reader.py 62.0 KB
Newer Older
S
sneaxiy 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from . import core
16
import sys
S
sneaxiy 已提交
17
import six
18
import numpy as np
S
sneaxiy 已提交
19
import threading
20
import paddle
Z
Zeng Jinle 已提交
21
from .framework import Program, Variable, program_guard, default_main_program, default_startup_program, in_dygraph_mode, cpu_places
S
sneaxiy 已提交
22
from .executor import global_scope
23
from .data_feeder import DataFeeder, BatchedTensorProvider
S
sneaxiy 已提交
24
from .layers.io import monkey_patch_reader_methods, _copy_reader_var_, double_buffer
S
sneaxiy 已提交
25
from .unique_name import UniqueNameGenerator
26
import logging
Z
Zeng Jinle 已提交
27
from .dataset import DatasetBase, InMemoryDataset
S
sneaxiy 已提交
28

29
### Dygraph DataLoader configs ###
30 31
import atexit
import os
32 33 34 35 36 37 38
import multiprocessing
import signal
# NOTE: queue has a different name in python2 and python3
if sys.version_info[0] == 2:
    import Queue as queue
else:
    import queue
39 40 41 42 43 44 45
# NOTE: [ avoid hanging & failed quickly ] These value is used in getting data from another process
QUEUE_GET_TIMEOUT = 60

# NOTE: [ mmap files clear ] If there is still data in the multiprocess queue when the main process finishes reading,
# the data in the queue needs to be popped. Then the LoDTensor read by the main process
# from the child process will automatically clear the memory-mapped file.
multiprocess_queue_set = set()
46

Z
Zeng Jinle 已提交
47 48 49
__all__ = ['PyReader', 'DataLoader']

data_loader_unique_name_generator = UniqueNameGenerator()
S
sneaxiy 已提交
50

51 52 53 54 55 56 57 58 59 60 61
KEEP_DATA_LOADER_ORDER = True


def keep_data_loader_order(*args):
    global KEEP_DATA_LOADER_ORDER
    if len(args) == 0:
        return KEEP_DATA_LOADER_ORDER
    else:
        assert len(args) == 1 and isinstance(args[0], bool)
        KEEP_DATA_LOADER_ORDER = args[0]

S
sneaxiy 已提交
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77

def _convert_places(places):
    if not isinstance(places, (list, tuple)):
        places = [places]

    ret = []
    for p in places:
        if not isinstance(p, core.Place):
            tmp = core.Place()
            tmp.set_place(p)
            p = tmp

        ret.append(p)
    return ret


78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
def _clear_multiprocess_queue_set():
    global multiprocess_queue_set
    for data_queue in multiprocess_queue_set:
        while True:
            try:
                data_queue.get_nowait()
            except queue.Empty:
                break


# NOTE: main process clear function at exit
def _cleanup():
    # NOTE: inter-process Queue shared memory objects clear function
    _clear_multiprocess_queue_set()
    # NOTE: main process memory map files clear funciton
    core._cleanup_mmap_fds()


# NOTE used for register a function to be executed at interpreter exit.
class CleanupFuncRegistrar():
    # Record the cleanup functions that have been executed
    _executed_func_set = set()
    # Record the cleanup functions that have been registered
    _registered_func_set = set()

    @classmethod
    def register(cls, function, signals=[signal.SIGTERM]):
        def _func_exectuor():
            if function not in cls._executed_func_set:
                try:
                    function()
                finally:
                    cls._executed_func_set.add(function)

        def _func_register(function):
            if not callable(function):
                raise TypeError("%s is not callable object." % (function))
            # check function object whether hash-able
            set([function])
            if function not in cls._registered_func_set:
                atexit.register(_func_exectuor)
                cls._registered_func_set.add(function)

        def _signal_handler(signum=None, frame=None):
            _func_exectuor()
            if signum is not None:
                if signum == signal.SIGINT:
                    raise KeyboardInterrupt
                sys.exit(signum)

        def _signal_register(signals):
            signals = set(signals)
            for sig in signals:
                orig_handler = signal.signal(sig, _signal_handler)
                if orig_handler not in (signal.SIG_DFL, signal.SIG_IGN):
                    if (sig == signal.SIGINT and
                            orig_handler is signal.default_int_handler):
                        continue
                    if orig_handler not in cls._registered_func_set:
                        atexit.register(orig_handler)
                        cls._registered_func_set.add(orig_handler)

        # deal with signals
        _signal_register(signals)
        # deal with function
        _func_register(function)


# NOTE: [ mmap files clear ] When the main process exits unexpectedly, the remaining
# shared memory objects in the inter-process Queue and the main process (mostly in the
# BlockingQueue) may not be completely released, resulting in the corresponding
# memory-mapped file remaining on the disk (/dev/shm), so register this function
# to clean up shared memory objects in these two queues before the python interpreter exits.
151 152 153
# NOTE: Currently multi-process DataLoader only supports Linux platform
if not (sys.platform == 'darwin' or sys.platform == 'win32'):
    CleanupFuncRegistrar.register(_cleanup)
154 155


Z
Zeng Jinle 已提交
156 157 158
class DataLoaderBase(object):
    def __init__(self):
        self._places = None
S
sneaxiy 已提交
159

Z
Zeng Jinle 已提交
160 161
    def __call__(self):
        return self
S
sneaxiy 已提交
162

Z
Zeng Jinle 已提交
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
    def next(self):
        '''
        Get the next item in the DataLoader object. This method    
        should not be called by users directly. It is used for
        implementing iterator protocol of Python 2.x inside
        PaddlePaddle framework.
        '''
        return self.__next__()

    def __iter__(self):
        raise NotImplementedError()

    def __next__(self):
        raise NotImplementedError()


class DataLoader(object):
    @staticmethod
    def from_generator(feed_list=None,
                       capacity=None,
                       use_double_buffer=True,
                       iterable=True,
185
                       return_list=False,
186 187
                       use_multiprocess=False,
                       drop_last=True):
Z
Zeng Jinle 已提交
188
        """
189 190 191
        .. note::
          **The framework ensures that the data loading order of DataLoader is exactly the same as the user-defined data source.**

Z
Zeng Jinle 已提交
192 193 194 195 196 197 198 199
        Create a DataLoader object for loading data from Python generator. 
        Data would be prefetched using Python thread and be pushed
        into a queue asynchronously.

        The created DataLoader object provides 3 methods to set the data source
        :code:`set_sample_generator` , :code:`set_sample_list_generator` and 
        :code:`set_batch_generator` . Please see the following example codes
        to know their usages.
200
        
Z
Zeng Jinle 已提交
201 202 203 204 205 206 207 208 209 210 211 212
        If iterable = True, the created DataLoader object is a Python generator
        object, which is iterable using for-range loop.

        If iterable = False, the created DataLoader object provides 
        :code:`start()` and :code:`reset()` method to control the data reading
        process. This mode is designed to be compatible with the 
        :code:`fluid.layers.py_reader` interface. Users can migrate the codes   
        from :code:`fluid.layers.py_reader` to :code:`fluid.io.DataLoader` 
        easily when using iterable=False. 

