reader.py 81.4 KB
Newer Older
S
sneaxiy 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from . import core
16
import sys
17
import numpy as np
S
sneaxiy 已提交
18
import threading
19
import paddle
20
import time
N
niuliling123 已提交
21
import copy
22

23 24 25 26 27 28 29 30 31 32 33
from .framework import (
    Program,
    Variable,
    program_guard,
    default_main_program,
    default_startup_program,
    _non_static_mode,
    cpu_places,
    _current_expected_place,
    _in_eager_without_dygraph_check,
)
S
sneaxiy 已提交
34
from .executor import global_scope
35
from .data_feeder import DataFeeder, BatchedTensorProvider
36 37 38 39 40 41 42
from .multiprocess_utils import (
    multiprocess_queue_set,
    CleanupFuncRegistrar,
    _cleanup_mmap,
    _cleanup,
    _set_SIGCHLD_handler,
)
43
from .dataloader import BatchSampler, Dataset, IterableDataset, Subset
44 45 46 47 48 49
from .dataloader.dataloader_iter import (
    _DataLoaderIterSingleProcess,
    _DataLoaderIterMultiProcess,
    _DatasetKind,
    default_collate_fn,
)
50
from .dataloader.batch_sampler import _InfiniteIterableSampler
51 52 53
from .layers.io import (
    monkey_patch_reader_methods,
    _copy_reader_var_,
54
    __create_unshared_decorated_reader__,
55
)
S
sneaxiy 已提交
56
from .unique_name import UniqueNameGenerator
57
from .framework import _get_paddle_place, _get_paddle_place_list
58
from paddle.fluid.framework import _set_expected_place, _current_expected_place
59
import logging
60
import warnings
S
sneaxiy 已提交
61

62
### Dygraph DataLoader configs ###
63
import os
64 65
import multiprocessing
import signal
66

T
tianshuo78520a 已提交
67
import queue
68

69 70 71
# NOTE: [ avoid hanging & failed quickly ] These value is used in getting data from another process
QUEUE_GET_TIMEOUT = 60

72
__all__ = ['PyReader', 'DataLoader', 'default_collate_fn']
Z
Zeng Jinle 已提交
73 74

data_loader_unique_name_generator = UniqueNameGenerator()
S
sneaxiy 已提交
75

76
KEEP_DATA_LOADER_ORDER = True
77
USE_PINNED_MEMORY = None
78 79 80 81 82 83 84 85 86 87
# AutoTune Flags
USE_AUTOTUNE = False
TUNING_STEPS = 500


def set_autotune_config(use_autotune, tuning_steps=500):
    global USE_AUTOTUNE
    USE_AUTOTUNE = use_autotune
    global TUNING_STEPS
    TUNING_STEPS = tuning_steps
88 89 90 91 92 93 94 95 96 97


def keep_data_loader_order(*args):
    global KEEP_DATA_LOADER_ORDER
    if len(args) == 0:
        return KEEP_DATA_LOADER_ORDER
    else:
        assert len(args) == 1 and isinstance(args[0], bool)
        KEEP_DATA_LOADER_ORDER = args[0]

S
sneaxiy 已提交
98

99 100 101 102 103 104 105 106 107
def use_pinned_memory(*args):
    global USE_PINNED_MEMORY
    if len(args) == 0:
        return USE_PINNED_MEMORY
    else:
        assert len(args) == 1 and isinstance(args[0], bool)
        USE_PINNED_MEMORY = args[0]


S
sneaxiy 已提交
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
def _convert_places(places):
    if not isinstance(places, (list, tuple)):
        places = [places]

    ret = []
    for p in places:
        if not isinstance(p, core.Place):
            tmp = core.Place()
            tmp.set_place(p)
            p = tmp

        ret.append(p)
    return ret


123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
# NOTE(chenweihang): _reader_process_loop must be top level method to be pickled
def _reader_process_loop(batch_reader, data_queue):
    try:
        # set signal handler
        core._set_process_signal_handler()

        # NOTE: [ mmap files clear ] When the child process exits unexpectedly,
        # some shared memory objects may have been applied for but have not yet
        # been put into the inter-process Queue. This part of the object needs
        # to be cleaned up when the process ends.
        CleanupFuncRegistrar.register(_cleanup_mmap)

        for batch in batch_reader():
            tensor_list = core._convert_to_tensor_list(batch)
            data_queue.put(tensor_list)
            core._remove_tensor_list_mmap_fds(tensor_list)
        data_queue.put(None)
    except KeyboardInterrupt:
        # NOTE: Main process will raise KeyboardInterrupt anyways, ignore it in child process
        pass
    except:
144
        raise
145 146


147
class DataLoaderBase:
Z
Zeng Jinle 已提交
148 149
    def __init__(self):
        self._places = None
S
sneaxiy 已提交
150

Z
Zeng Jinle 已提交
151 152
    def __call__(self):
        return self
S
sneaxiy 已提交
153

Z
Zeng Jinle 已提交
154 155 156 157 158 159
    def __iter__(self):
        raise NotImplementedError()

    def __next__(self):
        raise NotImplementedError()

160 161 162
    @classmethod
    def _check_input_array(cls, item):
        arr = np.asarray(item)
163
        if arr.dtype == np.object_:
164 165 166 167 168
            raise TypeError(
                "\n\tFaild to convert input data to a regular ndarray :\n\t* Usually "
                "this means the input data contains nested lists with different lengths. "
                "\n\t* Check the reader function passed to 'decorate_batch_generator'"
                " to locate the data causes this issue.\n\t* Please consider using "
169 170
                "'fluid.create_lod_tensor' to convert it to a LoD-Tensor."
            )
171 172
        return arr

Z
Zeng Jinle 已提交
173

174
class AuToTune:
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
    def __init__(self, loader):
        self.loader = loader
        self.max_num_worker = multiprocessing.cpu_count() / 2

    def __call__(self):
        # use default loader
        if (not USE_AUTOTUNE) or (not self.need_autotune()):
            return self.loader.num_workers

        # get autotune loader
        auto_tune_loader = self.get_autotune_loader()
        if auto_tune_loader is None:
            return self.loader.num_workers

        # pick the best num_workers
        auto_tune_start = time.time()
        logging.debug("========= DataLoader Auto Tune =========")
192 193 194
        logging.debug(
            "User config for DataLoader: " + str(self.loader.num_workers)
        )
195 196
        best_num_workers = 0
        min_cost = float("inf")
197 198 199
        logging.debug(
            "Tuning Range for num_workers: 0 ~ " + str(self.max_num_worker)
        )
200 201 202 203 204 205 206 207
        num_workers = 0
        while num_workers < self.max_num_worker:
            auto_tune_loader.num_workers = num_workers
            avg_cost = self.evaluate_reader_cost(auto_tune_loader)
            if min_cost * 0.75 > avg_cost:
                min_cost = avg_cost
                best_num_workers = num_workers
            else:
208 209 210 211 212 213
                update_num = self.is_best(
                    auto_tune_loader,
                    best_num_workers,
                    min_cost,
                    self.max_num_worker,
                )
214 215 216 217
                if update_num == best_num_workers:
                    break
                else:
                    best_num_workers = update_num
218 219 220 221 222 223
            logging.debug(
                "num_workers: "
                + str(num_workers)
                + " avg_cost: "
                + str(avg_cost)
            )
224
            num_workers += 2
225 226 227 228 229 230 231 232
        logging.info(
            "auto_tune dataLoader best_num_workers: " + str(best_num_workers)
        )
        logging.debug(
            "AutoTuning Cost for DataLoader: "
            + str(time.time() - auto_tune_start)
            + ' seconds'
        )
233 234 235 236 237

        # tune the default loader's num_workers
        return best_num_workers

    def need_autotune(self):
238
        if sys.platform == 'darwin' or sys.platform == 'win32':
239 240 241 242 243 244 245 246 247 248
            return False
        else:
            return True

    def get_sub_dataset(self, dataset, batch_size):
        num_samples = min(batch_size * TUNING_STEPS, len(dataset))
        sub_dataset = Subset(dataset, indices=list(range(num_samples)))
        return sub_dataset

    def get_autotune_loader(self):
N
niuliling123 已提交
249
        loader = copy.copy(self.loader)
250
        batch_size = self.loader.batch_sampler.batch_size
251 252 253
        if isinstance(
            self.loader.batch_sampler, paddle.io.DistributedBatchSampler
        ):
254 255 256 257 258 259 260 261
            dataset = self.loader.batch_sampler.dataset
            sub_dataset = self.get_sub_dataset(dataset, batch_size)
            loader.batch_sampler = paddle.io.DistributedBatchSampler(
                dataset=sub_dataset,
                batch_size=batch_size,
                num_replicas=self.loader.batch_sampler.nranks,
                rank=self.loader.batch_sampler.local_rank,
                shuffle=self.loader.batch_sampler.shuffle,
262 263
                drop_last=self.loader.batch_sampler.drop_last,
            )
264 265 266 267 268 269
        elif isinstance(self.loader.batch_sampler, paddle.io.BatchSampler):
            dataset = self.loader.batch_sampler.sampler.data_source
            sub_dataset = self.get_sub_dataset(dataset, batch_size)
            loader.batch_sampler = paddle.io.BatchSampler(
                dataset=sub_dataset,
                batch_size=batch_size,
270 271
                drop_last=self.loader.batch_sampler.drop_last,
            )
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
        else:
            loader = None
        return loader

    def evaluate_reader_cost(self, reader):
        costs = []
        avg_cost = 0
        start = time.time()
        for i, data in enumerate(reader):
            costs.append(time.time() - start)
            start = time.time()
        if len(costs) > 2:
            avg_cost = sum(costs[2:]) / len(costs[2:])
        else:
            avg_cost = sum(costs[0:]) / len(costs[0:])
        return avg_cost

    def is_best(self, reader, best_workers, best_time, num_work_boundary):
        step = 0
        num_workers = best_workers + 1
        boundary = 1
        while num_workers < num_work_boundary and step < 5:
            self.loader.num_workers = num_workers
            time = self.evaluate_reader_cost(reader)
296 297 298 299 300 301
            logging.debug(
                "for back num_workers: "
                + str(num_workers)
                + " avg_cost: "
                + str(time)
            )
302
            step += 1
303
            if time < best_time * 0.70 * boundary:
304 305 306 307 308 309 310
                return num_workers
            else:
                num_workers += 1
            boundary *= 0.80
        return best_workers


311
class DataLoader:
312 313 314 315 316 317 318 319
    """
    DataLoader prodives an iterator which iterates given dataset
    once by the batch_sampler.

    DataLoader supports single-process and multi-prcess data loading,
    multi-process workers will be used to load data asynchronously if
    :attr:`num_workers` is set as a positive number.

