reader.py 80.6 KB
Newer Older
S
sneaxiy 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from . import core
16
import sys
17
import numpy as np
S
sneaxiy 已提交
18
import threading
19
import paddle
20
import time
N
niuliling123 已提交
21
import copy
22

23 24 25 26 27 28 29 30 31 32 33
from .framework import (
    Program,
    Variable,
    program_guard,
    default_main_program,
    default_startup_program,
    _non_static_mode,
    cpu_places,
    _current_expected_place,
    _in_eager_without_dygraph_check,
)
S
sneaxiy 已提交
34
from .executor import global_scope
35
from .data_feeder import DataFeeder, BatchedTensorProvider
36 37 38 39 40 41 42
from .multiprocess_utils import (
    multiprocess_queue_set,
    CleanupFuncRegistrar,
    _cleanup_mmap,
    _cleanup,
    _set_SIGCHLD_handler,
)
43
from .dataloader import BatchSampler, Dataset, IterableDataset, Subset
44 45 46 47 48 49
from .dataloader.dataloader_iter import (
    _DataLoaderIterSingleProcess,
    _DataLoaderIterMultiProcess,
    _DatasetKind,
    default_collate_fn,
)
50
from .dataloader.batch_sampler import _InfiniteIterableSampler
51 52 53
from .layers.io import (
    monkey_patch_reader_methods,
    _copy_reader_var_,
54
    __create_unshared_decorated_reader__,
55
)
S
sneaxiy 已提交
56
from .unique_name import UniqueNameGenerator
57
from .framework import _get_paddle_place, _get_paddle_place_list
58
from paddle.fluid.framework import _set_expected_place, _current_expected_place
59
import logging
60
import warnings
S
sneaxiy 已提交
61

62
### Dygraph DataLoader configs ###
63
import os
64 65
import multiprocessing
import signal
66

67
# NOTE: queue has a different name in python2 and python3
T
tianshuo78520a 已提交
68
import queue
69

70 71 72
# NOTE: [ avoid hanging & failed quickly ] These value is used in getting data from another process
QUEUE_GET_TIMEOUT = 60

73
__all__ = ['PyReader', 'DataLoader', 'default_collate_fn']
Z
Zeng Jinle 已提交
74 75

data_loader_unique_name_generator = UniqueNameGenerator()
S
sneaxiy 已提交
76

77
KEEP_DATA_LOADER_ORDER = True
78
USE_PINNED_MEMORY = None
79 80 81 82 83 84 85 86 87 88
# AutoTune Flags
USE_AUTOTUNE = False
TUNING_STEPS = 500


def set_autotune_config(use_autotune, tuning_steps=500):
    global USE_AUTOTUNE
    USE_AUTOTUNE = use_autotune
    global TUNING_STEPS
    TUNING_STEPS = tuning_steps
89 90 91 92 93 94 95 96 97 98


def keep_data_loader_order(*args):
    global KEEP_DATA_LOADER_ORDER
    if len(args) == 0:
        return KEEP_DATA_LOADER_ORDER
    else:
        assert len(args) == 1 and isinstance(args[0], bool)
        KEEP_DATA_LOADER_ORDER = args[0]

S
sneaxiy 已提交
99

100 101 102 103 104 105 106 107 108
def use_pinned_memory(*args):
    global USE_PINNED_MEMORY
    if len(args) == 0:
        return USE_PINNED_MEMORY
    else:
        assert len(args) == 1 and isinstance(args[0], bool)
        USE_PINNED_MEMORY = args[0]


S
sneaxiy 已提交
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
def _convert_places(places):
    if not isinstance(places, (list, tuple)):
        places = [places]

    ret = []
    for p in places:
        if not isinstance(p, core.Place):
            tmp = core.Place()
            tmp.set_place(p)
            p = tmp

        ret.append(p)
    return ret


124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
# NOTE(chenweihang): _reader_process_loop must be top level method to be pickled
def _reader_process_loop(batch_reader, data_queue):
    try:
        # set signal handler
        core._set_process_signal_handler()