        Args:  
            feed_list (list(Variable)|tuple(Variable)): feed variable list.
213
                The variables should be created by :code:`fluid.data()`.
Z
Zeng Jinle 已提交
214 215 216 217 218 219 220 221 222 223 224 225 226
            capacity (int): capacity of the queue maintained in DataLoader.
                The unit is batch number. Set larger capacity if your reader 
                is fast. 
            use_double_buffer (bool): whether to use double_buffer_reader. 
                If use_double_buffer=True, the DataLoader would prefetch next 
                batch data asynchronously, so it would speed up data feeding 
                and occupies a little more CPU or GPU memory, i.e., the memory
                of one batch input data. 
            iterable (bool): whether the created DataLoader is iterable. 
            return_list (bool): whether the return value on each device is 
                presented as a list. It is only valid when iterable=True. 
                If return_list=False, the return value on each device would 
                be a dict of str -> LoDTensor, where the key of the dict is 
T
tianshuo78520a 已提交
227
                the name of each fed variables. If return_list=True, the 
Z
Zeng Jinle 已提交
228 229
                return value on each device would be a list(LoDTensor). It is
                recommended to use return_list=False in static graph mode and
230 231 232 233 234 235
                use return_list=True in dygraph mode.  
            use_multiprocess (bool): whether to use multi-process to speed up
                the data loading process in dygraph. Note: this parameter only
                can be used in the dygraph mode. In the static graph mode,
                whether this parameter is set or not has no effect.
                The Default value is False.
236 237 238 239 240 241 242
            drop_last (bool): whether to drop the last batches whose number is
                less than the CPU core/GPU card number. The default value is 
                True. In training phase, users should not set drop_last=False,
                because all CPU cores/GPU cards must read data from DataLoader. 
                In inference phase, users can set drop_last=False, so that the
                last batches whose number is less than the CPU core/GPU card
                number can be tested. 
Z
Zeng Jinle 已提交
243 244 245 246

        Returns:
            loader (DataLoader): the created DataLoader object.

247
        Examples 1:
Z
Zeng Jinle 已提交
248 249
            
            .. code-block:: python
S
sneaxiy 已提交
250

Z
Zeng Jinle 已提交
251 252
                import paddle.fluid as fluid
                import numpy as np
253

Z
Zeng Jinle 已提交
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
                BATCH_NUM = 10 
                BATCH_SIZE = 16
                EPOCH_NUM = 4

                CLASS_NUM = 10

                ITERABLE = True # whether the created DataLoader object is iterable
                USE_GPU = False # whether to use GPU

                DATA_FORMAT = 'batch_generator' # data format of data source user provides 

                def simple_net(image, label):
                    fc_tmp = fluid.layers.fc(image, size=CLASS_NUM)
                    cross_entropy = fluid.layers.softmax_with_cross_entropy(image, label)
                    loss = fluid.layers.reduce_mean(cross_entropy)
                    sgd = fluid.optimizer.SGD(learning_rate=1e-3)
                    sgd.minimize(loss)
                    return loss

                def get_random_images_and_labels(image_shape, label_shape):
                    image = np.random.random(size=image_shape).astype('float32')
                    label = np.random.random(size=label_shape).astype('int64')
                    return image, label

                # If the data generator yields one sample each time,
                # use DataLoader.set_sample_generator to set the data source.
                def sample_generator_creator(): 
                    def __reader__():
                        for _ in range(BATCH_NUM * BATCH_SIZE):
                            image, label = get_random_images_and_labels([784], [1])
                            yield image, label

                    return __reader__

                # If the data generator yield list of samples each time,
                # use DataLoader.set_sample_list_generator to set the data source.
                def sample_list_generator_creator():
                    def __reader__():
                        for _ in range(BATCH_NUM): 
                            sample_list = []
                            for _ in range(BATCH_SIZE):
                                image, label = get_random_images_and_labels([784], [1])
                                sample_list.append([image, label])

                            yield sample_list

                    return __reader__ 

                # If the data generator yields a batch each time, 
                # use DataLoader.set_batch_generator to set the data source.
                def batch_generator_creator():
                    def __reader__():
                        for _ in range(BATCH_NUM):
                            batch_image, batch_label = get_random_images_and_labels([BATCH_SIZE, 784], [BATCH_SIZE, 1]) 
                            yield batch_image, batch_label
H
Huihuang Zheng 已提交
309

Z
Zeng Jinle 已提交
310
                    return __reader__
311

Z
Zeng Jinle 已提交
312 313 314 315 316
                # If DataLoader is iterable, use for loop to train the network 
                def train_iterable(exe, prog, loss, loader):
                    for _ in range(EPOCH_NUM):
                        for data in loader():
                            exe.run(prog, feed=data, fetch_list=[loss])
317

Z
Zeng Jinle 已提交
318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
                # If DataLoader is not iterable, use start() and reset() method to control the process 
                def train_non_iterable(exe, prog, loss, loader):
                    for _ in range(EPOCH_NUM):
                        loader.start() # call DataLoader.start() before each epoch starts
                        try:
                            while True:
                                exe.run(prog, fetch_list=[loss])
                        except fluid.core.EOFException:
                            loader.reset() # call DataLoader.reset() after catching EOFException 

                def set_data_source(loader, places):
                    if DATA_FORMAT == 'sample_generator':
                        loader.set_sample_generator(sample_generator_creator(), batch_size=BATCH_SIZE, drop_last=True, places=places)
                    elif DATA_FORMAT == 'sample_list_generator':
                        loader.set_sample_list_generator(sample_list_generator_creator(), places=places)
                    elif DATA_FORMAT == 'batch_generator':
                        loader.set_batch_generator(batch_generator_creator(), places=places)
                    else:
                        raise ValueError('Unsupported data format')
337

338 339
                image = fluid.data(name='image', shape=[None, 784], dtype='float32')
                label = fluid.data(name='label', shape=[None, 1], dtype='int64')
340

Z
Zeng Jinle 已提交
341 342
                # Define DataLoader 
                loader = fluid.io.DataLoader.from_generator(feed_list=[image, label], capacity=16, iterable=ITERABLE)
343

Z
Zeng Jinle 已提交
344 345
                # Define network
                loss = simple_net(image, label)
S
sneaxiy 已提交
346

Z
Zeng Jinle 已提交
347 348 349 350 351 352 353 354 355
                # Set data source of DataLoader
                #
                # If DataLoader is iterable, places must be given and the number of places must be the same with device number.  
                #  - If you are using GPU, call `fluid.cuda_places()` to get all GPU places. 
                #  - If you are using CPU, call `fluid.cpu_places()` to get all CPU places. 
                # 
                # If DataLoader is not iterable, places can be None.
                places = fluid.cuda_places() if USE_GPU else fluid.cpu_places()
                set_data_source(loader, places)
S
sneaxiy 已提交
356

Z
Zeng Jinle 已提交
357 358
                exe = fluid.Executor(places[0])
                exe.run(fluid.default_startup_program())
H
Huihuang Zheng 已提交
359

Z
Zeng Jinle 已提交
360
                prog = fluid.CompiledProgram(fluid.default_main_program()).with_data_parallel(loss_name=loss.name)
361

Z
Zeng Jinle 已提交
362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
                if loader.iterable:
                    train_iterable(exe, prog, loss, loader)
                else:
                    train_non_iterable(exe, prog, loss, loader)


                '''
                Users can use return_list = True in dygraph mode. 
                '''
                with fluid.dygraph.guard(places[0]):
                    loader = fluid.io.DataLoader.from_generator(capacity=2, return_list=True)
                    set_data_source(loader, places[0]) 
                    for image, label in loader():
                        relu = fluid.layers.relu(image)
                        assert image.shape == [BATCH_SIZE, 784] 
                        assert label.shape == [BATCH_SIZE, 1]
                        assert relu.shape == [BATCH_SIZE, 784]
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421

        Examples 2:

            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np
                import os