K
Kaipeng Deng 已提交
320
    DataLoader supports map-style dataset and iterable-style dataset.
321

K
Kaipeng Deng 已提交
322 323 324 325 326 327 328
    For map-style datast(can get a sample from dataset with a given
    index), please see :code:`paddle.io.Dataset`.

    For iterable-style datast(get samples from dataset iteratively,
    like a Python iterator), please see :code:`paddle.io.IterableDataset`.

    For :code:`batch_sampler` please see :code:`paddle.io.BatchSampler`
329

330 331 332 333 334 335
    .. note::
        GPU tensor operation is not supported in subprocess currently,
        please don't use GPU tensor operations in pipeline which will
        be performed in subprocess, such as dataset transforms, collte_fn,
        etc. Numpy array and CPU tensor operation is supported.

336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
    **Disable automatic batching**

    In certain cases such as some NLP tasks, instead of automatic batching,
    handling batching manually in dataset is needed by users. For these
    cases, automatic batching is disabled if both :attr:`batch_size` and
    :attr:`batch_sampler` is set as None, each data got from :attr:`dataset`
    should be batched data and will be processed with function define by
    :attr:`collate_fn` or :attr:`default_collate_fn`.


    .. note::
        When automatic batching is disabled, :attr:`default_collate_fn` will
        do nothing to data from dataset.


351
    Args:
352
        dataset(Dataset): the dataset to load data from, should be an
353 354
            instance of subclass of :code:`paddle.io.Dataset` or
            :code:`paddle.io.IterableDataset`.
355
        feed_list (list(Tensor)|tuple(Tensor), optional): feed Tensor list.
356
            The Tensors should be created by :code:`paddle.static.data()`.
357 358
            :attr:`feed_list` must be set if :attr:`return_list` is
            False. Default None.
359
        places(list(Place)|tuple(Place)|list(str), optional): a list of Place,
360
            to put data onto, :attr:`places` can be None, if
361
            :attr:`places` is None, default place(CPUPlace or CUDAPlace(0))
362 363 364
            will be used. Default None. If ``places`` is list of string,
            the string in the list can be ``cpu``, ``gpu:x`` and ``gpu_pinned``,
            where ``x`` is the index of the GPUs.
365
        return_list (bool, optional): whether the return value on each device is
366
            presented as a list. If :attr:`return_list=False`, the return
K
Kaipeng Deng 已提交
367
            value on each device would be a dict of str -> Tensor, where
368
            the key of the dict is the name of each fed Tensors. If
369
            :attr:`return_list=True`, the return value on each device would
K
Kaipeng Deng 已提交
370
            be a list(Tensor). :attr:`return_list` can only be True
371
            in dynamic graph mode. Default True.
372
        batch_sampler(BatchSampler, optional): an instance of `paddle.io.BatchSampler`
373 374
            to generate batch indices to draw samples from :attr:`dataset`
            and combine a batch. Default None.
375
        batch_size(int|None, optional): sample number in a mini-batch, a substitution
376 377 378 379
            parameter for :attr:`batch_sampler`, if :attr:`batch_sampler`
            is not set, a default `paddle.io.BatchSampler` will be used
            and initialize by :attr:`batch_size`, :attr:`shuffle` and
            :attr:`drop_last`. Default 1.
380
        shuffle(bool, optional): whther to shuffle indices order before genrate
381 382
            batch indices, a substitution parameter for :attr:`batch_sampler`
            see :attr:`batch_size`. Default False.
383
        drop_last(bool, optional): whether drop the last incomplete batch dataset size
384 385
            is not divisible by the batch size, a substitution parameter
            for :attr:`batch_sampler`, see :attr:`batch_size`. Default False
386
        collate_fn(callable, optional): function to generate mini-batch data by merging
387 388
            the sample list, None for only stack each fields of sample in axis
            0(same as :attr::`np.stack(..., axis=0)`). Default None
389
        num_workers(int, optional): the number of subprocess to load data, 0 for no
390
            subprocess used and loading data in main process. Default 0
391
        use_buffer_reader (bool, optional): whether to use bufferred reader.
392
            If use_buffer_reader=True, the DataLoader would prefetch
393
            batch data asynchronously, so it would speed up data feeding
394 395
            and occupies a little more CPU or GPU memory, i.e., the memory
            of one batch input data. Default True.
396 397 398
        prefetch_factor (int, optional): Number of batch data the DataLoader would prefetch
            if use_buffer_reader=True. Default 2.
        use_shared_memory (bool, optional): whether to use shared memory to speed up
399 400 401 402 403
            putting data into inter-process queue, set :attr:`use_shared_memory`
            as True only when the shared memory space on your machine(e.g.
            space of '/dev/shm' on Linux operating sysytem) is large enough.
            Shared memory will only be enabled in multi-process mode(num_workers
            > 0). Default True.
404
        timeout(int, optional): the timeout value for getting data form output queue
405
            of subprocesses. Default 0.
406
        worker_init_fn(callable, optional): init function which will be called with
407 408 409 410
            worker id on each subproces starting if not set as None. Default
            None.

    Returns:
411
        DataLoader: an iterable object for data iterating, each elemnet of the generated data is a Tensor.
412 413

    Examples:
414

415 416 417
        .. code-block:: python

            import numpy as np
418 419

            import paddle
K
Kaipeng Deng 已提交
420 421
            import paddle.nn as nn
            import paddle.nn.functional as F
422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
            from paddle.io import Dataset, BatchSampler, DataLoader

            BATCH_NUM = 20
            BATCH_SIZE = 16
            EPOCH_NUM = 4

            IMAGE_SIZE = 784
            CLASS_NUM = 10

            # define a random dataset
            class RandomDataset(Dataset):
                def __init__(self, num_samples):
                    self.num_samples = num_samples

                def __getitem__(self, idx):
                    image = np.random.random([IMAGE_SIZE]).astype('float32')
                    label = np.random.randint(0, CLASS_NUM - 1, (1, )).astype('int64')
                    return image, label

                def __len__(self):
                    return self.num_samples

444 445
            dataset = RandomDataset(BATCH_NUM * BATCH_SIZE)

K
Kaipeng Deng 已提交
446
            class SimpleNet(nn.Layer):
447
                def __init__(self):
448
                    super().__init__()
K
Kaipeng Deng 已提交
449
                    self.fc = nn.Linear(IMAGE_SIZE, CLASS_NUM)
450 451 452 453

                def forward(self, image, label=None):
                    return self.fc(image)

K
Kaipeng Deng 已提交
454 455 456
            simple_net = SimpleNet()
            opt = paddle.optimizer.SGD(learning_rate=1e-3,
                                      parameters=simple_net.parameters())
457 458

            loader = DataLoader(dataset,
K
Kaipeng Deng 已提交
459
                                batch_size=BATCH_SIZE,
460 461 462 463 464
                                shuffle=True,
                                drop_last=True,
                                num_workers=2)

            for e in range(EPOCH_NUM):
K
Kaipeng Deng 已提交
465 466 467 468 469 470 471 472
                for i, (image, label) in enumerate(loader()):
                    out = simple_net(image)
                    loss = F.cross_entropy(out, label)
                    avg_loss = paddle.mean(loss)
                    avg_loss.backward()
                    opt.minimize(avg_loss)
                    simple_net.clear_gradients()
                    print("Epoch {} batch {}: loss = {}".format(e, i, np.mean(loss.numpy())))
473 474


475 476 477 478
    .. note::
        For reading iterable dataset with multiprocess Dataloader,
        please see :code:`paddle.io.IterableDataset`

479 480
    """

481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
    def __init__(
        self,
        dataset,
        feed_list=None,
        places=None,
        return_list=True,
        batch_sampler=None,
        batch_size=1,
        shuffle=False,
        drop_last=False,
        collate_fn=None,
        num_workers=0,
        use_buffer_reader=True,
        prefetch_factor=2,
        use_shared_memory=True,
        timeout=0,
        worker_init_fn=None,
        persistent_workers=False,
    ):
500 501 502
        self.return_list = return_list
        self.collate_fn = collate_fn
        self.use_buffer_reader = use_buffer_reader
503
        self.prefetch_factor = prefetch_factor
504 505 506 507
        self.worker_init_fn = worker_init_fn

        self.dataset = dataset

J
Jiabin Yang 已提交
508
        if not return_list and not _non_static_mode():
509 510 511
            assert (
                feed_list is not None
            ), "feed_list should be set when return_list=False"
512 513
        self.feed_list = feed_list

514 515
        if places is None:
            places = _current_expected_place()
516 517 518 519
        if isinstance(places, (list, tuple)):
            places = _get_paddle_place_list(places)
        else:
            places = _get_paddle_place(places)
520 521 522
        self.places = _convert_places(places)

        assert num_workers >= 0, "num_workers should be a non-negative value"
523 524 525
        if num_workers > 0 and (
            sys.platform == 'darwin' or sys.platform == 'win32'
        ):
526
            warnings.warn(
527 528 529
                "DataLoader with multi-process mode is not supported on MacOs and Windows currently."
                " Please use signle-process mode with num_workers = 0 instead"
            )
530 531 532
            num_workers = 0
        self.num_workers = num_workers

533 534
        assert prefetch_factor > 0, "prefetch_factor should be a positive value"

535 536 537 538 539 540 541
        self.use_shared_memory = use_shared_memory
        if use_shared_memory and num_workers == 0:
            self.use_shared_memory = False

        assert timeout >= 0, "timeout should be a non-negative value"
        self.timeout = timeout

542 543 544 545
        if isinstance(dataset, IterableDataset):
            self.dataset_kind = _DatasetKind.ITER
            if shuffle:
                raise ValueError(
546 547 548 549
                    "IterableDataset not support shuffle, but got shuffle={}".format(
                        shuffle
                    )
                )
550 551
            if batch_sampler is not None:
                raise ValueError(
552 553
                    "IterableDataset expect unspecified batch_sampler"
                )
554 555 556
        else:
            self.dataset_kind = _DatasetKind.MAP

557
        if batch_sampler is not None:
558 559
            assert batch_size == 1 and not shuffle and not drop_last, (
                "batch_size/shuffle/drop_last should not be set when "
560
                "batch_sampler is given"
561
            )
562
            self.batch_sampler = batch_sampler
563 564 565 566
            self.batch_size = None
        elif batch_size is None:
            self.batch_sampler = None
            self.batch_size = None
567
        else:
568 569
            assert batch_size > 0, (
                "batch_size should be None or a positive value when "
570
                "batch_sampler is not given"
571
            )
572
            self.batch_size = batch_size
573
            if isinstance(dataset, IterableDataset):
574
                self.batch_sampler = _InfiniteIterableSampler(
575 576
                    dataset, batch_size
                )
577
            else:
578 579 580 581 582 583
                self.batch_sampler = BatchSampler(
                    dataset=dataset,
                    batch_size=batch_size,
                    shuffle=shuffle,
                    drop_last=drop_last,
                )
584