        # NOTE: [ mmap files clear ] When the child process exits unexpectedly,
        # some shared memory objects may have been applied for but have not yet
        # been put into the inter-process Queue. This part of the object needs
        # to be cleaned up when the process ends.
        CleanupFuncRegistrar.register(_cleanup_mmap)

        for batch in batch_reader():
            tensor_list = core._convert_to_tensor_list(batch)
            data_queue.put(tensor_list)
            core._remove_tensor_list_mmap_fds(tensor_list)
        data_queue.put(None)
    except KeyboardInterrupt:
        # NOTE: Main process will raise KeyboardInterrupt anyways, ignore it in child process
        pass
    except:
145
        raise
146 147


148
class DataLoaderBase:
Z
Zeng Jinle 已提交
149 150
    def __init__(self):
        self._places = None
S
sneaxiy 已提交
151

Z
Zeng Jinle 已提交
152 153
    def __call__(self):
        return self
S
sneaxiy 已提交
154

Z
Zeng Jinle 已提交
155 156 157 158 159 160
    def __iter__(self):
        raise NotImplementedError()

    def __next__(self):
        raise NotImplementedError()

161 162 163
    @classmethod
    def _check_input_array(cls, item):
        arr = np.asarray(item)
164
        if arr.dtype == np.object_:
165 166 167 168 169
            raise TypeError(
                "\n\tFaild to convert input data to a regular ndarray :\n\t* Usually "
                "this means the input data contains nested lists with different lengths. "
                "\n\t* Check the reader function passed to 'decorate_batch_generator'"
                " to locate the data causes this issue.\n\t* Please consider using "
170 171
                "'fluid.create_lod_tensor' to convert it to a LoD-Tensor."
            )
172 173
        return arr

Z
Zeng Jinle 已提交
174

175
class AuToTune:
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
    def __init__(self, loader):
        self.loader = loader
        self.max_num_worker = multiprocessing.cpu_count() / 2

    def __call__(self):
        # use default loader
        if (not USE_AUTOTUNE) or (not self.need_autotune()):
            return self.loader.num_workers

        # get autotune loader
        auto_tune_loader = self.get_autotune_loader()
        if auto_tune_loader is None:
            return self.loader.num_workers

        # pick the best num_workers
        auto_tune_start = time.time()
        logging.debug("========= DataLoader Auto Tune =========")
193 194 195
        logging.debug(
            "User config for DataLoader: " + str(self.loader.num_workers)
        )
196 197
        best_num_workers = 0
        min_cost = float("inf")
198 199 200
        logging.debug(
            "Tuning Range for num_workers: 0 ~ " + str(self.max_num_worker)
        )
201 202 203 204 205 206 207 208
        num_workers = 0
        while num_workers < self.max_num_worker:
            auto_tune_loader.num_workers = num_workers
            avg_cost = self.evaluate_reader_cost(auto_tune_loader)
            if min_cost * 0.75 > avg_cost:
                min_cost = avg_cost
                best_num_workers = num_workers
            else:
209 210 211 212 213 214
                update_num = self.is_best(
                    auto_tune_loader,
                    best_num_workers,
                    min_cost,
                    self.max_num_worker,
                )
215 216 217 218
                if update_num == best_num_workers:
                    break
                else:
                    best_num_workers = update_num
219 220 221 222 223 224
            logging.debug(
                "num_workers: "
                + str(num_workers)
                + " avg_cost: "
                + str(avg_cost)
            )
225
            num_workers += 2
226 227 228 229 230 231 232 233
        logging.info(
            "auto_tune dataLoader best_num_workers: " + str(best_num_workers)
        )
        logging.debug(
            "AutoTuning Cost for DataLoader: "
            + str(time.time() - auto_tune_start)
            + ' seconds'
        )
234 235 236 237 238