                # We use 2 CPU cores to run inference network 
                os.environ['CPU_NUM'] = '2'

                # The data source has only 3 batches, which can not be
                # divided evenly to each CPU core
                def batch_generator():  
                    for i in range(3):
                        yield np.array([i+1]).astype('float32'), 

                x = fluid.data(name='x', shape=[None], dtype='float32')  
                y = x * x

                def run_inference(drop_last): 
                    loader = fluid.io.DataLoader.from_generator(feed_list=[x],
                            capacity=8, drop_last=drop_last)
                    loader.set_batch_generator(batch_generator, fluid.cpu_places())

                    exe = fluid.Executor(fluid.CPUPlace())
                    prog = fluid.CompiledProgram(fluid.default_main_program())
                    prog = prog.with_data_parallel()

                    result = []
                    for data in loader():
                        each_ret, = exe.run(prog, feed=data, fetch_list=[y])
                        result.extend(each_ret)
                    return result

                # Set drop_last to True, so that the last batch whose
                # number is less than CPU core number would be discarded.
                print(run_inference(drop_last=True)) # [1.0, 4.0]

                # Set drop_last to False, so that the last batch whose
                # number is less than CPU core number can be tested.
                print(run_inference(drop_last=False)) # [1.0, 4.0, 9.0]
Z
Zeng Jinle 已提交
422
        """
423 424 425 426 427 428
        if in_dygraph_mode():
            return DygraphGeneratorLoader(feed_list, capacity,
                                          use_double_buffer, iterable,
                                          return_list, use_multiprocess)
        else:
            return GeneratorLoader(feed_list, capacity, use_double_buffer,
429
                                   iterable, return_list, drop_last)
Z
Zeng Jinle 已提交
430 431 432 433 434 435

    @staticmethod
    def from_dataset(dataset, places, drop_last=True):
        """
        Create an iterable DataLoader object for loading data from Dataset.    
        Dataset is only supported in Linux system currently.
436

Z
Zeng Jinle 已提交
437 438 439 440 441 442 443
        Args:
            dataset (InMemoryDataset|QueueDataset): the dataset object.
            places (list(CUDAPlace)|list(CPUPlace)): places where the result 
                data should be converted.   
            drop_last (bool): whether to drop the last batch whose sample 
                number is less than batch size. If drop_last = True, they
                would be dropped. If drop_last = False, they would be kept. 
444

Z
Zeng Jinle 已提交
445 446 447
        Returns:
            loader (DataLoader): the created DataLoader object, which can be 
                treated as a Python generator.   
448

Z
Zeng Jinle 已提交
449 450 451
        Examples:

            .. code-block:: python
452

Z
Zeng Jinle 已提交
453
                import paddle.fluid as fluid
454

455 456
                image = fluid.data(name='image', shape=[None, 784], dtype='float32')
                label = fluid.data(name='label', shape=[None, 1], dtype='int64')
457

Z
Zeng Jinle 已提交
458 459 460 461 462
                dataset = fluid.DatasetFactory().create_dataset("QueueDataset")
                dataset.set_batch_size(32)
                dataset.set_filelist(['a.txt', 'b.txt', 'c.txt'])
                dataset.set_use_var([image, label])
                dataset.set_pipe_command('cat') 
463

Z
Zeng Jinle 已提交
464 465 466
                loader = fluid.io.DataLoader.from_dataset(dataset, fluid.cpu_places())
        """
        return DatasetLoader(dataset, places, drop_last)
S
sneaxiy 已提交
467

S
sneaxiy 已提交
468

469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
class DygraphGeneratorLoader(DataLoaderBase):
    """
    The GeneratorLoader of dygraph

    The multiprocess dygraph GeneratorLoader's most functions are different from 
    static graph GeneratorLoader, Separate implementation to keep code readable.
    """

    def __init__(self,
                 feed_list=None,
                 capacity=None,
                 use_double_buffer=True,
                 iterable=True,
                 return_list=True,
                 use_multiprocess=False):
        self._batch_reader = None
        self._places = None
        self._feed_list = feed_list

        if not capacity:
            raise ValueError("Please give value to capacity.")
        self._capacity = capacity
        self._use_double_buffer = use_double_buffer

        if not iterable:
            logging.warning(
                "Please NOTE: dygraph can support iterable mode only. Change to iterable mode."
            )
        self._iterable = True
        if not return_list:
            logging.warning(
                "Please NOTE: dygraph can support return as list only. Change to return as list."
            )
        self._return_list = True

        # NOTE: the multiprocessing in different platform is incompatible, we will solve it later
        self._use_multiprocess = use_multiprocess
        if self._use_multiprocess and (sys.platform == 'darwin' or
                                       sys.platform == 'win32'):
            logging.warning(
                "NOTE: The multiprocess mode does not currently support MacOs and Windows."
            )
            self._use_multiprocess = False

        if self._use_multiprocess:
            # NOTE: the multiprocessing.Queue used to save loading data in self._process
            self._data_queue = None
            # NOTE: this process is used to load data asynchronously from self._batch_reader
            self._process = None

        # NOTE: the C++ LoDTensorBlockingQueue instance
        self._blocking_queue = None
        # NOTE: 1. In multiprocess mode, this thread is used to get next batch data from
        # self._data_queue, then push it into self._blocking_queue; 2. In singleprocess
        # mode, this thread is used to get next batch data from self._batch_reader, then 
        # push it into self._blocking_queue
        self._thread = None

    @property
    def queue(self):
        return self._blocking_queue

    @property
    def iterable(self):
        return self._iterable

535 536 537 538 539 540 541 542 543 544
    def _clear_and_remove_data_queue(self):
        if self._data_queue is not None:
            while True:
                try:
                    self._data_queue.get_nowait()
                except queue.Empty:
                    break
            global multiprocess_queue_set
            multiprocess_queue_set.remove(self._data_queue)

545 546 547 548 549 550 551 552 553 554 555 556 557
    def _wait_thread_ends(self):
        thread = self._thread
        if thread is not None:
            self._blocking_queue.close()
            thread.join()

    def _wait_process_ends(self):
        process = self._process
        if process is not None:
            process.join()
            # erase process id
            core._erase_process_pid(id(self))

558 559 560 561 562 563 564 565 566 567 568 569 570 571 572
    def _set_child_signal_handler(self):
        core._set_process_pid(id(self), self._process.pid)
        current_handler = signal.getsignal(signal.SIGCHLD)
        if not callable(current_handler):
            current_handler = None

        def __handler__(signum, frame):
            # NOTE: Here the signum is SIGDHLD, when the child process exits, this handler
            # will be called whenever the child process exits normally or abnormally.
            core._throw_error_if_process_failed()
            if current_handler is not None:
                current_handler(signum, frame)

        signal.signal(signal.SIGCHLD, __handler__)

573 574 575 576 577 578 579 580 581
    def _init_iterable(self):
        self._wait_thread_ends()
        if self._use_multiprocess:
            self._wait_process_ends()
        self._var_names = []
        self._shapes = []
        self._dtypes = []
        self._need_check_feed = []
        self._blocking_queue = core.init_lod_tensor_blocking_queue(
582
            core.Variable(), self._capacity, False)
583
        self._reader = None
584 585
        self._reader = core.create_py_reader(
            self.queue, self._var_names, self._shapes, self._dtypes,
586
            self._need_check_feed, self._places, self._use_double_buffer, True)
587 588 589

    def _start(self):
        if self._use_multiprocess:
590 591 592
            # clear old _data_queue and remove it from multiprocess_queue_set
            self._clear_and_remove_data_queue()
            # set data_queue and process
593
            self._data_queue = multiprocessing.Queue(self._capacity)
594 595 596
            # add _data_queue into global queue set
            global multiprocess_queue_set
            multiprocess_queue_set.add(self._data_queue)
597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
            self._process = multiprocessing.Process(
                target=self._reader_process_loop)
            self._process.daemon = True
            self._process.start()