585
        self.drop_last = drop_last
586 587
        self.auto_collate_batch = self.batch_sampler is not None

588
        self.pin_memory = False
J
Jiabin Yang 已提交
589
        if _non_static_mode():
590 591 592
            self.pin_memory = (
                True if use_pinned_memory() is None else use_pinned_memory()
            )
593

K
Kaipeng Deng 已提交
594 595
        self._persistent_workers = persistent_workers
        self._iterator = None
596
        self.num_workers = AuToTune(self).__call__()
K
Kaipeng Deng 已提交
597

598
    def __len__(self):
599 600 601
        if self.dataset_kind == _DatasetKind.ITER:
            raise ValueError("length of IterableDataset not supported")
        else:
602
            if self.auto_collate_batch:
603
                return len(self.batch_sampler)
604 605
            else:
                return len(self.dataset)
606 607 608 609

    def __iter__(self):
        if self.num_workers == 0:
            return _DataLoaderIterSingleProcess(self)
K
Kaipeng Deng 已提交
610 611 612 613 614 615
        elif self._persistent_workers:
            if self._iterator is None:
                self._iterator = _DataLoaderIterMultiProcess(self)
            else:
                self._iterator._reset()
            return self._iterator
616 617 618 619 620 621
        else:
            return _DataLoaderIterMultiProcess(self)

    def __call__(self):
        return self.__iter__()

Z
Zeng Jinle 已提交
622
    @staticmethod
623 624 625 626 627 628 629 630 631
    def from_generator(
        feed_list=None,
        capacity=None,
        use_double_buffer=True,
        iterable=True,
        return_list=False,
        use_multiprocess=False,
        drop_last=True,
    ):
Z
Zeng Jinle 已提交
632
        """
K
Kaipeng Deng 已提交
633 634 635 636
        .. warning::
          This API will be deprecated in the future, it is recommended to use
          :code:`paddle.io.DataLoader` which supports multi-processes acceleration.

637 638 639
        .. note::
          **The framework ensures that the data loading order of DataLoader is exactly the same as the user-defined data source.**

640
        Create a DataLoader object for loading data from Python generator.
Z
Zeng Jinle 已提交
641 642 643 644
        Data would be prefetched using Python thread and be pushed
        into a queue asynchronously.

        The created DataLoader object provides 3 methods to set the data source
645
        :code:`set_sample_generator` , :code:`set_sample_list_generator` and
Z
Zeng Jinle 已提交
646 647
        :code:`set_batch_generator` . Please see the following example codes
        to know their usages.
648

Z
Zeng Jinle 已提交
649 650 651
        If iterable = True, the created DataLoader object is a Python generator
        object, which is iterable using for-range loop.

652
        If iterable = False, the created DataLoader object provides
Z
Zeng Jinle 已提交
653
        :code:`start()` and :code:`reset()` method to control the data reading
654
        process.
Z
Zeng Jinle 已提交
655

656
        Args:
657 658
            feed_list (list(Tensor)|tuple(Tensor)): feed Tensor list.
                The Tensors should be created by :code:`fluid.data()`.
Z
Zeng Jinle 已提交
659
            capacity (int): capacity of the queue maintained in DataLoader.
660 661
                The unit is batch number. Set larger capacity if your reader
                is fast.
662
            use_double_buffer (bool, optional): whether to use double_buffer_reader.
663 664
                If use_double_buffer=True, the DataLoader would prefetch next
                batch data asynchronously, so it would speed up data feeding
Z
Zeng Jinle 已提交
665
                and occupies a little more CPU or GPU memory, i.e., the memory
666
                of one batch input data.
667 668
            iterable (bool, optional): whether the created DataLoader is iterable.
            return_list (bool, optional): whether the return value on each device is
669 670 671 672
                presented as a list. It is only valid when iterable=True.
                If return_list=False, the return value on each device would
                be a dict of str -> LoDTensor, where the key of the dict is
                the name of each fed Tensors. If return_list=True, the
Z
Zeng Jinle 已提交
673 674
                return value on each device would be a list(LoDTensor). It is
                recommended to use return_list=False in static graph mode and
675
                use return_list=True in dygraph mode.
676 677 678
            use_multiprocess (bool, optional): whether to use multi-process to
                speed up the data loading process in dygraph. Note: this parameter
                only can be used in the dygraph mode. In the static graph mode,
679 680
                whether this parameter is set or not has no effect.
                The Default value is False.
681 682 683
            drop_last (bool, optional): whether to drop the last batches whose
                number is less than the CPU core/GPU card number. The default
                value is True. In training phase, users should not set drop_last=False,
684
                because all CPU cores/GPU cards must read data from DataLoader.
685 686
                In inference phase, users can set drop_last=False, so that the
                last batches whose number is less than the CPU core/GPU card
687
                number can be tested.
Z
Zeng Jinle 已提交
688 689 690 691

        Returns:
            loader (DataLoader): the created DataLoader object.

692
        Examples 1:
693

Z
Zeng Jinle 已提交
694
            .. code-block:: python
S
sneaxiy 已提交
695

696 697 698
                '''
                Example in static graph mode
                '''
Z
Zeng Jinle 已提交
699
                import numpy as np
700

701 702 703 704 705
                import paddle
                import paddle.static as static
                import paddle.nn.functional as F


706
                BATCH_NUM = 10
Z
Zeng Jinle 已提交
707 708 709 710 711 712 713 714
                BATCH_SIZE = 16
                EPOCH_NUM = 4

                CLASS_NUM = 10

                ITERABLE = True # whether the created DataLoader object is iterable
                USE_GPU = False # whether to use GPU

715
                DATA_FORMAT = 'batch_generator' # data format of data source user provides
Z
Zeng Jinle 已提交
716

717 718
                paddle.enable_static()

Z
Zeng Jinle 已提交
719
                def simple_net(image, label):
720 721 722 723
                    fc_tmp = static.nn.fc(image, size=CLASS_NUM)
                    cross_entropy = F.softmax_with_cross_entropy(image, label)
                    loss = paddle.mean(cross_entropy)
                    sgd = paddle.optimizer.SGD(learning_rate=1e-3)
Z
Zeng Jinle 已提交
724 725 726 727 728 729 730 731 732 733
                    sgd.minimize(loss)
                    return loss

                def get_random_images_and_labels(image_shape, label_shape):
                    image = np.random.random(size=image_shape).astype('float32')
                    label = np.random.random(size=label_shape).astype('int64')
                    return image, label

                # If the data generator yields one sample each time,
                # use DataLoader.set_sample_generator to set the data source.
734
                def sample_generator_creator():
Z
Zeng Jinle 已提交
735 736 737 738 739 740 741 742 743 744 745
                    def __reader__():
                        for _ in range(BATCH_NUM * BATCH_SIZE):
                            image, label = get_random_images_and_labels([784], [1])
                            yield image, label

                    return __reader__

                # If the data generator yield list of samples each time,
                # use DataLoader.set_sample_list_generator to set the data source.
                def sample_list_generator_creator():
                    def __reader__():
746
                        for _ in range(BATCH_NUM):
Z
Zeng Jinle 已提交
747 748 749 750 751 752 753
                            sample_list = []
                            for _ in range(BATCH_SIZE):
                                image, label = get_random_images_and_labels([784], [1])
                                sample_list.append([image, label])

                            yield sample_list

754
                    return __reader__
Z
Zeng Jinle 已提交
755

756
                # If the data generator yields a batch each time,
Z
Zeng Jinle 已提交
757 758 759 760
                # use DataLoader.set_batch_generator to set the data source.
                def batch_generator_creator():
                    def __reader__():
                        for _ in range(BATCH_NUM):
761
                            batch_image, batch_label = get_random_images_and_labels([BATCH_SIZE, 784], [BATCH_SIZE, 1])
Z
Zeng Jinle 已提交
762
                            yield batch_image, batch_label
H
Huihuang Zheng 已提交
763

Z
Zeng Jinle 已提交
764
                    return __reader__
765

766
                # If DataLoader is iterable, use for loop to train the network
Z
Zeng Jinle 已提交
767 768 769 770
                def train_iterable(exe, prog, loss, loader):
                    for _ in range(EPOCH_NUM):
                        for data in loader():
                            exe.run(prog, feed=data, fetch_list=[loss])
771

772
                # If DataLoader is not iterable, use start() and reset() method to control the process
Z
Zeng Jinle 已提交
773 774 775 776 777 778
                def train_non_iterable(exe, prog, loss, loader):
                    for _ in range(EPOCH_NUM):
                        loader.start() # call DataLoader.start() before each epoch starts
                        try:
                            while True:
                                exe.run(prog, fetch_list=[loss])
779
                        except paddle.core.EOFException:
780
                            loader.reset() # call DataLoader.reset() after catching EOFException
Z
Zeng Jinle 已提交
781 782 783 784 785 786 787 788 789 790

                def set_data_source(loader, places):
                    if DATA_FORMAT == 'sample_generator':
                        loader.set_sample_generator(sample_generator_creator(), batch_size=BATCH_SIZE, drop_last=True, places=places)
                    elif DATA_FORMAT == 'sample_list_generator':
                        loader.set_sample_list_generator(sample_list_generator_creator(), places=places)
                    elif DATA_FORMAT == 'batch_generator':
                        loader.set_batch_generator(batch_generator_creator(), places=places)
                    else:
                        raise ValueError('Unsupported data format')
791

792 793
                image = static.data(name='image', shape=[None, 784], dtype='float32')
                label = static.data(name='label', shape=[None, 1], dtype='int64')
794

795
                # Define DataLoader
796
                loader = paddle.io.DataLoader.from_generator(feed_list=[image, label], capacity=16, iterable=ITERABLE)
797

Z
Zeng Jinle 已提交
798 799
                # Define network
                loss = simple_net(image, label)
S
sneaxiy 已提交
800

Z
Zeng Jinle 已提交
801 802
                # Set data source of DataLoader
                #
803 804 805 806
                # If DataLoader is iterable, places must be given and the number of places must be the same with device number.
                #  - If you are using GPU, call `paddle.static.cuda_places()` to get all GPU places.
                #  - If you are using CPU, call `paddle.static.cpu_places()` to get all CPU places.
                #
Z
Zeng Jinle 已提交
807
                # If DataLoader is not iterable, places can be None.
808
                places = static.cuda_places() if USE_GPU else static.cpu_places()
Z
Zeng Jinle 已提交
809
                set_data_source(loader, places)
S
sneaxiy 已提交
810

811 812
                exe = static.Executor(places[0])
                exe.run(static.default_startup_program())
H
Huihuang Zheng 已提交
813

814
                prog = static.CompiledProgram(static.default_main_program()).with_data_parallel(loss_name=loss.name)
815

