs(strides[i]);
          start = std::max(start, 0);
          end = std::max(end, 0);
          end = std::min(end, dim);
          size.d[axes[i] - 1] = (std::abs(end - start) + stride - 1) / stride;
        }
      }
      auto* layer =
          TRT_ENGINE_ADD_LAYER(engine_, Slice, *input, start, size, stride);
86 87
      RreplenishLayerAndOutput(
          layer, "strided_slice", {output_name}, test_mode);
S
shentanyue 已提交
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
    } else {
      for (int i = 0; i < axes_size; i++) {
        start.d[axes[i]] = starts[i];
      }
      for (int i = 0; i < axes_size; i++) {
        stride.d[axes[i]] = strides[i];
      }
      for (int i = 0; i < axes_size; ++i) {
        int dim = size.d[axes[i]];
        if (dim > 0) {
          int start = starts[i] < 0 ? (starts[i] + dim) : starts[i];
          int end = ends[i] < 0 ? (ends[i] + dim) : ends[i];
          int stride = std::abs(strides[i]);
          start = std::max(start, 0);
          end = std::max(end, 0);
          end = std::min(end, dim);
          size.d[axes[i]] = (std::abs(end - start) + stride - 1) / stride;
        }
F
feng_shuai 已提交
106 107
      }

S
shentanyue 已提交
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
      auto create_weights = [&](const std::vector<int>& data,
                                const std::string& type) -> int* {
        std::unique_ptr<framework::Tensor> tmp_tensor(new framework::Tensor());
        int data_size = data.size();
        tmp_tensor->Resize({data_size});
        auto* tmp_data = tmp_tensor->mutable_data<int>(platform::CPUPlace());
        for (int i = 0; i < data_size; i++) {
          tmp_data[i] = data[i];
        }

        engine_->SetWeights(output_name + "_add_slice_op_" + type,
                            std::move(tmp_tensor));
        return tmp_data;
      };

      std::vector<int> const_weight(input_dims.nbDims, 0);
      for (int i = 0; i < axes_size; i++) {
        int dim = input_dims.d[axes[i]];
        int start = starts[i] < 0 ? (starts[i] + dim) : starts[i];
        int end = ends[i] < 0 ? (ends[i] + dim) : ends[i];
        int stride = std::abs(strides[i]);
        start = std::max(start, 0);
        end = std::max(end, 0);
        end = std::min(end, dim);
        const_weight[axes[i]] =
            dim - ((std::abs(end - start) + stride - 1) / stride);
      }
F
feng_shuai 已提交
135

S
shentanyue 已提交
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
      int* weight_data = create_weights(const_weight, "size");

      TensorRTEngine::Weight weight{nvinfer1::DataType::kINT32,
                                    static_cast<void*>(weight_data),
                                    static_cast<size_t>(input_dims.nbDims)};

      int input_dim_size = input_dims.nbDims;
      nvinfer1::Dims input_shape;
      input_shape.nbDims = 1;
      input_shape.d[0] = input_dim_size;

      auto const_layer =
          TRT_ENGINE_ADD_LAYER(engine_, Constant, input_shape, weight.get());

      auto shape_layer = TRT_ENGINE_ADD_LAYER(engine_, Shape, *input);
      // slice layer
      auto* layer =
          TRT_ENGINE_ADD_LAYER(engine_, Slice, *input, start, size, stride);
      // elementwise layer for get size tensor
155 156 157 158 159 160
      auto size_layer =
          TRT_ENGINE_ADD_LAYER(engine_,
                               ElementWise,
                               *shape_layer->getOutput(0),
                               *const_layer->getOutput(0),
                               nvinfer1::ElementWiseOperation::kSUB);
S
shentanyue 已提交
161
      layer->setInput(2, *size_layer->getOutput(0));
162 163
      RreplenishLayerAndOutput(
          layer, "strided_slice", {output_name}, test_mode);
F
feng_shuai 已提交
164 165 166 167 168 169 170 171 172
    }
  }
};

}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle

REGISTER_TRT_OP_CONVERTER(strided_slice, StridedSliceOpConverter);