        # tune the default loader's num_workers
        return best_num_workers

    def need_autotune(self):
239
        if sys.platform == 'darwin' or sys.platform == 'win32':
240 241 242 243 244 245 246 247 248 249
            return False
        else:
            return True

    def get_sub_dataset(self, dataset, batch_size):
        num_samples = min(batch_size * TUNING_STEPS, len(dataset))
        sub_dataset = Subset(dataset, indices=list(range(num_samples)))
        return sub_dataset

    def get_autotune_loader(self):
N
niuliling123 已提交
250
        loader = copy.copy(self.loader)
251
        batch_size = self.loader.batch_sampler.batch_size
252 253 254
        if isinstance(
            self.loader.batch_sampler, paddle.io.DistributedBatchSampler
        ):
255 256 257 258 259 260 261 262
            dataset = self.loader.batch_sampler.dataset
            sub_dataset = self.get_sub_dataset(dataset, batch_size)
            loader.batch_sampler = paddle.io.DistributedBatchSampler(
                dataset=sub_dataset,
                batch_size=batch_size,
                num_replicas=self.loader.batch_sampler.nranks,
                rank=self.loader.batch_sampler.local_rank,
                shuffle=self.loader.batch_sampler.shuffle,
263 264
                drop_last=self.loader.batch_sampler.drop_last,
            )
265 266 267 268 269 270
        elif isinstance(self.loader.batch_sampler, paddle.io.BatchSampler):
            dataset = self.loader.batch_sampler.sampler.data_source
            sub_dataset = self.get_sub_dataset(dataset, batch_size)
            loader.batch_sampler = paddle.io.BatchSampler(
                dataset=sub_dataset,
                batch_size=batch_size,
271 272
                drop_last=self.loader.batch_sampler.drop_last,
            )
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
        else:
            loader = None
        return loader

    def evaluate_reader_cost(self, reader):
        costs = []
        avg_cost = 0
        start = time.time()
        for i, data in enumerate(reader):
            costs.append(time.time() - start)
            start = time.time()
        if len(costs) > 2:
            avg_cost = sum(costs[2:]) / len(costs[2:])
        else:
            avg_cost = sum(costs[0:]) / len(costs[0:])
        return avg_cost

    def is_best(self, reader, best_workers, best_time, num_work_boundary):
        step = 0
        num_workers = best_workers + 1
        boundary = 1
        while num_workers < num_work_boundary and step < 5:
            self.loader.num_workers = num_workers
            time = self.evaluate_reader_cost(reader)
297 298 299 300 301 302
            logging.debug(
                "for back num_workers: "
                + str(num_workers)
                + " avg_cost: "
                + str(time)
            )
303
            step += 1
304
            if time < best_time * 0.70 * boundary:
305 306 307 308 309 310 311
                return num_workers
            else:
                num_workers += 1
            boundary *= 0.80
        return best_workers


312
class DataLoader:
313 314 315 316 317 318 319 320
    """
    DataLoader prodives an iterator which iterates given dataset
    once by the batch_sampler.

    DataLoader supports single-process and multi-prcess data loading,
    multi-process workers will be used to load data asynchronously if
    :attr:`num_workers` is set as a positive number.

K
Kaipeng Deng 已提交
321
    DataLoader supports map-style dataset and iterable-style dataset.
322

K
Kaipeng Deng 已提交
323 324 325 326 327 328 329
    For map-style datast(can get a sample from dataset with a given
    index), please see :code:`paddle.io.Dataset`.

    For iterable-style datast(get samples from dataset iteratively,
    like a Python iterator), please see :code:`paddle.io.IterableDataset`.

    For :code:`batch_sampler` please see :code:`paddle.io.BatchSampler`
330

331 332 333 334 335 336
    .. note::
        GPU tensor operation is not supported in subprocess currently,
        please don't use GPU tensor operations in pipeline which will
        be performed in subprocess, such as dataset transforms, collte_fn,
        etc. Numpy array and CPU tensor operation is supported.