Z
Zeng Jinle 已提交
816 817 818 819 820 821
                if loader.iterable:
                    train_iterable(exe, prog, loss, loader)
                else:
                    train_non_iterable(exe, prog, loss, loader)


822 823 824 825
        Examples 2:

            .. code-block:: python

Z
Zeng Jinle 已提交
826
                '''
827
                Example in dynamic graph mode.
Z
Zeng Jinle 已提交
828
                '''
829
                import numpy as np
830

831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860
                import paddle
                import paddle.nn as nn
                import paddle.optimizer as opt
                import paddle.distributed as dist

                BATCH_SIZE = 16
                BATCH_NUM = 4
                EPOCH_NUM = 4

                IMAGE_SIZE = 784
                CLASS_NUM = 10

                USE_GPU = False # whether to use GPU

                def _get_random_images_and_labels(image_shape, label_shape):
                        image = np.random.random(size=image_shape).astype('float32')
                        label = np.random.random(size=label_shape).astype('int64')
                        return image, label

                def __reader__():
                        for _ in range(BATCH_NUM):
                            batch_image, batch_label = _get_random_images_and_labels(
                                [BATCH_SIZE, IMAGE_SIZE], [BATCH_SIZE, CLASS_NUM])
                            yield batch_image, batch_label

                def random_batch_reader():
                    return __reader__

                class LinearNet(nn.Layer):
                    def __init__(self):
861
                        super().__init__()
862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893
                        self._linear = nn.Linear(IMAGE_SIZE, CLASS_NUM)

                    @paddle.jit.to_static
                    def forward(self, x):
                        return self._linear(x)

                # set device
                paddle.set_device('gpu' if USE_GPU else 'cpu')

                # create network
                layer = LinearNet()
                dp_layer = paddle.DataParallel(layer)
                loss_fn = nn.CrossEntropyLoss()
                adam = opt.Adam(learning_rate=0.001, parameters=dp_layer.parameters())

                # create data loader
                loader = paddle.io.DataLoader.from_generator(capacity=5)
                loader.set_batch_generator(random_batch_reader())

                for epoch_id in range(EPOCH_NUM):
                    for batch_id, (image, label) in enumerate(loader()):
                        out = layer(image)
                        loss = loss_fn(out, label)

                        loss.backward()

                        adam.step()
                        adam.clear_grad()
                        print("Epoch {} batch {}: loss = {}".format(
                            epoch_id, batch_id, np.mean(loss.numpy())))

        Examples 3:
894 895 896

            .. code-block:: python

897 898 899 900 901
                '''
                Example of `drop_last` using in static graph multi-cards mode
                '''
                import paddle
                import paddle.static as static
902 903 904
                import numpy as np
                import os

905
                # We use 2 CPU cores to run inference network
906 907
                os.environ['CPU_NUM'] = '2'

908 909
                paddle.enable_static()

910 911
                # The data source has only 3 batches, which can not be
                # divided evenly to each CPU core
912
                def batch_generator():
913
                    for i in range(3):
914
                        yield np.array([i+1]).astype('float32'),
915

916
                x = static.data(name='x', shape=[None], dtype='float32')
917 918
                y = x * x

919
                def run_inference(drop_last):
920
                    loader = paddle.io.DataLoader.from_generator(feed_list=[x],
921
                            capacity=8, drop_last=drop_last)
922
                    loader.set_batch_generator(batch_generator, static.cpu_places())
923

924 925
                    exe = static.Executor(paddle.CPUPlace())
                    prog = static.CompiledProgram(static.default_main_program())
926 927 928 929 930 931 932 933 934 935 936 937 938 939 940
                    prog = prog.with_data_parallel()

                    result = []
                    for data in loader():
                        each_ret, = exe.run(prog, feed=data, fetch_list=[y])
                        result.extend(each_ret)
                    return result

                # Set drop_last to True, so that the last batch whose
                # number is less than CPU core number would be discarded.
                print(run_inference(drop_last=True)) # [1.0, 4.0]

                # Set drop_last to False, so that the last batch whose
                # number is less than CPU core number can be tested.
                print(run_inference(drop_last=False)) # [1.0, 4.0, 9.0]
Z
Zeng Jinle 已提交
941
        """
J
Jiabin Yang 已提交
942
        if _non_static_mode():
943 944 945 946 947 948 949 950
            return DygraphGeneratorLoader(
                feed_list,
                capacity,
                use_double_buffer,
                iterable,
                return_list,
                use_multiprocess,
            )
951
        else:
952 953 954 955 956 957 958 959
            return GeneratorLoader(
                feed_list,
                capacity,
                use_double_buffer,
                iterable,
                return_list,
                drop_last,
            )
Z
Zeng Jinle 已提交
960 961 962 963

    @staticmethod
    def from_dataset(dataset, places, drop_last=True):
        """
K
Kaipeng Deng 已提交
964 965 966 967
        .. warning::
          This API will be deprecated in the future, it is recommended to use
          :code:`paddle.io.DataLoader` which supports multi-processes acceleration.

968
        Create an iterable DataLoader object for loading data from Dataset.
Z
Zeng Jinle 已提交
969
        Dataset is only supported in Linux system currently.
970

Z
Zeng Jinle 已提交
971 972
        Args:
            dataset (InMemoryDataset|QueueDataset): the dataset object.
973 974 975
            places (list(CUDAPlace)|list(CPUPlace)|list(str)): places where the result
                data should be converted. If places is list of string, the string in the list
                can be ``cpu``, ``gpu:x`` and ``gpu_pinned``, where x is the index of the GPUs.
976 977 978
            drop_last (bool, optional): whether to drop the last batch whose
                sample number is less than batch size. If drop_last = True,
                they would be dropped. If drop_last = False, they would be kept.
979

Z
Zeng Jinle 已提交
980
        Returns:
981 982
            loader (DataLoader): the created DataLoader object, which can be
                treated as a Python generator.
983

Z
Zeng Jinle 已提交
984 985 986
        Examples:

            .. code-block:: python
987

988 989 990 991
                import paddle
                import paddle.static as static

                paddle.enable_static()
992

993 994
                image = static.data(name='image', shape=[None, 784], dtype='float32')
                label = static.data(name='label', shape=[None, 1], dtype='int64')
995

996 997 998 999 1000
                dataset = paddle.distributed.QueueDataset()
                dataset.init(
                    batch_size=32,
                    pipe_command='cat',
                    use_var=[image, label])
Z
Zeng Jinle 已提交
1001
                dataset.set_filelist(['a.txt', 'b.txt', 'c.txt'])
1002

1003
                loader = paddle.io.DataLoader.from_dataset(dataset, static.cpu_places())
Z
Zeng Jinle 已提交
1004 1005
        """
        return DatasetLoader(dataset, places, drop_last)
S
sneaxiy 已提交
1006

S
sneaxiy 已提交
1007

1008 1009 1010 1011
class DygraphGeneratorLoader(DataLoaderBase):
    """
    The GeneratorLoader of dygraph

1012
    The multiprocess dygraph GeneratorLoader's most functions are different from
1013 1014 1015
    static graph GeneratorLoader, Separate implementation to keep code readable.
    """

1016 1017 1018 1019 1020 1021 1022 1023 1024
    def __init__(
        self,
        feed_list=None,
        capacity=None,
        use_double_buffer=True,
        iterable=True,
        return_list=True,
        use_multiprocess=False,
    ):
1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
        self._batch_reader = None
        self._places = None
        self._feed_list = feed_list

        if not capacity:
            raise ValueError("Please give value to capacity.")
        self._capacity = capacity
        self._use_double_buffer = use_double_buffer

        if not iterable:
1035 1036
            warnings.warn(
                "Please NOTE: DygraphGeneratorLoader supports iterable mode only. Change to iterable mode."
1037 1038 1039
            )
        self._iterable = True
        if not return_list:
1040 1041
            warnings.warn(
                "Please NOTE: DygraphGeneratorLoader supports returning as list only. Change to return as list."
1042 1043 1044 1045 1046
            )
        self._return_list = True

        # NOTE: the multiprocessing in different platform is incompatible, we will solve it later
        self._use_multiprocess = use_multiprocess
1047 1048 1049
        if self._use_multiprocess and (
            sys.platform == 'darwin' or sys.platform == 'win32'
        ):
1050 1051
            warnings.warn(
                "NOTE: DygraphGeneratorLoader with multiprocess mode is not currently supported on MacOs and Windows."
1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
            )
            self._use_multiprocess = False

        if self._use_multiprocess:
            # NOTE: the multiprocessing.Queue used to save loading data in self._process
            self._data_queue = None
            # NOTE: this process is used to load data asynchronously from self._batch_reader
            self._process = None

        # NOTE: the C++ LoDTensorBlockingQueue instance
        self._blocking_queue = None
        # NOTE: 1. In multiprocess mode, this thread is used to get next batch data from
        # self._data_queue, then push it into self._blocking_queue; 2. In singleprocess
1065
        # mode, this thread is used to get next batch data from self._batch_reader, then
1066 1067
        # push it into self._blocking_queue
        self._thread = None
1068 1069 1070
        self._pin_memory = (
            True if use_pinned_memory() is None else use_pinned_memory()
        )
1071 1072 1073 1074 1075 1076 1077 1078 1079

    @property
    def queue(self):
        return self._blocking_queue

    @property
    def iterable(self):
        return self._iterable

1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
    def _clear_and_remove_data_queue(self):
        if self._data_queue is not None:
            while True:
                try:
                    self._data_queue.get_nowait()
                except queue.Empty:
                    break
            global multiprocess_queue_set
            multiprocess_queue_set.remove(self._data_queue)

1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
    def _wait_thread_ends(self):
        thread = self._thread
        if thread is not None:
            self._blocking_queue.close()
            thread.join()

    def _wait_process_ends(self):
        process = self._process
        if process is not None:
            process.join()
            # erase process id
1101
            core._erase_process_pids(id(self))
1102

1103 1104 1105 1106 1107 1108 1109 1110 1111
    def _init_iterable(self):
        self._wait_thread_ends()
        if self._use_multiprocess:
            self._wait_process_ends()
        self._var_names = []
        self._shapes = []
        self._dtypes = []
        self._need_check_feed = []
        self._blocking_queue = core.init_lod_tensor_blocking_queue(
1112 1113
            core.Variable(), self._capacity, False
        )
1114
        self._reader = None
1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
        self._reader = core.create_py_reader(
            self.queue,
            self._var_names,
            self._shapes,
            self._dtypes,
            self._need_check_feed,
            self._places,
            self._use_double_buffer,
            True,
            self._pin_memory,
        )
1126 1127 1128

    def _start(self):
        if self._use_multiprocess:
1129 1130 1131
            # clear old _data_queue and remove it from multiprocess_queue_set
            self._clear_and_remove_data_queue()
            # set data_queue and process
1132
            self._data_queue = multiprocessing.Queue(self._capacity)
1133 1134 1135
            # add _data_queue into global queue set
            global multiprocess_queue_set
            multiprocess_queue_set.add(self._data_queue)
1136 1137 1138 1139
            self._process = multiprocessing.Process(
                target=_reader_process_loop,
                args=(self._batch_reader, self._data_queue),
            )
1140 1141 1142 1143 1144
            self._process.daemon = True
            self._process.start()