            # Set child process signal handler
            # NOTE: [ avoiding hang ] 1. if the child process dies due to bus error/segfault
            # or just hang, the main process will hang waiting for data, so here need to deal 
            # with SIGSEGV and SIGBUS of child process; 2. if the main process end before child
            # process, it shuts the all its daemonic children down with a SIGTERM (instead of 
            # joining them without a timeout), so here nedd to deal with SIGTERM.
            self._set_child_signal_handler()

            # Set reader_thread
            self._thread_done_event = threading.Event()
            self._thread = threading.Thread(
613
                target=self._reader_thread_loop_for_multiprocess)
614 615 616
            self._thread.daemon = True
            self._thread.start()
        else:
617 618
            self._thread = threading.Thread(
                target=self._reader_thread_loop_for_singleprocess)
619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654
            self._thread.daemon = True
            self._thread.start()

    def _reset(self):
        self._reader.reset()
        self._wait_thread_ends()
        if self._use_multiprocess:
            self._wait_process_ends()

    def __iter__(self):
        assert self.iterable, "DataLoader is not iterable"
        assert self._batch_reader is not None, \
            "Data source of DataLoader has not set yet"

        self._init_iterable()
        self._start()
        return self

    def __next__(self):
        try:
            return self._reader.read_next_var_list()
        except StopIteration:
            self._reset()
            six.reraise(*sys.exc_info())

    @classmethod
    def _check_input_array(cls, item):
        arr = np.array(item)
        if arr.dtype == np.object:
            raise TypeError(
                "\n\tFaild to convert input data to a regular ndarray :\n\t* Usually "
                "this means the input data contains nested lists with different lengths. "
                "\n\t* Check the reader function passed to 'decorate_batch_generator'"
                " to locate the data causes this issue.\n\t* Please consider using "
                "'fluid.create_lod_tensor' to convert it to a LoD-Tensor.")

655 656 657 658 659 660 661 662 663
    def _exit_thread_expectedly(self):
        self._thread_done_event.set()
        self._blocking_queue.close()

    def _exit_thread_unexpectedly(self):
        self._thread_done_event.set()
        self._blocking_queue.kill()
        logging.error("DataLoader reader thread raised an exception!")

664 665 666 667 668
    def _reader_process_loop(self):
        try:
            # set signal handler
            core._set_process_signal_handler()

669 670 671 672 673 674 675 676 677 678 679 680 681 682 683
            # child process clear function at exit
            def _cleanup():
                # clear memory map files in child process
                core._cleanup_mmap_fds()

            # NOTE: [ mmap files clear ] When the child process exits unexpectedly,
            # some shared memory objects may have been applied for but have not yet
            # been put into the inter-process Queue. This part of the object needs
            # to be cleaned up when the process ends.
            CleanupFuncRegistrar.register(_cleanup)

            for batch in self._batch_reader():
                tensor_list = core._convert_to_tensor_list(batch)
                self._data_queue.put(tensor_list)
                core._remove_tensor_list_mmap_fds(tensor_list)
684 685 686 687 688 689 690
            self._data_queue.put(None)
        except KeyboardInterrupt:
            # NOTE: Main process will raise KeyboardInterrupt anyways, ignore it in child process
            pass
        except:
            six.reraise(*sys.exc_info())

691
    def _reader_thread_loop_for_multiprocess(self):
692 693 694 695 696 697 698
        while not self._thread_done_event.is_set():
            try:
                # NOTE: [ avoid hanging ] Even with carefully designed data dependencies 
                # (i.e., a put() always corresponding to a get()), hanging on get() can 
                # still happen when data in queue is corrupted (e.g., due to 
                # Queue.cancel_join_thread or unexpected exit). So we set a timeout whenever 
                # we try to get data from `data_queue`
699 700 701 702 703 704 705
                # NOTE: [ avoid failed quickly ] Here, the time setting of QUEUE_GET_TIMEOUT
                # is relatively long, currently it is 60 seconds, because in some models,
                # if the reader child process starts with a heavy burden, the child process
                # has no enough time to put the data in the queue when the main process
                # start trying to get data from queue. At this time, the child thread needs
                # to wait slightly longer
                tensor_list = self._data_queue.get(timeout=QUEUE_GET_TIMEOUT)
706 707 708 709
            except:
                # NOTE [ avoid handing ] After adding the shared memory mechanism, not only
                # the queue.Empty exception will occur here, but other exceptions will also
                # occur, such as mmap failure. If it is not handled here, it will hang.
710
                self._exit_thread_unexpectedly()
711 712
                logging.error(
                    "DataLoader reader thread failed to read data from the multiprocessing.Queue."
713
                )
714
                six.reraise(*sys.exc_info())
715 716

            if not self._thread_done_event.is_set():
717
                if tensor_list is not None:
718 719
                    try:
                        array = core.LoDTensorArray()
720 721
                        for tensor in tensor_list:
                            array.append(tensor)
722 723 724
                        if not self._blocking_queue.push(array):
                            self._blocking_queue.close()
                    except:
725
                        self._exit_thread_unexpectedly()
726 727
                        six.reraise(*sys.exc_info())
                else:
728
                    self._exit_thread_expectedly()
729

730
    def _reader_thread_loop_for_singleprocess(self):
731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790
        try:
            for sample in self._batch_reader():
                array = core.LoDTensorArray()
                for item in sample:
                    if not isinstance(item, core.LoDTensor):
                        self._check_input_array(item)
                        tmp = core.LoDTensor()
                        tmp.set(item, core.CPUPlace())
                        item = tmp

                    array.append(item)

                if not self._blocking_queue.push(array):
                    break

            self._blocking_queue.close()
            self._thread = None
        except Exception:
            self._blocking_queue.kill()
            self._thread = None
            logging.warning(
                "DygraphDataLoader reader thread raised an exception.")
            six.reraise(*sys.exc_info())

    def set_sample_generator(self,
                             reader,
                             batch_size,
                             drop_last=True,
                             places=None):
        assert batch_size > 0, "batch_size must be larger than 0"
        self.set_sample_list_generator(
            paddle.batch(
                reader, batch_size=batch_size, drop_last=drop_last),
            places=places)
        return self

    def set_sample_list_generator(self, reader, places=None):
        def __batch_reader_impl__():
            for batch in reader():
                slots = []
                for items in batch:
                    for i, item in enumerate(items):
                        if len(slots) < len(items):
                            slots.append([item])
                        else:
                            slots[i].append(item)
                yield slots

        self.set_batch_generator(__batch_reader_impl__, places)
        return self

    def set_batch_generator(self, reader, places=None):
        self._batch_reader = reader
        assert places is not None, "Places cannot be None when DataLoader is iterable"
        self._places = _convert_places(places)
        assert len(self._places) == 1, \
            "Number of places must be 1 in dygraph mode"
        return self


Z
Zeng Jinle 已提交
791
class GeneratorLoader(DataLoaderBase):
S
sneaxiy 已提交
792
    def __init__(self,
793 794
                 feed_list=None,
                 capacity=None,
S
sneaxiy 已提交
795
                 use_double_buffer=True,
796
                 iterable=True,
797 798
                 return_list=False,
                 drop_last=True):
S
sneaxiy 已提交
799
        self._tensor_reader = None
Z
Zeng Jinle 已提交
800
        self._places = None
S
sneaxiy 已提交
801
        self._thread = None
802
        self._queue = None
803
        self._feed_list = feed_list
804 805 806
        self._exited = False
        self._drop_last = drop_last
        self._keep_order = keep_data_loader_order()
807 808
        if not capacity:
            raise ValueError("Please give value to capacity.")
809 810 811 812
        self._iterable = iterable
        self._return_list = return_list
        if not self._feed_list:
            raise Exception("Feed list must be given under static mode.")
S
sneaxiy 已提交
813 814 815 816
        self._use_double_buffer = use_double_buffer
        self._capacity = capacity
        if not self._iterable:
            self._init_non_iterable()
S
sneaxiy 已提交
817