337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
    **Disable automatic batching**

    In certain cases such as some NLP tasks, instead of automatic batching,
    handling batching manually in dataset is needed by users. For these
    cases, automatic batching is disabled if both :attr:`batch_size` and
    :attr:`batch_sampler` is set as None, each data got from :attr:`dataset`
    should be batched data and will be processed with function define by
    :attr:`collate_fn` or :attr:`default_collate_fn`.


    .. note::
        When automatic batching is disabled, :attr:`default_collate_fn` will
        do nothing to data from dataset.


352
    Args:
353
        dataset(Dataset): the dataset to load data from, should be an
354 355
            instance of subclass of :code:`paddle.io.Dataset` or
            :code:`paddle.io.IterableDataset`.
356
        feed_list (list(Tensor)|tuple(Tensor), optional): feed Tensor list.
357
            The Tensors should be created by :code:`paddle.static.data()`.
358 359
            :attr:`feed_list` must be set if :attr:`return_list` is
            False. Default None.
360
        places(list(Place)|tuple(Place)|list(str), optional): a list of Place,
361
            to put data onto, :attr:`places` can be None, if
362
            :attr:`places` is None, default place(CPUPlace or CUDAPlace(0))
363 364 365
            will be used. Default None. If ``places`` is list of string,
            the string in the list can be ``cpu``, ``gpu:x`` and ``gpu_pinned``,
            where ``x`` is the index of the GPUs.
366
        return_list (bool, optional): whether the return value on each device is
367
            presented as a list. If :attr:`return_list=False`, the return
K
Kaipeng Deng 已提交
368
            value on each device would be a dict of str -> Tensor, where
369
            the key of the dict is the name of each fed Tensors. If
370
            :attr:`return_list=True`, the return value on each device would
K
Kaipeng Deng 已提交
371
            be a list(Tensor). :attr:`return_list` can only be True
372
            in dynamic graph mode. Default True.
373
        batch_sampler(BatchSampler, optional): an instance of `paddle.io.BatchSampler`
374 375
            to generate batch indices to draw samples from :attr:`dataset`
            and combine a batch. Default None.
376
        batch_size(int|None, optional): sample number in a mini-batch, a substitution
377 378 379 380
            parameter for :attr:`batch_sampler`, if :attr:`batch_sampler`
            is not set, a default `paddle.io.BatchSampler` will be used
            and initialize by :attr:`batch_size`, :attr:`shuffle` and
            :attr:`drop_last`. Default 1.
381
        shuffle(bool, optional): whther to shuffle indices order before genrate
382 383
            batch indices, a substitution parameter for :attr:`batch_sampler`
            see :attr:`batch_size`. Default False.
384
        drop_last(bool, optional): whether drop the last incomplete batch dataset size
385 386
            is not divisible by the batch size, a substitution parameter
            for :attr:`batch_sampler`, see :attr:`batch_size`. Default False
387
        collate_fn(callable, optional): function to generate mini-batch data by merging
388 389
            the sample list, None for only stack each fields of sample in axis
            0(same as :attr::`np.stack(..., axis=0)`). Default None
390
        num_workers(int, optional): the number of subprocess to load data, 0 for no
391
            subprocess used and loading data in main process. Default 0
392
        use_buffer_reader (bool, optional): whether to use bufferred reader.
393
            If use_buffer_reader=True, the DataLoader would prefetch
394
            batch data asynchronously, so it would speed up data feeding
395 396
            and occupies a little more CPU or GPU memory, i.e., the memory
            of one batch input data. Default True.
397 398 399
        prefetch_factor (int, optional): Number of batch data the DataLoader would prefetch
            if use_buffer_reader=True. Default 2.
        use_shared_memory (bool, optional): whether to use shared memory to speed up
400 401 402 403 404
            putting data into inter-process queue, set :attr:`use_shared_memory`
            as True only when the shared memory space on your machine(e.g.
            space of '/dev/shm' on Linux operating sysytem) is large enough.
            Shared memory will only be enabled in multi-process mode(num_workers
            > 0). Default True.
405
        timeout(int, optional): the timeout value for getting data form output queue
406
            of subprocesses. Default 0.
407
        worker_init_fn(callable, optional): init function which will be called with
408 409 410 411
            worker id on each subproces starting if not set as None. Default
            None.