            # Set child process signal handler
            # NOTE: [ avoiding hang ] 1. if the child process dies due to bus error/segfault
1145
            # or just hang, the main process will hang waiting for data, so here need to deal
1146
            # with SIGSEGV and SIGBUS of child process; 2. if the main process end before child
1147
            # process, it shuts the all its daemonic children down with a SIGTERM (instead of
1148
            # joining them without a timeout), so here nedd to deal with SIGTERM.
1149 1150
            core._set_process_pids(id(self), [self._process.pid])
            _set_SIGCHLD_handler()
1151 1152 1153 1154

            # Set reader_thread
            self._thread_done_event = threading.Event()
            self._thread = threading.Thread(
1155
                target=self._reader_thread_loop_for_multiprocess,
1156 1157
                args=(_current_expected_place(),),
            )
1158 1159 1160
            self._thread.daemon = True
            self._thread.start()
        else:
1161
            self._thread = threading.Thread(
1162
                target=self._reader_thread_loop_for_singleprocess,
1163 1164
                args=(_current_expected_place(),),
            )
1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
            self._thread.daemon = True
            self._thread.start()

    def _reset(self):
        self._reader.reset()
        self._wait_thread_ends()
        if self._use_multiprocess:
            self._wait_process_ends()

    def __iter__(self):
        assert self.iterable, "DataLoader is not iterable"
1176 1177 1178
        assert (
            self._batch_reader is not None
        ), "Data source of DataLoader has not set yet"
1179 1180 1181 1182 1183 1184 1185

        self._init_iterable()
        self._start()
        return self

    def __next__(self):
        try:
J
Jiabin Yang 已提交
1186
            if _in_eager_without_dygraph_check():
1187
                return core.eager.read_next_tensor_list(
1188 1189
                    self._reader.read_next_list()[0]
                )
1190 1191
            else:
                return self._reader.read_next_var_list()
1192 1193
        except StopIteration:
            self._reset()
1194
            raise
1195

1196 1197 1198 1199 1200 1201 1202 1203 1204
    def _exit_thread_expectedly(self):
        self._thread_done_event.set()
        self._blocking_queue.close()

    def _exit_thread_unexpectedly(self):
        self._thread_done_event.set()
        self._blocking_queue.kill()
        logging.error("DataLoader reader thread raised an exception!")

1205 1206
    def _reader_thread_loop_for_multiprocess(self, legacy_expected_place):
        # See _DataLoaderIterSingleProcess._thread_loop() for why set expected place here.
L
Leo Chen 已提交
1207
        core.set_current_thread_name("Dataloader_" + str(id(self)))
1208 1209
        _set_expected_place(legacy_expected_place)

1210 1211
        while not self._thread_done_event.is_set():
            try:
1212 1213 1214 1215
                # NOTE: [ avoid hanging ] Even with carefully designed data dependencies
                # (i.e., a put() always corresponding to a get()), hanging on get() can
                # still happen when data in queue is corrupted (e.g., due to
                # Queue.cancel_join_thread or unexpected exit). So we set a timeout whenever
1216
                # we try to get data from `data_queue`
1217 1218 1219 1220 1221 1222 1223
                # NOTE: [ avoid failed quickly ] Here, the time setting of QUEUE_GET_TIMEOUT
                # is relatively long, currently it is 60 seconds, because in some models,
                # if the reader child process starts with a heavy burden, the child process
                # has no enough time to put the data in the queue when the main process
                # start trying to get data from queue. At this time, the child thread needs
                # to wait slightly longer
                tensor_list = self._data_queue.get(timeout=QUEUE_GET_TIMEOUT)
1224
            except Exception as e:
1225 1226 1227
                # NOTE [ avoid handing ] After adding the shared memory mechanism, not only
                # the queue.Empty exception will occur here, but other exceptions will also
                # occur, such as mmap failure. If it is not handled here, it will hang.
1228
                self._exit_thread_unexpectedly()
1229 1230
                logging.error(
                    "DataLoader reader thread failed to read data from the multiprocessing.Queue."
1231
                )
1232
                raise e
1233 1234

            if not self._thread_done_event.is_set():
1235
                if tensor_list is not None:
1236 1237
                    try:
                        array = core.LoDTensorArray()
1238 1239
                        for tensor in tensor_list:
                            array.append(tensor)
1240 1241
                        if not self._blocking_queue.push(array):
                            self._blocking_queue.close()
1242
                    except Exception as e:
1243
                        self._exit_thread_unexpectedly()
1244
                        raise e
1245
                else:
1246
                    self._exit_thread_expectedly()
1247

1248
    def _reader_thread_loop_for_singleprocess(self, legacy_expected_place):
1249
        try:
1250
            # See _DataLoaderIterSingleProcess._thread_loop() for why set expected place here.
L
Leo Chen 已提交
1251
            core.set_current_thread_name("Dataloader_" + str(id(self)))
1252 1253
            _set_expected_place(legacy_expected_place)

1254 1255 1256 1257
            for sample in self._batch_reader():
                array = core.LoDTensorArray()
                for item in sample:
                    if not isinstance(item, core.LoDTensor):
1258
                        item = self._check_input_array(item)
1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269
                        tmp = core.LoDTensor()
                        tmp.set(item, core.CPUPlace())
                        item = tmp

                    array.append(item)

                if not self._blocking_queue.push(array):
                    break

            self._blocking_queue.close()
            self._thread = None
1270
        except Exception as e:
1271 1272 1273
            self._blocking_queue.kill()
            self._thread = None
            logging.warning(
1274 1275
                "DygraphDataLoader reader thread raised an exception."
            )
1276
            raise e
1277

1278 1279 1280
    def set_sample_generator(
        self, reader, batch_size, drop_last=True, places=None
    ):
1281
        assert batch_size > 0, "batch_size must be larger than 0"
1282 1283 1284 1285
        if isinstance(places, (list, tuple)):
            places = _get_paddle_place_list(places)
        else:
            places = _get_paddle_place(places)
1286 1287 1288 1289
        self.set_sample_list_generator(
            paddle.batch(reader, batch_size=batch_size, drop_last=drop_last),
            places=places,
        )
1290 1291 1292
        return self

    def set_sample_list_generator(self, reader, places=None):
1293 1294 1295 1296 1297
        if isinstance(places, (list, tuple)):
            places = _get_paddle_place_list(places)
        else:
            places = _get_paddle_place(places)

1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
        def __batch_reader_impl__():
            for batch in reader():
                slots = []
                for items in batch:
                    for i, item in enumerate(items):
                        if len(slots) < len(items):
                            slots.append([item])
                        else:
                            slots[i].append(item)
                yield slots

        self.set_batch_generator(__batch_reader_impl__, places)
        return self

    def set_batch_generator(self, reader, places=None):
1313 1314 1315 1316
        if isinstance(places, (list, tuple)):
            places = _get_paddle_place_list(places)
        else:
            places = _get_paddle_place(places)
1317
        self._batch_reader = reader
1318 1319
        if places is None:
            places = _current_expected_place()
1320
        self._places = _convert_places(places)
1321 1322 1323
        assert (
            len(self._places) == 1
        ), "Number of places must be 1 in imperative mode"
1324 1325 1326
        return self


Z
Zeng Jinle 已提交
1327
class GeneratorLoader(DataLoaderBase):
1328 1329 1330 1331 1332 1333 1334 1335 1336
    def __init__(
        self,
        feed_list=None,
        capacity=None,
        use_double_buffer=True,
        iterable=True,
        return_list=False,
        drop_last=True,
    ):
S
sneaxiy 已提交
1337
        self._tensor_reader = None
Z
Zeng Jinle 已提交
1338
        self._places = None
S
sneaxiy 已提交
1339
        self._thread = None
1340
        self._queue = None
1341
        self._feed_list = feed_list
1342 1343 1344
        self._exited = False
        self._drop_last = drop_last
        self._keep_order = keep_data_loader_order()
1345 1346
        if not capacity:
            raise ValueError("Please give value to capacity.")
1347 1348 1349
        self._iterable = iterable
        self._return_list = return_list
        if not self._feed_list:
1350
            raise Exception("Feed list must be given under static graph mode.")
S
sneaxiy 已提交
1351 1352 1353 1354
        self._use_double_buffer = use_double_buffer
        self._capacity = capacity
        if not self._iterable:
            self._init_non_iterable()
S
sneaxiy 已提交
1355

Z
Zeng Jinle 已提交
1356
    def _wait_thread_ends(self):
1357
        # Get self._thread first to prevent data race, because __thread_main__
Z
Zeng Jinle 已提交
1358 1359 1360 1361 1362 1363 1364 1365
        # would set self._thread be None at the end
        thread = self._thread
        if thread is not None and self._iterable:
            self._queue.close()
            thread.join()

    def _init_iterable(self):
        self._wait_thread_ends()
1366 1367 1368 1369 1370 1371
        self._var_names = [v.name for v in self._feed_list]
        self._shapes = [v.shape for v in self._feed_list]
        self._dtypes = [v.dtype for v in self._feed_list]
        self._need_check_feed = [
            v.desc.need_check_feed() for v in self._feed_list
        ]
1372
        self._queue = core.init_lod_tensor_blocking_queue(
1373 1374
            core.Variable(), self._capacity, self._keep_order
        )
1375
        self._reader = None
1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386
        self._reader = core.create_py_reader(
            self.queue,
            self._var_names,
            self._shapes,
            self._dtypes,
            self._need_check_feed,
            self._places,
            self._use_double_buffer,
            self._drop_last,
            False,
        )
S
sneaxiy 已提交
1387 1388 1389 1390 1391 1392 1393

    def _init_non_iterable(self):
        lod_levels = []
        dtypes = []
        shape_concat = []
        ranks = []
        shapes = []
1394
        need_check_feed = []
S
sneaxiy 已提交
1395 1396 1397 1398 1399 1400 1401

        for feed_data in self._feed_list:
            dtypes.append(feed_data.dtype)
            shape_concat.extend(feed_data.shape)
            ranks.append(len(feed_data.shape))
            shapes.append(feed_data.shape)
            lod_levels.append(feed_data.lod_level)
1402
            need_check_feed.append(int(feed_data.desc.need_check_feed()))
S
sneaxiy 已提交
1403