Z
Zeng Jinle 已提交
818
    def _wait_thread_ends(self):
819
        # Get self._thread first to prevent data race, because __thread_main__
Z
Zeng Jinle 已提交
820 821 822 823 824 825 826 827
        # would set self._thread be None at the end
        thread = self._thread
        if thread is not None and self._iterable:
            self._queue.close()
            thread.join()

    def _init_iterable(self):
        self._wait_thread_ends()
828 829 830 831 832 833
        self._var_names = [v.name for v in self._feed_list]
        self._shapes = [v.shape for v in self._feed_list]
        self._dtypes = [v.dtype for v in self._feed_list]
        self._need_check_feed = [
            v.desc.need_check_feed() for v in self._feed_list
        ]
834 835
        self._queue = core.init_lod_tensor_blocking_queue(
            core.Variable(), self._capacity, self._keep_order)
836
        self._reader = None
S
sneaxiy 已提交
837
        self._reader = core.create_py_reader(
838
            self.queue, self._var_names, self._shapes, self._dtypes,
839 840
            self._need_check_feed, self._places, self._use_double_buffer,
            self._drop_last)
S
sneaxiy 已提交
841 842 843 844 845 846 847

    def _init_non_iterable(self):
        lod_levels = []
        dtypes = []
        shape_concat = []
        ranks = []
        shapes = []
848
        need_check_feed = []
S
sneaxiy 已提交
849 850 851 852 853 854 855

        for feed_data in self._feed_list:
            dtypes.append(feed_data.dtype)
            shape_concat.extend(feed_data.shape)
            ranks.append(len(feed_data.shape))
            shapes.append(feed_data.shape)
            lod_levels.append(feed_data.lod_level)
856
            need_check_feed.append(int(feed_data.desc.need_check_feed()))
S
sneaxiy 已提交
857

Z
Zeng Jinle 已提交
858 859 860 861
        queue_name = data_loader_unique_name_generator(
            'lod_tensor_blocking_queue')
        reader_name = data_loader_unique_name_generator('create_py_reader')
        double_buffer_name = data_loader_unique_name_generator('double_buffer')
S
sneaxiy 已提交
862

S
sneaxiy 已提交
863
        var = global_scope().var(queue_name)
864 865 866 867 868 869 870
        self._queue = core.init_lod_tensor_blocking_queue(var, self._capacity,
                                                          self._keep_order)

        if self._keep_order:
            block = default_main_program().current_block()
        else:
            block = default_startup_program().current_block()
S
sneaxiy 已提交
871

872
        reader_var = block.create_var(name=reader_name)
S
sneaxiy 已提交
873

874
        dtype_int = [int(t) for t in dtypes]
875
        block.append_op(
S
sneaxiy 已提交
876 877
            type='create_py_reader',
            inputs={'blocking_queue': [queue_name]},
878
            outputs={'Out': [reader_var]},
S
sneaxiy 已提交
879 880 881
            attrs={
                'shape_concat': shape_concat,
                'lod_levels': lod_levels,
882 883
                'dtypes': dtype_int,
                'need_check_feed': need_check_feed,
S
sneaxiy 已提交
884 885 886
                'ranks': ranks
            })

887 888 889
        reader_var.desc.set_dtypes(dtypes)
        reader_var.persistable = True
        reader_var.stop_gradient = True
S
sneaxiy 已提交
890

891 892 893 894 895 896 897 898 899 900
        if self._keep_order:
            main_prog_var = reader_var
            reader = main_prog_var
            reader.reset = self._queue.reset
        else:
            main_prog_var = _copy_reader_var_(
                default_main_program().current_block(), reader_var)

            main_prog_var.stop_gradient = True
            main_prog_var.persistable = True
S
sneaxiy 已提交
901

902
            reader = monkey_patch_reader_methods(main_prog_var)
S
sneaxiy 已提交
903 904 905 906 907 908 909 910 911 912 913 914 915 916

        if self._use_double_buffer:
            double_buffer_reader = double_buffer(
                reader, name=double_buffer_name)
            # we return a double buffer reader. However, the reset method comes from
            # py_reader.
            double_buffer_reader.reset = reader.reset
            reader = double_buffer_reader

        self._reader = reader

        default_main_program().current_block().append_op(
            type='read',
            inputs={'Reader': [self._reader]},
917 918
            outputs={'Out': self._feed_list},
            attrs={'drop_last': self._drop_last})
S
sneaxiy 已提交
919 920 921 922 923 924 925 926

    @property
    def queue(self):
        return self._queue

    @property
    def iterable(self):
        return self._iterable
S
sneaxiy 已提交
927

Z
Zeng Jinle 已提交
928 929
    def __iter__(self):
        assert self.iterable, "DataLoader is not iterable"
S
sneaxiy 已提交
930
        assert self._tensor_reader is not None, \
Z
Zeng Jinle 已提交
931
            "Data source of DataLoader has not set yet"
S
sneaxiy 已提交
932

Z
Zeng Jinle 已提交
933
        self._init_iterable()
S
sneaxiy 已提交
934
        self._start()
Z
Zeng Jinle 已提交
935 936 937 938
        return self

    def __next__(self):
        try:
939 940
            if self._return_list:
                return self._reader.read_next_list()
941
            else:
942
                return self._reader.read_next()
Z
Zeng Jinle 已提交
943 944 945 946 947 948
        except StopIteration:
            self._queue.close()
            self._reset()
            six.reraise(*sys.exc_info())

    def start(self):
949 950
        assert not self._iterable, "start() cannot be called when DataLoader is iterable"
        self._start()
Z
Zeng Jinle 已提交
951 952

    def reset(self):
953 954
        assert not self._iterable, "reset() cannot be called when DataLoader is iterable"
        self._reset()
Z
Zeng Jinle 已提交
955

956 957 958 959 960 961 962 963 964 965 966
    @classmethod
    def _check_input_array(cls, item):
        arr = np.array(item)
        if arr.dtype == np.object:
            raise TypeError((
                "\n\tFaild to convert input data to a regular ndarray :\n\t* Usually "
                "this means the input data contains nested lists with different lengths. "
                "\n\t* Check the reader function passed to 'decorate_batch_generator'"
                " to locate the data causes this issue.\n\t* Please consider using "
                "'fluid.create_lod_tensor' to convert it to a LoD-Tensor."))