    Returns:
412
        DataLoader: an iterable object for data iterating, each elemnet of the generated data is a Tensor.
413 414

    Examples:
415

416 417 418
        .. code-block:: python

            import numpy as np
419 420

            import paddle
K
Kaipeng Deng 已提交
421 422
            import paddle.nn as nn
            import paddle.nn.functional as F
423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
            from paddle.io import Dataset, BatchSampler, DataLoader

            BATCH_NUM = 20
            BATCH_SIZE = 16
            EPOCH_NUM = 4

            IMAGE_SIZE = 784
            CLASS_NUM = 10

            # define a random dataset
            class RandomDataset(Dataset):
                def __init__(self, num_samples):
                    self.num_samples = num_samples

                def __getitem__(self, idx):
                    image = np.random.random([IMAGE_SIZE]).astype('float32')
                    label = np.random.randint(0, CLASS_NUM - 1, (1, )).astype('int64')
                    return image, label

                def __len__(self):
                    return self.num_samples

445 446
            dataset = RandomDataset(BATCH_NUM * BATCH_SIZE)

K
Kaipeng Deng 已提交
447
            class SimpleNet(nn.Layer):
448
                def __init__(self):
449
                    super().__init__()
K
Kaipeng Deng 已提交
450
                    self.fc = nn.Linear(IMAGE_SIZE, CLASS_NUM)
451 452 453 454

                def forward(self, image, label=None):
                    return self.fc(image)

K
Kaipeng Deng 已提交
455 456 457
            simple_net = SimpleNet()
            opt = paddle.optimizer.SGD(learning_rate=1e-3,
                                      parameters=simple_net.parameters())
458 459

            loader = DataLoader(dataset,
K
Kaipeng Deng 已提交
460
                                batch_size=BATCH_SIZE,
461 462 463 464 465
                                shuffle=True,
                                drop_last=True,
                                num_workers=2)

            for e in range(EPOCH_NUM):
K
Kaipeng Deng 已提交
466 467 468 469 470 471 472 473
                for i, (image, label) in enumerate(loader()):
                    out = simple_net(image)
                    loss = F.cross_entropy(out, label)
                    avg_loss = paddle.mean(loss)
                    avg_loss.backward()
                    opt.minimize(avg_loss)
                    simple_net.clear_gradients()
                    print("Epoch {} batch {}: loss = {}".format(e, i, np.mean(loss.numpy())))
474 475


476 477 478 479
    .. note::
        For reading iterable dataset with multiprocess Dataloader,
        please see :code:`paddle.io.IterableDataset`

480 481
    """

482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
    def __init__(
        self,
        dataset,
        feed_list=None,
        places=None,
        return_list=True,
        batch_sampler=None,
        batch_size=1,
        shuffle=False,
        drop_last=False,
        collate_fn=None,
        num_workers=0,
        use_buffer_reader=True,
        prefetch_factor=2,
        use_shared_memory=True,
        timeout=0,
        worker_init_fn=None,
        persistent_workers=False,
    ):
501 502 503
        self.return_list = return_list
        self.collate_fn = collate_fn
        self.use_buffer_reader = use_buffer_reader
504
        self.prefetch_factor = prefetch_factor
505 506 507 508
        self.worker_init_fn = worker_init_fn

        self.dataset = dataset

J
Jiabin Yang 已提交
509
        if not return_list and not _non_static_mode():
510 511 512
            assert (
                feed_list is not None
            ), "feed_list should be set when return_list=False"
513 514
        self.feed_list = feed_list