Z
Zeng Jinle 已提交
1404
        queue_name = data_loader_unique_name_generator(
1405 1406
            'lod_tensor_blocking_queue'
        )
Z
Zeng Jinle 已提交
1407
        reader_name = data_loader_unique_name_generator('create_py_reader')
1408
        double_buffer_name = data_loader_unique_name_generator('double_buffer')
S
sneaxiy 已提交
1409

S
sneaxiy 已提交
1410
        var = global_scope().var(queue_name)
1411
        self._queue = core.init_lod_tensor_blocking_queue(
1412 1413
            var, self._capacity, self._keep_order
        )
1414 1415 1416 1417 1418

        if self._keep_order:
            block = default_main_program().current_block()
        else:
            block = default_startup_program().current_block()
S
sneaxiy 已提交
1419

1420
        reader_var = block.create_var(name=reader_name)
S
sneaxiy 已提交
1421

1422
        dtype_int = [int(t) for t in dtypes]
1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434
        block.append_op(
            type='create_py_reader',
            inputs={'blocking_queue': [queue_name]},
            outputs={'Out': [reader_var]},
            attrs={
                'shape_concat': shape_concat,
                'lod_levels': lod_levels,
                'dtypes': dtype_int,
                'need_check_feed': need_check_feed,
                'ranks': ranks,
            },
        )
S
sneaxiy 已提交
1435

1436 1437 1438
        reader_var.desc.set_dtypes(dtypes)
        reader_var.persistable = True
        reader_var.stop_gradient = True
S
sneaxiy 已提交
1439

1440 1441 1442 1443 1444 1445
        if self._keep_order:
            main_prog_var = reader_var
            reader = main_prog_var
            reader.reset = self._queue.reset
        else:
            main_prog_var = _copy_reader_var_(
1446 1447
                default_main_program().current_block(), reader_var
            )
1448 1449 1450

            main_prog_var.stop_gradient = True
            main_prog_var.persistable = True
S
sneaxiy 已提交
1451

1452
            reader = monkey_patch_reader_methods(main_prog_var)
S
sneaxiy 已提交
1453

1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465
        if self._use_double_buffer:
            double_buffer_reader = __create_unshared_decorated_reader__(
                'create_double_buffer_reader',
                reader,
                {},
                name=double_buffer_name,
            )
            # we return a double buffer reader. However, the reset method comes from
            # py_reader.
            double_buffer_reader.reset = reader.reset
            reader = double_buffer_reader

S
sneaxiy 已提交
1466 1467 1468 1469 1470
        self._reader = reader

        default_main_program().current_block().append_op(
            type='read',
            inputs={'Reader': [self._reader]},
1471
            outputs={'Out': self._feed_list},
1472 1473
            attrs={'drop_last': self._drop_last},
        )
S
sneaxiy 已提交
1474 1475 1476 1477 1478 1479 1480 1481

    @property
    def queue(self):
        return self._queue

    @property
    def iterable(self):
        return self._iterable
S
sneaxiy 已提交
1482

Z
Zeng Jinle 已提交
1483 1484
    def __iter__(self):
        assert self.iterable, "DataLoader is not iterable"
1485 1486 1487
        assert (
            self._tensor_reader is not None
        ), "Data source of DataLoader has not set yet"
S
sneaxiy 已提交
1488

Z
Zeng Jinle 已提交
1489
        self._init_iterable()
S
sneaxiy 已提交
1490
        self._start()
Z
Zeng Jinle 已提交
1491 1492 1493 1494
        return self

    def __next__(self):
        try:
1495
            if self._return_list:
1496 1497 1498 1499
                data = self._reader.read_next_list()
                for i in range(len(data)):
                    data[i] = data[i]._move_to_list()
                return data
1500
            else:
1501
                return self._reader.read_next()
Z
Zeng Jinle 已提交
1502 1503 1504
        except StopIteration:
            self._queue.close()
            self._reset()
1505
            raise
Z
Zeng Jinle 已提交
1506 1507

    def start(self):
1508 1509 1510
        assert (
            not self._iterable
        ), "start() cannot be called when DataLoader is iterable"
1511
        self._start()
Z
Zeng Jinle 已提交
1512 1513

    def reset(self):
1514 1515 1516
        assert (
            not self._iterable
        ), "reset() cannot be called when DataLoader is iterable"
1517
        self._reset()
Z
Zeng Jinle 已提交
1518 1519

    def _start(self):
1520
        def __thread_main__(legacy_expected_place):
Z
Zeng Jinle 已提交
1521
            try:
1522
                # See _DataLoaderIterSingleProcess._thread_loop() for why set expected place here.
L
Leo Chen 已提交
1523
                core.set_current_thread_name("Dataloader_" + str(id(self)))
1524 1525
                _set_expected_place(legacy_expected_place)

1526 1527 1528 1529
                while not self._queue.wait_for_inited(1):
                    if self._exited:
                        return

Z
Zeng Jinle 已提交
1530 1531 1532 1533
                for tensors in self._tensor_reader():
                    array = core.LoDTensorArray()
                    for item in tensors:
                        if not isinstance(item, core.LoDTensor):
1534
                            item = self._check_input_array(item)
Z
Zeng Jinle 已提交
1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545
                            tmp = core.LoDTensor()
                            tmp.set(item, core.CPUPlace())
                            item = tmp

                        array.append(item)

                    if not self._queue.push(array):
                        break

                self._queue.close()
                self._thread = None
1546
            except Exception as e:
Z
Zeng Jinle 已提交
1547
                self._queue.kill()
Z
Zeng Jinle 已提交
1548
                self._thread = None
1549
                logging.warning('Your reader has raised an exception!')
1550
                raise e
Z
Zeng Jinle 已提交
1551

1552 1553 1554
        self._thread = threading.Thread(
            target=__thread_main__, args=(_current_expected_place(),)
        )
Z
Zeng Jinle 已提交
1555 1556
        self._thread.daemon = True
        self._thread.start()
S
sneaxiy 已提交
1557

S
sneaxiy 已提交
1558
    def _reset(self):
1559
        self._queue.close()
1560
        self._exited = True
Z
Zeng Jinle 已提交
1561 1562 1563 1564
        thread = self._thread
        if thread is not None:
            thread.join()

1565
        self._exited = False
1566 1567
        self._reader.reset()

1568 1569 1570
    def set_sample_generator(
        self, reader, batch_size, drop_last=True, places=None
    ):
Z
Zeng Jinle 已提交
1571
        assert batch_size > 0, "batch_size must be larger than 0"
1572 1573 1574 1575
        if isinstance(places, (list, tuple)):
            places = _get_paddle_place_list(places)
        else:
            places = _get_paddle_place(places)
1576 1577 1578 1579 1580 1581 1582
        has_lod = False
        for f in self._feed_list:
            if f.lod_level != 0:
                has_lod = True
                break

        if has_lod:
1583 1584 1585 1586 1587 1588
            self.set_sample_list_generator(
                paddle.batch(
                    reader, batch_size=batch_size, drop_last=drop_last
                ),
                places=places,
            )
1589
        else:
1590 1591 1592 1593 1594 1595 1596
            reader = BatchedTensorProvider(
                feed_list=self._feed_list,
                place=core.CPUPlace(),
                batch_size=batch_size,
                generator=reader,
                drop_last=drop_last,
            )
1597
            self.set_batch_generator(reader, places=places)
Z
Zeng Jinle 已提交
1598 1599 1600
        return self

    def set_sample_list_generator(self, reader, places=None):
1601 1602 1603 1604
        if isinstance(places, (list, tuple)):
            places = _get_paddle_place_list(places)
        else:
            places = _get_paddle_place(places)
1605
        with program_guard(Program(), Program()):
1606 1607 1608
            feeder = DataFeeder(
                feed_list=self._feed_list, place=core.CPUPlace()
            )
1609
            paddle_reader = feeder.decorate_reader(reader, multi_devices=False)
Z
Zeng Jinle 已提交
1610

1611 1612 1613
        def __tensor_reader_impl__():
            for slots in paddle_reader():
                yield [slots[var.name] for var in self._feed_list]
Z
Zeng Jinle 已提交
1614 1615 1616 1617 1618

        self.set_batch_generator(__tensor_reader_impl__, places)
        return self

    def set_batch_generator(self, reader, places=None):
1619 1620 1621 1622
        if isinstance(places, (list, tuple)):
            places = _get_paddle_place_list(places)
        else:
            places = _get_paddle_place(places)
Z
Zeng Jinle 已提交
1623 1624
        self._tensor_reader = reader
        if self._iterable:
1625 1626 1627
            assert (
                places is not None
            ), "Places cannot be None when DataLoader is iterable"
Z
Zeng Jinle 已提交
1628 1629 1630 1631
            self._places = _convert_places(places)
        else:
            if places is not None:
                logging.info(
1632 1633
                    'places would be ommited when DataLoader is not iterable'
                )
Z
Zeng Jinle 已提交
1634 1635 1636 1637
        return self


class PyReader(DataLoaderBase):
1638
    r"""
1639
    Create a reader object for data feeding in Python.
Z
Zeng Jinle 已提交
1640
    Data would be prefetched using Python thread and be pushed
1641
    into a queue asynchronously. Data in the queue would be extracted
Z
Zeng Jinle 已提交
1642 1643
    automatically when `Executor.run(...)` is called.

1644
    Args:
Z
Zeng Jinle 已提交
1645 1646 1647
        feed_list (list(Variable)|tuple(Variable)): feed variable list.
            The variables should be created by :code:`fluid.layers.data()`.
        capacity (int): capacity of the queue maintained in PyReader.
1648 1649 1650 1651 1652
            The unit is batch number. Set larger capacity if your reader
            is fast.
        use_double_buffer (bool): whether to use double_buffer_reader.
            If use_double_buffer=True, PyReader would prefetch next
            batch data asynchronously, so it would speed up data feeding
Z
Zeng Jinle 已提交
1653
            and occupies a little more CPU or GPU memory, i.e., the memory
1654 1655 1656 1657 1658 1659 1660
            of one batch input data.
        iterable (bool): whether the created PyReader is iterable.
        return_list (bool): whether the return value on each device is
            presented as a list. It is only valid when iterable=True.
            If return_list=False, the return value on each device would
            be a dict of str -> LoDTensor, where the key of the dict is
            the name of each fed variables. If return_list=True, the
Z
Zeng Jinle 已提交
1661 1662
            return value on each device would be a list(LoDTensor). It is
            recommended to use return_list=False in static graph mode and
1663
            use return_list=True in dygraph mode.
Z
Zeng Jinle 已提交
1664 1665

    Returns:
G
guofei 已提交
1666 1667 1668 1669
        the created reader object.

