test_elementwise_dev_api.cc 9.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <gtest/gtest.h>
#include <memory>

W
Wilber 已提交
18
#include "paddle/pten/backends/cpu/cpu_context.h"
19
#include "paddle/pten/kernels/math_kernel.h"
20

21
#include "paddle/fluid/memory/allocation/allocator_facade.h"
22 23 24 25
#include "paddle/pten/api/lib/utils/allocator.h"
#include "paddle/pten/core/dense_tensor.h"
#include "paddle/pten/core/kernel_registry.h"

26 27 28
namespace pten {
namespace tests {

29
namespace framework = paddle::framework;
30
using DDim = pten::framework::DDim;
31

32
TEST(DEV_API, add) {
33
  // 1. create tensor
34
  const auto alloc = std::make_unique<paddle::experimental::DefaultAllocator>(
35
      paddle::platform::CPUPlace());
36
  pten::DenseTensor dense_x(alloc.get(),
37 38 39
                            pten::DenseTensorMeta(pten::DataType::FLOAT32,
                                                  framework::make_ddim({3, 10}),
                                                  pten::DataLayout::NCHW));
40 41
  auto* dense_x_data =
      dense_x.mutable_data<float>(paddle::platform::CPUPlace());
42

43
  pten::DenseTensor dense_y(alloc.get(),
44 45 46
                            pten::DenseTensorMeta(pten::DataType::FLOAT32,
                                                  framework::make_ddim({10}),
                                                  pten::DataLayout::NCHW));
47 48
  auto* dense_y_data =
      dense_y.mutable_data<float>(paddle::platform::CPUPlace());
49 50 51 52 53 54 55 56 57 58 59 60 61

  float sum[3][10] = {0.0};
  for (size_t i = 0; i < 3; ++i) {
    for (size_t j = 0; j < 10; ++j) {
      dense_x_data[i * 10 + j] = (i * 10 + j) * 1.0;
      sum[i][j] = (i * 10 + j) * 1.0 + j * 2.0;
    }
  }
  for (size_t i = 0; i < 10; ++i) {
    dense_y_data[i] = i * 2.0;
  }

  // 2. test API
W
Wilber 已提交
62
  pten::CPUContext dev_ctx;
63 64 65 66
  dev_ctx.SetDeviceAllocator(
      paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CPUPlace())
          .get());
67
  auto dense_out = pten::Add<float>(dev_ctx, dense_x, dense_y);
68 69 70 71

  // 3. check result
  ASSERT_EQ(dense_out.dims().size(), 2);
  ASSERT_EQ(dense_out.dims()[0], 3);
Y
YuanRisheng 已提交
72 73
  ASSERT_EQ(dense_out.dtype(), pten::DataType::FLOAT32);
  ASSERT_EQ(dense_out.layout(), pten::DataLayout::NCHW);
74 75 76 77 78 79 80 81 82

  auto expect_result = sum;
  auto actual_result0 = dense_out.data<float>()[0];
  auto actual_result1 = dense_out.data<float>()[1];
  auto actual_result2 = dense_out.data<float>()[10];
  ASSERT_NEAR(expect_result[0][0], actual_result0, 1e-6f);
  ASSERT_NEAR(expect_result[0][1], actual_result1, 1e-6f);
  ASSERT_NEAR(expect_result[1][0], actual_result2, 1e-6f);
}
83 84 85

TEST(DEV_API, subtract) {
  // 1. create tensor
86
  const auto alloc = std::make_unique<paddle::experimental::DefaultAllocator>(
87
      paddle::platform::CPUPlace());
88
  pten::DenseTensor dense_x(alloc.get(),
89 90 91
                            pten::DenseTensorMeta(pten::DataType::FLOAT32,
                                                  framework::make_ddim({3, 10}),
                                                  pten::DataLayout::NCHW));
92 93
  auto* dense_x_data =
      dense_x.mutable_data<float>(paddle::platform::CPUPlace());
94

95
  pten::DenseTensor dense_y(alloc.get(),
96 97 98
                            pten::DenseTensorMeta(pten::DataType::FLOAT32,
                                                  framework::make_ddim({10}),
                                                  pten::DataLayout::NCHW));
99 100
  auto* dense_y_data =
      dense_y.mutable_data<float>(paddle::platform::CPUPlace());
101 102 103 104 105 106 107 108 109 110 111 112 113

  float sub[3][10] = {0.0};
  for (size_t i = 0; i < 3; ++i) {
    for (size_t j = 0; j < 10; ++j) {
      dense_x_data[i * 10 + j] = (i * 10 + j) * 1.0;
      sub[i][j] = (i * 10 + j) * 1.0 - j * 2.0;
    }
  }
  for (size_t i = 0; i < 10; ++i) {
    dense_y_data[i] = i * 2.0;
  }

  // 2. test API
W
Wilber 已提交
114
  pten::CPUContext dev_ctx;
115 116 117 118
  dev_ctx.SetDeviceAllocator(
      paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CPUPlace())
          .get());
119
  auto dense_out = pten::Subtract<float>(dev_ctx, dense_x, dense_y);
120 121 122 123

  // 3. check result
  ASSERT_EQ(dense_out.dims().size(), 2);
  ASSERT_EQ(dense_out.dims()[0], 3);
124
  ASSERT_EQ(dense_out.dtype(), pten::DataType::FLOAT32);
125 126 127 128 129 130 131 132 133 134
  ASSERT_EQ(dense_out.meta().layout, pten::DataLayout::NCHW);

  auto expect_result = sub;
  auto actual_result0 = dense_out.data<float>()[0];
  auto actual_result1 = dense_out.data<float>()[1];
  auto actual_result2 = dense_out.data<float>()[10];
  ASSERT_NEAR(expect_result[0][0], actual_result0, 1e-6f);
  ASSERT_NEAR(expect_result[0][1], actual_result1, 1e-6f);
  ASSERT_NEAR(expect_result[1][0], actual_result2, 1e-6f);
}
135 136 137