967 968
        return arr

Z
Zeng Jinle 已提交
969 970 971
    def _start(self):
        def __thread_main__():
            try:
972 973 974 975
                while not self._queue.wait_for_inited(1):
                    if self._exited:
                        return

Z
Zeng Jinle 已提交
976 977 978 979
                for tensors in self._tensor_reader():
                    array = core.LoDTensorArray()
                    for item in tensors:
                        if not isinstance(item, core.LoDTensor):
980
                            item = self._check_input_array(item)
Z
Zeng Jinle 已提交
981 982 983 984 985 986 987 988 989 990 991 992
                            tmp = core.LoDTensor()
                            tmp.set(item, core.CPUPlace())
                            item = tmp

                        array.append(item)

                    if not self._queue.push(array):
                        break

                self._queue.close()
                self._thread = None
            except Exception as ex:
Z
Zeng Jinle 已提交
993
                self._queue.kill()
Z
Zeng Jinle 已提交
994 995 996 997 998 999 1000
                self._thread = None
                logging.warn('Your reader has raised an exception!')
                six.reraise(*sys.exc_info())

        self._thread = threading.Thread(target=__thread_main__)
        self._thread.daemon = True
        self._thread.start()
S
sneaxiy 已提交
1001

S
sneaxiy 已提交
1002
    def _reset(self):
1003
        self._queue.close()
1004
        self._exited = True
Z
Zeng Jinle 已提交
1005 1006 1007 1008
        thread = self._thread
        if thread is not None:
            thread.join()

1009
        self._exited = False
1010 1011
        self._reader.reset()

Z
Zeng Jinle 已提交
1012 1013 1014 1015 1016 1017
    def set_sample_generator(self,
                             reader,
                             batch_size,
                             drop_last=True,
                             places=None):
        assert batch_size > 0, "batch_size must be larger than 0"
1018 1019 1020 1021 1022 1023 1024
        has_lod = False
        for f in self._feed_list:
            if f.lod_level != 0:
                has_lod = True
                break

        if has_lod:
1025 1026 1027 1028 1029
            self.set_sample_list_generator(
                paddle.batch(
                    reader, batch_size=batch_size, drop_last=drop_last),
                places=places)
        else:
1030 1031 1032 1033 1034 1035 1036
            reader = BatchedTensorProvider(
                feed_list=self._feed_list,
                place=core.CPUPlace(),
                batch_size=batch_size,
                generator=reader,
                drop_last=drop_last)
            self.set_batch_generator(reader, places=places)
Z
Zeng Jinle 已提交
1037 1038 1039
        return self

    def set_sample_list_generator(self, reader, places=None):
1040 1041 1042 1043
        with program_guard(Program(), Program()):
            feeder = DataFeeder(
                feed_list=self._feed_list, place=core.CPUPlace())
            paddle_reader = feeder.decorate_reader(reader, multi_devices=False)
Z
Zeng Jinle 已提交
1044

1045 1046 1047
        def __tensor_reader_impl__():
            for slots in paddle_reader():
                yield [slots[var.name] for var in self._feed_list]
Z
Zeng Jinle 已提交
1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086

        self.set_batch_generator(__tensor_reader_impl__, places)
        return self

    def set_batch_generator(self, reader, places=None):
        self._tensor_reader = reader
        if self._iterable:
            assert places is not None, "Places cannot be None when DataLoader is iterable"
            self._places = _convert_places(places)
        else:
            if places is not None:
                logging.info(
                    'places would be ommited when DataLoader is not iterable')
        return self


class PyReader(DataLoaderBase):
    """
    Create a reader object for data feeding in Python. 
    Data would be prefetched using Python thread and be pushed
    into a queue asynchronously. Data in the queue would be extracted 
    automatically when `Executor.run(...)` is called.

    Args:  
        feed_list (list(Variable)|tuple(Variable)): feed variable list.
            The variables should be created by :code:`fluid.layers.data()`.
        capacity (int): capacity of the queue maintained in PyReader.
            The unit is batch number. Set larger capacity if your reader 
            is fast. 
        use_double_buffer (bool): whether to use double_buffer_reader. 
            If use_double_buffer=True, PyReader would prefetch next 
            batch data asynchronously, so it would speed up data feeding 
            and occupies a little more CPU or GPU memory, i.e., the memory
            of one batch input data. 
        iterable (bool): whether the created PyReader is iterable. 
        return_list (bool): whether the return value on each device is 
            presented as a list. It is only valid when iterable=True. 
            If return_list=False, the return value on each device would 
            be a dict of str -> LoDTensor, where the key of the dict is 
T
tianshuo78520a 已提交
1087
            the name of each fed variables. If return_list=True, the 
Z
Zeng Jinle 已提交
1088 1089 1090 1091 1092
            return value on each device would be a list(LoDTensor). It is
            recommended to use return_list=False in static graph mode and
            use return_list=True in dygraph mode. 

    Returns:
G
guofei 已提交
1093 1094 1095 1096
        the created reader object.

    Return type:
        reader(Reader)
Z
Zeng Jinle 已提交
1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115

    Examples:
        1. If iterable = False, the created PyReader object is almost the
           same as :code:`fluid.layers.py_reader()`. Operators would be 
           inserted into the program. User should call :code:`start()` 
           before each epoch and catch :code:`fluid.core.EOFException`
           thrown by :code:`Executor.run()` when epoch ends. Once the 
           exception is caught, user should call :code:`reset()` to reset 
           the reader manually.

        .. code-block:: python

           import paddle
           import paddle.fluid as fluid
           import numpy as np

           EPOCH_NUM = 3
           ITER_NUM = 5
           BATCH_SIZE = 3
G
guofei 已提交
1116 1117 1118 1119 1120
           
           def network(image, label):
               # User-defined network, here is an example of softmax regression.
               predict = fluid.layers.fc(input=image, size=10, act='softmax')           
               return fluid.layers.cross_entropy(input=predict, label=label)
Z
Zeng Jinle 已提交
1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131

           def reader_creator_random_image_and_label(height, width):
               def reader():
                   for i in range(ITER_NUM):
                       fake_image = np.random.uniform(low=0,
                                                      high=255,
                                                      size=[height, width])
                       fake_label = np.ones([1])
                       yield fake_image, fake_label
               return reader

G
guofei 已提交
1132 1133
           image = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
           label = fluid.data(name='label', shape=[None, 1], dtype='int64')
Z
Zeng Jinle 已提交
1134 1135 1136 1137 1138 1139 1140 1141

           reader = fluid.io.PyReader(feed_list=[image, label],
                                      capacity=4,
                                      iterable=False)

           user_defined_reader = reader_creator_random_image_and_label(784, 784)
           reader.decorate_sample_list_generator(
               paddle.batch(user_defined_reader, batch_size=BATCH_SIZE))
G
guofei 已提交
1142 1143
           loss = network(image, label)
           executor = fluid.Executor(fluid.CPUPlace())
Z
Zeng Jinle 已提交
1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
           executor.run(fluid.default_startup_program())
           for i in range(EPOCH_NUM):
               reader.start()
               while True:
                   try:
                       executor.run(feed=None)
                   except fluid.core.EOFException:
                       reader.reset()
                       break

 
        2. If iterable=True, the created PyReader object is decoupled with
           the program. No operator would be inserted into the program. 
           In this case, the created reader is a Python generator, which 
           is iterable. User should feed the data yielded from PyReader 
           object into :code:`Executor.run(feed=...)`.  

        .. code-block:: python

           import paddle
           import paddle.fluid as fluid
           import numpy as np

           EPOCH_NUM = 3
           ITER_NUM = 5
           BATCH_SIZE = 10

G
guofei 已提交
1171 1172 1173 1174 1175
           def network(image, label):
               # User-defined network, here is an example of softmax regression.
               predict = fluid.layers.fc(input=image, size=10, act='softmax')           
               return fluid.layers.cross_entropy(input=predict, label=label)

Z
Zeng Jinle 已提交
1176 1177 1178
           def reader_creator_random_image(height, width):
               def reader():
                   for i in range(ITER_NUM):
G
guofei 已提交
1179 1180 1181
                       fake_image = np.random.uniform(low=0, high=255, size=[height, width])
                       fake_label = np.ones([1])
                       yield fake_image, fake_label 
Z
Zeng Jinle 已提交
1182 1183
               return reader

G
guofei 已提交
1184 1185 1186
           image = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
           label = fluid.data(name='label', shape=[None, 1], dtype='int64')
           reader = fluid.io.PyReader(feed_list=[image, label], capacity=4, iterable=True, return_list=False)
Z
Zeng Jinle 已提交
1187 1188 1189 1190

           user_defined_reader = reader_creator_random_image(784, 784)
           reader.decorate_sample_list_generator(
               paddle.batch(user_defined_reader, batch_size=BATCH_SIZE),
G
guofei 已提交
1191 1192 1193 1194 1195 1196
                   fluid.core.CPUPlace())
           
           loss = network(image, label)
           executor = fluid.Executor(fluid.CPUPlace())
           executor.run(fluid.default_startup_program())
           
Z
Zeng Jinle 已提交
1197 1198
           for _ in range(EPOCH_NUM):
               for data in reader():
G
guofei 已提交
1199
                   executor.run(feed=data, fetch_list=[loss])
Z
Zeng Jinle 已提交
1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253


        3. If return_list=True, the return values would be presented as list instead of dict. 
           This is usually used in dygraph mode.