    Return type:
        reader(Reader)
Z
Zeng Jinle 已提交
1670 1671 1672

    Examples:
        1. If iterable = False, the created PyReader object is almost the
1673 1674
           same as :code:`fluid.layers.py_reader()`. Operators would be
           inserted into the program. User should call :code:`start()`
Z
Zeng Jinle 已提交
1675
           before each epoch and catch :code:`fluid.core.EOFException`
1676 1677
           thrown by :code:`Executor.run()` when epoch ends. Once the
           exception is caught, user should call :code:`reset()` to reset
Z
Zeng Jinle 已提交
1678 1679 1680 1681 1682 1683 1684 1685
           the reader manually.

        .. code-block:: python

           import paddle
           import paddle.fluid as fluid
           import numpy as np

1686 1687
           paddle.enable_static()

Z
Zeng Jinle 已提交
1688 1689 1690
           EPOCH_NUM = 3
           ITER_NUM = 5
           BATCH_SIZE = 3
1691

G
guofei 已提交
1692 1693
           def network(image, label):
               # User-defined network, here is an example of softmax regression.
C
Charles-hit 已提交
1694
               predict = paddle.static.nn.fc(x=image, size=10, activation='softmax')
1695 1696 1697 1698
               return paddle.nn.functional.cross_entropy(
                    input=predict, label=label,
                    reduction='none', use_softmax=False
               )
Z
Zeng Jinle 已提交
1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709

           def reader_creator_random_image_and_label(height, width):
               def reader():
                   for i in range(ITER_NUM):
                       fake_image = np.random.uniform(low=0,
                                                      high=255,
                                                      size=[height, width])
                       fake_label = np.ones([1])
                       yield fake_image, fake_label
               return reader

G
guofei 已提交
1710 1711
           image = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
           label = fluid.data(name='label', shape=[None, 1], dtype='int64')
Z
Zeng Jinle 已提交
1712 1713 1714 1715 1716 1717 1718 1719

           reader = fluid.io.PyReader(feed_list=[image, label],
                                      capacity=4,
                                      iterable=False)

           user_defined_reader = reader_creator_random_image_and_label(784, 784)
           reader.decorate_sample_list_generator(
               paddle.batch(user_defined_reader, batch_size=BATCH_SIZE))
G
guofei 已提交
1720 1721
           loss = network(image, label)
           executor = fluid.Executor(fluid.CPUPlace())
Z
Zeng Jinle 已提交
1722 1723 1724 1725 1726 1727 1728 1729 1730 1731
           executor.run(fluid.default_startup_program())
           for i in range(EPOCH_NUM):
               reader.start()
               while True:
                   try:
                       executor.run(feed=None)
                   except fluid.core.EOFException:
                       reader.reset()
                       break

1732

Z
Zeng Jinle 已提交
1733
        2. If iterable=True, the created PyReader object is decoupled with
1734 1735 1736 1737
           the program. No operator would be inserted into the program.
           In this case, the created reader is a Python generator, which
           is iterable. User should feed the data yielded from PyReader
           object into :code:`Executor.run(feed=...)`.
Z
Zeng Jinle 已提交
1738 1739 1740 1741 1742 1743 1744

        .. code-block:: python

           import paddle
           import paddle.fluid as fluid
           import numpy as np

1745 1746
           paddle.enable_static()

Z
Zeng Jinle 已提交
1747 1748 1749 1750
           EPOCH_NUM = 3
           ITER_NUM = 5
           BATCH_SIZE = 10

G
guofei 已提交
1751 1752
           def network(image, label):
               # User-defined network, here is an example of softmax regression.
C
Charles-hit 已提交
1753
               predict = paddle.static.nn.fc(x=image, size=10, activation='softmax')
1754 1755 1756 1757
               return paddle.nn.functional.cross_entropy(
                   input=predict, label=label,
                   reduction='none', use_softmax=False
               )
G
guofei 已提交
1758

Z
Zeng Jinle 已提交
1759 1760 1761
           def reader_creator_random_image(height, width):
               def reader():
                   for i in range(ITER_NUM):
G
guofei 已提交
1762 1763
                       fake_image = np.random.uniform(low=0, high=255, size=[height, width])
                       fake_label = np.ones([1])
1764
                       yield fake_image, fake_label
Z
Zeng Jinle 已提交
1765 1766
               return reader

G
guofei 已提交
1767 1768 1769
           image = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
           label = fluid.data(name='label', shape=[None, 1], dtype='int64')
           reader = fluid.io.PyReader(feed_list=[image, label], capacity=4, iterable=True, return_list=False)
Z
Zeng Jinle 已提交
1770 1771 1772 1773

           user_defined_reader = reader_creator_random_image(784, 784)
           reader.decorate_sample_list_generator(
               paddle.batch(user_defined_reader, batch_size=BATCH_SIZE),
G
guofei 已提交
1774
                   fluid.core.CPUPlace())
1775

G
guofei 已提交
1776 1777 1778
           loss = network(image, label)
           executor = fluid.Executor(fluid.CPUPlace())
           executor.run(fluid.default_startup_program())
1779

Z
Zeng Jinle 已提交
1780 1781
           for _ in range(EPOCH_NUM):
               for data in reader():
G
guofei 已提交
1782
                   executor.run(feed=data, fetch_list=[loss])
Z
Zeng Jinle 已提交
1783 1784


1785
        3. If return_list=True, the return values would be presented as list instead of dict.
Z
Zeng Jinle 已提交
1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811
           This is usually used in dygraph mode.

        .. code-block:: python

           import paddle
           import paddle.fluid as fluid
           import numpy as np

           ITER_NUM = 5
           BATCH_SIZE = 10

           def reader_creator_random_image(height, width):
               def reader():
                   for i in range(ITER_NUM):
                       yield np.random.uniform(low=0, high=255, size=[height, width]), \
                           np.random.random_integers(low=0, high=9, size=[1])
               return reader

           place = fluid.CPUPlace()
           with fluid.dygraph.guard(place):
               py_reader = fluid.io.PyReader(capacity=2, return_list=True)
               user_defined_reader = reader_creator_random_image(784, 784)
               py_reader.decorate_sample_list_generator(
                   paddle.batch(user_defined_reader, batch_size=BATCH_SIZE),
                   place)
               for image, label in py_reader():
1812
                   relu = paddle.nn.functional.relu(image)
Z
Zeng Jinle 已提交
1813 1814
    """

1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825
    def __init__(
        self,
        feed_list=None,
        capacity=None,
        use_double_buffer=True,
        iterable=True,
        return_list=False,
    ):
        self._loader = DataLoader.from_generator(
            feed_list, capacity, use_double_buffer, iterable, return_list
        )
Z
Zeng Jinle 已提交
1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839

    @property
    def queue(self):
        return self._loader.queue

    @property
    def iterable(self):
        return self._loader.iterable

    def __iter__(self):
        return self._loader.__iter__()

    def __next__(self):
        return self._loader.__next__()
S
sneaxiy 已提交
1840 1841

    def start(self):
S
add doc  
sneaxiy 已提交
1842
        '''
1843 1844 1845
        Start the data feeding thread.
        Can only call when the reader object is not iterable.

1846 1847
        Example:
            .. code-block:: python
1848

H
Huihuang Zheng 已提交
1849 1850 1851 1852
                import paddle
                import paddle.fluid as fluid
                import numpy as np

1853 1854 1855 1856 1857 1858
                BATCH_SIZE = 10

                def generator():
                    for i in range(5):
                        yield np.random.uniform(low=0, high=255, size=[784, 784]),

G
guofei 已提交
1859
                image = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
1860 1861 1862 1863
                reader = fluid.io.PyReader(feed_list=[image], capacity=4, iterable=False)
                reader.decorate_sample_list_generator(
                    paddle.batch(generator, batch_size=BATCH_SIZE))

G
guofei 已提交
1864
                executor = fluid.Executor(fluid.CPUPlace())
1865 1866 1867 1868 1869 1870 1871 1872 1873 1874
                executor.run(fluid.default_startup_program())
                for i in range(3):
                    reader.start()
                    while True:
                        try:
                            executor.run(feed=None)
                        except fluid.core.EOFException:
                            reader.reset()
                            break

1875
        '''
Z
Zeng Jinle 已提交
1876
        self._loader.start()
S
sneaxiy 已提交
1877

S
sneaxiy 已提交
1878
    def reset(self):
S
add doc  
sneaxiy 已提交
1879
        '''
1880
        Reset the reader object when :code:`fluid.core.EOFException` raises.
S
add doc  
sneaxiy 已提交
1881
        Can only call when the reader object is not iterable.
1882

1883 1884 1885
        Example:
            .. code-block:: python

H
Huihuang Zheng 已提交
1886 1887 1888 1889
                import paddle
                import paddle.fluid as fluid
                import numpy as np

1890 1891 1892 1893 1894 1895
                BATCH_SIZE = 10

                def generator():
                    for i in range(5):
                        yield np.random.uniform(low=0, high=255, size=[784, 784]),

G
guofei 已提交
1896
                image = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
1897 1898 1899 1900
                reader = fluid.io.PyReader(feed_list=[image], capacity=4, iterable=False)
                reader.decorate_sample_list_generator(
                    paddle.batch(generator, batch_size=BATCH_SIZE))

G
guofei 已提交
1901
                executor = fluid.Executor(fluid.CPUPlace())
1902 1903 1904 1905 1906 1907 1908 1909
                executor.run(fluid.default_startup_program())
                for i in range(3):
                    reader.start()
                    while True:
                        try:
                            executor.run(feed=None)
                        except fluid.core.EOFException:
                            reader.reset()
1910
                            break
1911

S
add doc  
sneaxiy 已提交
1912
        '''
Z
Zeng Jinle 已提交
1913
        self._loader.reset()
S
sneaxiy 已提交
1914

1915 1916 1917
    def decorate_sample_generator(
        self, sample_generator, batch_size, drop_last=True, places=None
    ):
S
sneaxiy 已提交
1918 1919
        '''
        Set the data source of the PyReader object.
1920

S
sneaxiy 已提交
1921
        The provided :code:`sample_generator` should be a Python generator,
1922
        which yields list(numpy.ndarray)-typed data of each sample.
S
sneaxiy 已提交
1923 1924 1925

        :code:`places` must be set when the PyReader object is iterable.