TEST(DEV_API, divide) {
  // 1. create tensor
138
  const auto alloc = std::make_unique<paddle::experimental::DefaultAllocator>(
139
      paddle::platform::CPUPlace());
140
  pten::DenseTensor dense_x(alloc.get(),
141 142 143
                            pten::DenseTensorMeta(pten::DataType::FLOAT32,
                                                  framework::make_ddim({3, 10}),
                                                  pten::DataLayout::NCHW));
144 145
  auto* dense_x_data =
      dense_x.mutable_data<float>(paddle::platform::CPUPlace());
146

147
  pten::DenseTensor dense_y(alloc.get(),
148 149 150
                            pten::DenseTensorMeta(pten::DataType::FLOAT32,
                                                  framework::make_ddim({10}),
                                                  pten::DataLayout::NCHW));
151 152
  auto* dense_y_data =
      dense_y.mutable_data<float>(paddle::platform::CPUPlace());
153 154 155 156 157 158 159 160 161 162 163 164 165

  float div[3][10] = {0.0};
  for (size_t i = 0; i < 3; ++i) {
    for (size_t j = 0; j < 10; ++j) {
      dense_x_data[i * 10 + j] = (i * 10 + j) * 1.0;
      div[i][j] = (i * 10 + j) * 1.0 / (j * 2.0 + 1);
    }
  }
  for (size_t i = 0; i < 10; ++i) {
    dense_y_data[i] = i * 2.0 + 1;
  }

  // 2. test API
W
Wilber 已提交
166
  pten::CPUContext dev_ctx;
167 168 169 170
  dev_ctx.SetDeviceAllocator(
      paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CPUPlace())
          .get());
171
  auto dense_out = pten::Divide<float>(dev_ctx, dense_x, dense_y);
172 173 174 175

  // 3. check result
  ASSERT_EQ(dense_out.dims().size(), 2);
  ASSERT_EQ(dense_out.dims()[0], 3);
Y
YuanRisheng 已提交
176 177
  ASSERT_EQ(dense_out.dtype(), pten::DataType::FLOAT32);
  ASSERT_EQ(dense_out.layout(), pten::DataLayout::NCHW);
178 179 180 181 182 183 184 185 186

  auto expect_result = div;
  auto actual_result0 = dense_out.data<float>()[0];
  auto actual_result1 = dense_out.data<float>()[1];
  auto actual_result2 = dense_out.data<float>()[10];
  ASSERT_NEAR(expect_result[0][0], actual_result0, 1e-6f);
  ASSERT_NEAR(expect_result[0][1], actual_result1, 1e-6f);
  ASSERT_NEAR(expect_result[1][0], actual_result2, 1e-6f);
}
187

Y
YuanRisheng 已提交
188 189
TEST(DEV_API, multiply) {
  // 1. create tensor
190
  const auto alloc = std::make_unique<paddle::experimental::DefaultAllocator>(
Y
YuanRisheng 已提交
191
      paddle::platform::CPUPlace());
192
  pten::DenseTensor dense_x(alloc.get(),
Y
YuanRisheng 已提交
193 194 195
                            pten::DenseTensorMeta(pten::DataType::FLOAT32,
                                                  framework::make_ddim({3, 10}),
                                                  pten::DataLayout::NCHW));
196 197
  auto* dense_x_data =
      dense_x.mutable_data<float>(paddle::platform::CPUPlace());
Y
YuanRisheng 已提交
198

199
  pten::DenseTensor dense_y(alloc.get(),
Y
YuanRisheng 已提交
200 201 202
                            pten::DenseTensorMeta(pten::DataType::FLOAT32,
                                                  framework::make_ddim({10}),
                                                  pten::DataLayout::NCHW));
203 204
  auto* dense_y_data =
      dense_y.mutable_data<float>(paddle::platform::CPUPlace());
Y
YuanRisheng 已提交
205 206 207 208 209 210 211 212 213 214 215 216 217

  float mul[3][10] = {0.0};
  for (size_t i = 0; i < 3; ++i) {
    for (size_t j = 0; j < 10; ++j) {
      dense_x_data[i * 10 + j] = (i * 10 + j) * 1.0;
      mul[i][j] = (i * 10 + j) * 1.0 * j * 2.0;
    }
  }
  for (size_t i = 0; i < 10; ++i) {
    dense_y_data[i] = i * 2.0;
  }

  // 2. test API
W
Wilber 已提交
218
  pten::CPUContext dev_ctx;
219 220 221 222
  dev_ctx.SetDeviceAllocator(
      paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CPUPlace())
          .get());
223
  auto dense_out = pten::Multiply<float>(dev_ctx, dense_x, dense_y);
Y
YuanRisheng 已提交
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238

  // 3. check result
  ASSERT_EQ(dense_out.dims().size(), 2);
  ASSERT_EQ(dense_out.dims()[0], 3);
  ASSERT_EQ(dense_out.dtype(), pten::DataType::FLOAT32);
  ASSERT_EQ(dense_out.layout(), pten::DataLayout::NCHW);

  auto expect_result = mul;
  auto actual_result0 = dense_out.data<float>()[0];
  auto actual_result1 = dense_out.data<float>()[1];
  auto actual_result2 = dense_out.data<float>()[10];
  ASSERT_NEAR(expect_result[0][0], actual_result0, 1e-6f);
  ASSERT_NEAR(expect_result[0][1], actual_result1, 1e-6f);
  ASSERT_NEAR(expect_result[1][0], actual_result2, 1e-6f);
}
239 240
}  // namespace tests
}  // namespace pten