        .. code-block:: python

           import paddle
           import paddle.fluid as fluid
           import numpy as np

           ITER_NUM = 5
           BATCH_SIZE = 10

           def reader_creator_random_image(height, width):
               def reader():
                   for i in range(ITER_NUM):
                       yield np.random.uniform(low=0, high=255, size=[height, width]), \
                           np.random.random_integers(low=0, high=9, size=[1])
               return reader

           place = fluid.CPUPlace()
           with fluid.dygraph.guard(place):
               py_reader = fluid.io.PyReader(capacity=2, return_list=True)
               user_defined_reader = reader_creator_random_image(784, 784)
               py_reader.decorate_sample_list_generator(
                   paddle.batch(user_defined_reader, batch_size=BATCH_SIZE),
                   place)
               for image, label in py_reader():
                   relu = fluid.layers.relu(image)
    """

    def __init__(self,
                 feed_list=None,
                 capacity=None,
                 use_double_buffer=True,
                 iterable=True,
                 return_list=False):
        self._loader = DataLoader.from_generator(
            feed_list, capacity, use_double_buffer, iterable, return_list)

    @property
    def queue(self):
        return self._loader.queue

    @property
    def iterable(self):
        return self._loader.iterable

    def __iter__(self):
        return self._loader.__iter__()

    def __next__(self):
        return self._loader.__next__()
S
sneaxiy 已提交
1254 1255

    def start(self):
S
add doc  
sneaxiy 已提交
1256 1257 1258
        '''
        Start the data feeding thread. 
        Can only call when the reader object is not iterable.  
1259
        
G
guofei 已提交
1260 1261
	Example:
	    .. code-block:: python
Z
Zeng Jinle 已提交
1262
    
H
Huihuang Zheng 已提交
1263 1264 1265 1266
                import paddle
                import paddle.fluid as fluid
                import numpy as np

1267 1268 1269 1270 1271 1272
                BATCH_SIZE = 10

                def generator():
                    for i in range(5):
                        yield np.random.uniform(low=0, high=255, size=[784, 784]),

G
guofei 已提交
1273
                image = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
1274 1275 1276 1277
                reader = fluid.io.PyReader(feed_list=[image], capacity=4, iterable=False)
                reader.decorate_sample_list_generator(
                    paddle.batch(generator, batch_size=BATCH_SIZE))

G
guofei 已提交
1278
                executor = fluid.Executor(fluid.CPUPlace())
1279 1280 1281 1282 1283 1284 1285 1286 1287 1288
                executor.run(fluid.default_startup_program())
                for i in range(3):
                    reader.start()
                    while True:
                        try:
                            executor.run(feed=None)
                        except fluid.core.EOFException:
                            reader.reset()
                            break

Z
Zeng Jinle 已提交
1289 1290
	    '''
        self._loader.start()
S
sneaxiy 已提交
1291

S
sneaxiy 已提交
1292
    def reset(self):
S
add doc  
sneaxiy 已提交
1293 1294 1295
        '''
        Reset the reader object when :code:`fluid.core.EOFException` raises. 
        Can only call when the reader object is not iterable.
1296 1297 1298 1299
        
        Example:
            .. code-block:: python

H
Huihuang Zheng 已提交
1300 1301 1302 1303
                import paddle
                import paddle.fluid as fluid
                import numpy as np

1304 1305 1306 1307 1308 1309
                BATCH_SIZE = 10

                def generator():
                    for i in range(5):
                        yield np.random.uniform(low=0, high=255, size=[784, 784]),

G
guofei 已提交
1310
                image = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
1311 1312 1313 1314
                reader = fluid.io.PyReader(feed_list=[image], capacity=4, iterable=False)
                reader.decorate_sample_list_generator(
                    paddle.batch(generator, batch_size=BATCH_SIZE))

G
guofei 已提交
1315
                executor = fluid.Executor(fluid.CPUPlace())
1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
                executor.run(fluid.default_startup_program())
                for i in range(3):
                    reader.start()
                    while True:
                        try:
                            executor.run(feed=None)
                        except fluid.core.EOFException:
                            reader.reset()
                            break        

S
add doc  
sneaxiy 已提交
1326
        '''
Z
Zeng Jinle 已提交
1327
        self._loader.reset()
S
sneaxiy 已提交
1328

S
sneaxiy 已提交
1329 1330 1331 1332 1333 1334 1335 1336 1337
    def decorate_sample_generator(self,
                                  sample_generator,
                                  batch_size,
                                  drop_last=True,
                                  places=None):
        '''
        Set the data source of the PyReader object.
        
        The provided :code:`sample_generator` should be a Python generator,
1338
        which yields list(numpy.ndarray)-typed data of each sample.
S
sneaxiy 已提交
1339 1340 1341 1342

        :code:`places` must be set when the PyReader object is iterable.

        If all inputs have no lods, this method is faster than 
S
sneaxiy 已提交
1343
        :code:`decorate_sample_list_generator(paddle.batch(sample_generator, ...))` .
S
sneaxiy 已提交
1344 1345 1346

        Args:
            sample_generator (generator): Python generator that yields
1347
                list(numpy.ndarray)-typed sample data.
S
sneaxiy 已提交
1348 1349 1350 1351 1352
            batch_size (int): batch size. Must be larger than 0.
            drop_last (bool): Whether to drop the last batch when sample number
                is less than batch_size. 
            places (None|list(CUDAPlace)|list(CPUPlace)): place list. Must
                be provided when PyReader is iterable.
1353 1354 1355 1356

        Example:
            .. code-block:: python

H
Huihuang Zheng 已提交
1357 1358 1359
                import paddle.fluid as fluid
                import numpy as np

1360 1361 1362
                EPOCH_NUM = 3
                ITER_NUM = 15
                BATCH_SIZE = 3
G
guofei 已提交
1363 1364 1365 1366 1367
        
                def network(image, label):
                    # User-defined network, here is an example of softmax regression.
                    predict = fluid.layers.fc(input=image, size=10, act='softmax')           
                    return fluid.layers.cross_entropy(input=predict, label=label)
1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378

                def random_image_and_label_generator(height, width):
                    def generator():
                        for i in range(ITER_NUM):
                            fake_image = np.random.uniform(low=0,
                                                           high=255,
                                                           size=[height, width])
                            fake_label = np.array([1])
                            yield fake_image, fake_label
                    return generator

G
guofei 已提交
1379 1380
                image = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
                label = fluid.data(name='label', shape=[None, 1], dtype='int64')
1381 1382 1383 1384 1385
                reader = fluid.io.PyReader(feed_list=[image, label], capacity=4, iterable=True)

                user_defined_generator = random_image_and_label_generator(784, 784)
                reader.decorate_sample_generator(user_defined_generator,
                                                 batch_size=BATCH_SIZE,
G
guofei 已提交
1386 1387 1388 1389
                                                 places=[fluid.CPUPlace()])
                loss = network(image, label)
                executor = fluid.Executor(fluid.CPUPlace())
                executor.run(fluid.default_startup_program())
1390 1391 1392

                for _ in range(EPOCH_NUM):
                    for data in reader():
G
guofei 已提交
1393
                        executor.run(feed=data, fetch_list=[loss])
1394
    
S
sneaxiy 已提交
1395
        '''
Z
Zeng Jinle 已提交
1396 1397
        self._loader.set_sample_generator(sample_generator, batch_size,
                                          drop_last, places)
S
sneaxiy 已提交
1398

S
sneaxiy 已提交
1399
    def decorate_sample_list_generator(self, reader, places=None):
S
add doc  
sneaxiy 已提交
1400 1401 1402 1403
        '''
        Set the data source of the PyReader object. 