1926
        If all inputs have no lods, this method is faster than
S
sneaxiy 已提交
1927
        :code:`decorate_sample_list_generator(paddle.batch(sample_generator, ...))` .
S
sneaxiy 已提交
1928 1929 1930

        Args:
            sample_generator (generator): Python generator that yields
1931
                list(numpy.ndarray)-typed sample data.
S
sneaxiy 已提交
1932 1933
            batch_size (int): batch size. Must be larger than 0.
            drop_last (bool): Whether to drop the last batch when sample number
1934
                is less than batch_size.
S
sneaxiy 已提交
1935 1936
            places (None|list(CUDAPlace)|list(CPUPlace)): place list. Must
                be provided when PyReader is iterable.
1937 1938 1939 1940

        Example:
            .. code-block:: python

C
Charles-hit 已提交
1941
                import paddle
H
Huihuang Zheng 已提交
1942 1943 1944
                import paddle.fluid as fluid
                import numpy as np

1945 1946 1947
                EPOCH_NUM = 3
                ITER_NUM = 15
                BATCH_SIZE = 3
1948

G
guofei 已提交
1949 1950
                def network(image, label):
                    # User-defined network, here is an example of softmax regression.
C
Charles-hit 已提交
1951
                    predict = paddle.static.nn.fc(x=image, size=10, activation='softmax')
1952 1953 1954 1955
                    return paddle.nn.functional.cross_entropy(
                        input=predict, label=label,
                        reduction='none', use_softmax=False
                    )
1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966

                def random_image_and_label_generator(height, width):
                    def generator():
                        for i in range(ITER_NUM):
                            fake_image = np.random.uniform(low=0,
                                                           high=255,
                                                           size=[height, width])
                            fake_label = np.array([1])
                            yield fake_image, fake_label
                    return generator

G
guofei 已提交
1967 1968
                image = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
                label = fluid.data(name='label', shape=[None, 1], dtype='int64')
1969 1970 1971 1972 1973
                reader = fluid.io.PyReader(feed_list=[image, label], capacity=4, iterable=True)

                user_defined_generator = random_image_and_label_generator(784, 784)
                reader.decorate_sample_generator(user_defined_generator,
                                                 batch_size=BATCH_SIZE,
G
guofei 已提交
1974 1975 1976 1977
                                                 places=[fluid.CPUPlace()])
                loss = network(image, label)
                executor = fluid.Executor(fluid.CPUPlace())
                executor.run(fluid.default_startup_program())
1978 1979 1980

                for _ in range(EPOCH_NUM):
                    for data in reader():
G
guofei 已提交
1981
                        executor.run(feed=data, fetch_list=[loss])
1982

S
sneaxiy 已提交
1983
        '''
1984 1985 1986
        self._loader.set_sample_generator(
            sample_generator, batch_size, drop_last, places
        )
S
sneaxiy 已提交
1987

S
sneaxiy 已提交
1988
    def decorate_sample_list_generator(self, reader, places=None):
S
add doc  
sneaxiy 已提交
1989
        '''
1990
        Set the data source of the PyReader object.
S
add doc  
sneaxiy 已提交
1991 1992

        The provided :code:`reader` should be a Python generator,
1993 1994
        which yields list(numpy.ndarray) typed batched data.

S
add doc  
sneaxiy 已提交
1995 1996 1997
        :code:`places` must be set when the PyReader object is iterable.

        Args:
1998 1999
            reader (generator): Python generator that yields
                list(numpy.ndarray)-typed batched data.
S
sneaxiy 已提交
2000 2001
            places (None|list(CUDAPlace)|list(CPUPlace)): place list. Must
                be provided when PyReader is iterable.
2002

2003 2004 2005
        Example:
            .. code-block:: python

H
Huihuang Zheng 已提交
2006 2007 2008 2009
                import paddle
                import paddle.fluid as fluid
                import numpy as np

2010 2011
                paddle.enable_static()

2012 2013 2014 2015
                EPOCH_NUM = 3
                ITER_NUM = 15
                BATCH_SIZE = 3

G
guofei 已提交
2016 2017
                def network(image, label):
                    # User-defined network, here is an example of softmax regression.
C
Charles-hit 已提交
2018
                    predict = paddle.static.nn.fc(x=image, size=10, activation='softmax')
2019 2020 2021 2022
                    return paddle.nn.functional.cross_entropy(
                        input=predict, label=label,
                        reduction='none', use_softmax=False
                    )
G
guofei 已提交
2023

2024 2025 2026 2027 2028 2029 2030 2031 2032 2033
                def random_image_and_label_generator(height, width):
                    def generator():
                        for i in range(ITER_NUM):
                            fake_image = np.random.uniform(low=0,
                                                           high=255,
                                                           size=[height, width])
                            fake_label = np.ones([1])
                            yield fake_image, fake_label
                    return generator

G
guofei 已提交
2034 2035
                image = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
                label = fluid.data(name='label', shape=[None, 1], dtype='int64')
2036 2037 2038 2039 2040
                reader = fluid.io.PyReader(feed_list=[image, label], capacity=4, iterable=True)

                user_defined_generator = random_image_and_label_generator(784, 784)
                reader.decorate_sample_list_generator(
                    paddle.batch(user_defined_generator, batch_size=BATCH_SIZE),
G
guofei 已提交
2041
                    fluid.core.CPUPlace())
2042

G
guofei 已提交
2043 2044 2045
                loss = network(image, label)
                executor = fluid.Executor(fluid.core.CPUPlace())
                executor.run(fluid.default_startup_program())
2046 2047 2048

                for _ in range(EPOCH_NUM):
                    for data in reader():
G
guofei 已提交
2049
                        executor.run(feed=data, fetch_list=[loss])
2050

S
add doc  
sneaxiy 已提交
2051
        '''
Z
Zeng Jinle 已提交
2052
        self._loader.set_sample_list_generator(reader, places)
S
sneaxiy 已提交
2053

S
sneaxiy 已提交
2054
    def decorate_batch_generator(self, reader, places=None):
S
add doc  
sneaxiy 已提交
2055 2056 2057 2058
        '''
        Set the data source of the PyReader object.

        The provided :code:`reader` should be a Python generator,
S
sneaxiy 已提交
2059
        which yields numpy.ndarray-typed or LoDTensor-typed batched data.
S
add doc  
sneaxiy 已提交
2060 2061 2062 2063 2064 2065

        :code:`places` must be set when the PyReader object is iterable.

        Args:
            reader (generator): Python generator that yields LoDTensor-typed
                batched data.
S
sneaxiy 已提交
2066
            places (None|list(CUDAPlace)|list(CPUPlace)): place list. Must
S
sneaxiy 已提交
2067
                be provided when PyReader is iterable.
2068 2069 2070 2071

        Example:
            .. code-block:: python

2072
                import paddle
H
Huihuang Zheng 已提交
2073 2074 2075
                import paddle.fluid as fluid
                import numpy as np

2076 2077
                paddle.enable_static()

2078 2079 2080
                EPOCH_NUM = 3
                ITER_NUM = 15
                BATCH_SIZE = 3
2081

G
guofei 已提交
2082 2083
                def network(image, label):
                    # User-defined network, here is an example of softmax regression.
C
Charles-hit 已提交
2084
                    predict = paddle.static.nn.fc(x=image, size=10, activation='softmax')
2085 2086 2087 2088
                    return paddle.nn.functional.cross_entropy(
                        input=predict, label=label,
                        reduction='none', use_softmax=False
                    )
2089 2090 2091 2092 2093 2094 2095 2096

                def random_image_and_label_generator(height, width):
                    def generator():
                        for i in range(ITER_NUM):
                            batch_image = np.random.uniform(low=0,
                                                            high=255,
                                                            size=[BATCH_SIZE, height, width])
                            batch_label = np.ones([BATCH_SIZE, 1])
G
guofei 已提交
2097 2098
                            batch_image = batch_image.astype('float32')
                            batch_label = batch_label.astype('int64')
2099 2100 2101
                            yield batch_image, batch_label
                    return generator

G
guofei 已提交
2102 2103
                image = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
                label = fluid.data(name='label', shape=[None, 1], dtype='int64')
2104 2105 2106
                reader = fluid.io.PyReader(feed_list=[image, label], capacity=4, iterable=True)

                user_defined_generator = random_image_and_label_generator(784, 784)
G
guofei 已提交
2107
                reader.decorate_batch_generator(user_defined_generator, fluid.CPUPlace())
2108

G
guofei 已提交
2109 2110 2111
                loss = network(image, label)
                executor = fluid.Executor(fluid.CPUPlace())
                executor.run(fluid.default_startup_program())
2112 2113 2114

                for _ in range(EPOCH_NUM):
                    for data in reader():
G
guofei 已提交
2115
                        executor.run(feed=data, fetch_list=[loss])
2116

S
add doc  
sneaxiy 已提交
2117
        '''
Z
Zeng Jinle 已提交
2118 2119 2120 2121 2122
        self._loader.set_batch_generator(reader, places)


class DatasetLoader(DataLoaderBase):
    def __init__(self, dataset, places, drop_last):
2123 2124 2125 2126 2127
        assert isinstance(
            dataset, paddle.distributed.fleet.dataset.DatasetBase
        ), "dataset must be type of DatasetBase"
        assert (
            not _non_static_mode()
Z
Zeng Jinle 已提交
2128
        ), "DatasetLoader is not supported in dygraph mode yet"
2129 2130 2131 2132
        if isinstance(places, (list, tuple)):
            places = _get_paddle_place_list(places)
        else:
            places = _get_paddle_place(places)
Z
Zeng Jinle 已提交
2133 2134 2135

        thread_num = len(places)

2136 2137 2138 2139 2140
        assert (
            len(dataset.filelist) >= thread_num
        ), "Filelist number of dataset {} must be not less than place number {}".format(
            len(dataset.filelist), thread_num
        )
Z
Zeng Jinle 已提交
2141 2142

        if dataset.thread_num != 0 and dataset.thread_num != thread_num:
2143 2144
            logging.warn(
                'thread_num {} which is set in Dataset is ignored'.format(
2145 2146 2147
                    dataset.thread_num
                )
            )
Z
Zeng Jinle 已提交
2148

2149
        dataset._set_thread(thread_num)
Z
Zeng Jinle 已提交
2150

2151 2152 2153 2154 2155 2156
        if (
            isinstance(
                dataset, paddle.distributed.fleet.dataset.InMemoryDataset
            )
            and dataset.queue_num > thread_num
        ):
2157 2158
            logging.warn(
                "queue_num {} which is set in Dataset is ignored".format(
2159 2160 2161
                    dataset.queue_num
                )
            )
2162
            dataset._set_queue_num(thread_num)
Z
Zeng Jinle 已提交
2163 2164 2165

        self._dataset = dataset
        use_slots = [
2166 2167
            slot.name
            for slot in dataset.proto_desc.multi_slot_desc.slots
Z
Zeng Jinle 已提交
2168 2169 2170 2171
            if slot.is_used
        ]

        self._iterable_dataset = core.IterableDatasetWrapper(
2172 2173 2174 2175 2176 2177
            dataset.dataset,
            use_slots,
            _convert_places(places),
            dataset.proto_desc.batch_size,
            drop_last,
        )
Z
Zeng Jinle 已提交
2178 2179 2180 2181 2182 2183 2184 2185 2186

    def __iter__(self):
        self._dataset._finish_to_run()
        self._dataset._prepare_to_run()
        self._iterable_dataset._start()
        return self

    def __next__(self):
        return self._iterable_dataset._next()