        The provided :code:`reader` should be a Python generator,
S
sneaxiy 已提交
1404
        which yields list(numpy.ndarray) typed batched data. 
S
add doc  
sneaxiy 已提交
1405 1406 1407 1408
        
        :code:`places` must be set when the PyReader object is iterable.

        Args:
S
sneaxiy 已提交
1409 1410 1411 1412
            reader (generator): Python generator that yields 
                list(numpy.ndarray)-typed batched data. 
            places (None|list(CUDAPlace)|list(CPUPlace)): place list. Must
                be provided when PyReader is iterable.
1413 1414 1415 1416
        
        Example:
            .. code-block:: python

H
Huihuang Zheng 已提交
1417 1418 1419 1420
                import paddle
                import paddle.fluid as fluid
                import numpy as np

1421 1422 1423 1424
                EPOCH_NUM = 3
                ITER_NUM = 15
                BATCH_SIZE = 3

G
guofei 已提交
1425 1426 1427 1428 1429
                def network(image, label):
                    # User-defined network, here is an example of softmax regression.
                    predict = fluid.layers.fc(input=image, size=10, act='softmax')           
                    return fluid.layers.cross_entropy(input=predict, label=label)

1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
                def random_image_and_label_generator(height, width):
                    def generator():
                        for i in range(ITER_NUM):
                            fake_image = np.random.uniform(low=0,
                                                           high=255,
                                                           size=[height, width])
                            fake_label = np.ones([1])
                            yield fake_image, fake_label
                    return generator

G
guofei 已提交
1440 1441
                image = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
                label = fluid.data(name='label', shape=[None, 1], dtype='int64')
1442 1443 1444 1445 1446
                reader = fluid.io.PyReader(feed_list=[image, label], capacity=4, iterable=True)

                user_defined_generator = random_image_and_label_generator(784, 784)
                reader.decorate_sample_list_generator(
                    paddle.batch(user_defined_generator, batch_size=BATCH_SIZE),
G
guofei 已提交
1447 1448 1449 1450 1451
                    fluid.core.CPUPlace())
                
                loss = network(image, label)
                executor = fluid.Executor(fluid.core.CPUPlace())
                executor.run(fluid.default_startup_program())
1452 1453 1454

                for _ in range(EPOCH_NUM):
                    for data in reader():
G
guofei 已提交
1455
                        executor.run(feed=data, fetch_list=[loss])
1456
                 
S
add doc  
sneaxiy 已提交
1457
        '''
Z
Zeng Jinle 已提交
1458
        self._loader.set_sample_list_generator(reader, places)
S
sneaxiy 已提交
1459

S
sneaxiy 已提交
1460
    def decorate_batch_generator(self, reader, places=None):
S
add doc  
sneaxiy 已提交
1461 1462 1463 1464
        '''
        Set the data source of the PyReader object.

        The provided :code:`reader` should be a Python generator,
S
sneaxiy 已提交
1465
        which yields numpy.ndarray-typed or LoDTensor-typed batched data.
S
add doc  
sneaxiy 已提交
1466 1467 1468 1469 1470 1471

        :code:`places` must be set when the PyReader object is iterable.

        Args:
            reader (generator): Python generator that yields LoDTensor-typed
                batched data.
S
sneaxiy 已提交
1472
            places (None|list(CUDAPlace)|list(CPUPlace)): place list. Must
S
sneaxiy 已提交
1473
                be provided when PyReader is iterable.
1474 1475 1476 1477

        Example:
            .. code-block:: python

H
Huihuang Zheng 已提交
1478 1479 1480
                import paddle.fluid as fluid
                import numpy as np

1481 1482 1483
                EPOCH_NUM = 3
                ITER_NUM = 15
                BATCH_SIZE = 3
G
guofei 已提交
1484 1485 1486 1487 1488
               
                def network(image, label):
                    # User-defined network, here is an example of softmax regression.
                    predict = fluid.layers.fc(input=image, size=10, act='softmax')           
                    return fluid.layers.cross_entropy(input=predict, label=label)
1489 1490 1491 1492 1493 1494 1495 1496

                def random_image_and_label_generator(height, width):
                    def generator():
                        for i in range(ITER_NUM):
                            batch_image = np.random.uniform(low=0,
                                                            high=255,
                                                            size=[BATCH_SIZE, height, width])
                            batch_label = np.ones([BATCH_SIZE, 1])
G
guofei 已提交
1497 1498
                            batch_image = batch_image.astype('float32')
                            batch_label = batch_label.astype('int64')
1499 1500 1501
                            yield batch_image, batch_label
                    return generator

G
guofei 已提交
1502 1503
                image = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
                label = fluid.data(name='label', shape=[None, 1], dtype='int64')
1504 1505 1506
                reader = fluid.io.PyReader(feed_list=[image, label], capacity=4, iterable=True)

                user_defined_generator = random_image_and_label_generator(784, 784)
G
guofei 已提交
1507 1508 1509 1510 1511
                reader.decorate_batch_generator(user_defined_generator, fluid.CPUPlace())
                
                loss = network(image, label)
                executor = fluid.Executor(fluid.CPUPlace())
                executor.run(fluid.default_startup_program())
1512 1513 1514

                for _ in range(EPOCH_NUM):
                    for data in reader():
G
guofei 已提交
1515
                        executor.run(feed=data, fetch_list=[loss])
1516

S
add doc  
sneaxiy 已提交
1517
        '''
Z
Zeng Jinle 已提交
1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562
        self._loader.set_batch_generator(reader, places)


class DatasetLoader(DataLoaderBase):
    def __init__(self, dataset, places, drop_last):
        assert isinstance(dataset,
                          DatasetBase), "dataset must be type of DatasetBase"
        assert not in_dygraph_mode(
        ), "DatasetLoader is not supported in dygraph mode yet"

        thread_num = len(places)

        assert len(dataset.filelist) >= thread_num, \
            "Filelist number of dataset {} must be not less than place number {}".format(len(dataset.filelist), thread_num)

        if dataset.thread_num != 0 and dataset.thread_num != thread_num:
            logging.warn('thread_num {} which is set in Dataset is ignored'.
                         format(dataset.thread_num))

        dataset.set_thread(thread_num)

        if isinstance(dataset,
                      InMemoryDataset) and dataset.queue_num > thread_num:
            logging.warn("queue_num {} which is set in Dataset is ignored".
                         format(dataset.queue_num))
            dataset.set_queue_num(thread_num)

        self._dataset = dataset
        use_slots = [
            slot.name for slot in dataset.proto_desc.multi_slot_desc.slots
            if slot.is_used
        ]

        self._iterable_dataset = core.IterableDatasetWrapper(
            dataset.dataset, use_slots,
            _convert_places(places), dataset.proto_desc.batch_size, drop_last)

    def __iter__(self):
        self._dataset._finish_to_run()
        self._dataset._prepare_to_run()
        self._iterable_dataset._start()
        return self

    def __next__(self):
        return self._iterable_dataset._next()