515 516
        if places is None:
            places = _current_expected_place()
517 518 519 520
        if isinstance(places, (list, tuple)):
            places = _get_paddle_place_list(places)
        else:
            places = _get_paddle_place(places)
521 522 523
        self.places = _convert_places(places)

        assert num_workers >= 0, "num_workers should be a non-negative value"
524 525 526
        if num_workers > 0 and (
            sys.platform == 'darwin' or sys.platform == 'win32'
        ):
527
            warnings.warn(
528 529 530
                "DataLoader with multi-process mode is not supported on MacOs and Windows currently."
                " Please use signle-process mode with num_workers = 0 instead"
            )
531 532 533
            num_workers = 0
        self.num_workers = num_workers

534 535
        assert prefetch_factor > 0, "prefetch_factor should be a positive value"

536 537 538 539 540 541 542
        self.use_shared_memory = use_shared_memory
        if use_shared_memory and num_workers == 0:
            self.use_shared_memory = False

        assert timeout >= 0, "timeout should be a non-negative value"
        self.timeout = timeout

543 544 545 546
        if isinstance(dataset, IterableDataset):
            self.dataset_kind = _DatasetKind.ITER
            if shuffle:
                raise ValueError(
547 548 549 550
                    "IterableDataset not support shuffle, but got shuffle={}".format(
                        shuffle
                    )
                )
551 552
            if batch_sampler is not None:
                raise ValueError(
553 554
                    "IterableDataset expect unspecified batch_sampler"
                )
555 556 557
        else:
            self.dataset_kind = _DatasetKind.MAP

558
        if batch_sampler is not None:
559 560
            assert batch_size == 1 and not shuffle and not drop_last, (
                "batch_size/shuffle/drop_last should not be set when "
561
                "batch_sampler is given"
562
            )
563
            self.batch_sampler = batch_sampler
564 565 566 567
            self.batch_size = None
        elif batch_size is None:
            self.batch_sampler = None
            self.batch_size = None
568
        else:
569 570
            assert batch_size > 0, (
                "batch_size should be None or a positive value when "
571
                "batch_sampler is not given"
572
            )
573
            self.batch_size = batch_size
574
            if isinstance(dataset, IterableDataset):
575
                self.batch_sampler = _InfiniteIterableSampler(
576 577
                    dataset, batch_size
                )
578
            else:
579 580 581 582 583 584
                self.batch_sampler = BatchSampler(
                    dataset=dataset,
                    batch_size=batch_size,
                    shuffle=shuffle,
                    drop_last=drop_last,
                )
585

586
        self.drop_last = drop_last
587 588
        self.auto_collate_batch = self.batch_sampler is not None

589
        self.pin_memory = False
J
Jiabin Yang 已提交
590
        if _non_static_mode():
591 592 593
            self.pin_memory = (
                True if use_pinned_memory() is None else use_pinned_memory()
            )
594

K
Kaipeng Deng 已提交
595 596
        self._persistent_workers = persistent_workers
        self._iterator = None
597
        self.num_workers = AuToTune(self).__call__()
K
Kaipeng Deng 已提交
598

599
    def __len__(self):
600 601 602
        if self.dataset_kind == _DatasetKind.ITER:
            raise ValueError("length of IterableDataset not supported")
        else:
603
            if self.auto_collate_batch:
604
                return len(self.batch_sampler)
605 606
            else:
                return len(self.dataset)
607 608 609 610

    def __iter__(self):
        if self.num_workers == 0:
            return _DataLoaderIterSingleProcess(self)
K
Kaipeng Deng 已提交
611 612 613 614 615 616
        elif self._persistent_workers:
            if self._iterator is None:
                self._iterator = _DataLoaderIterMultiProcess(self)
            else:
                self._iterator._reset()
            return self._iterator
617 618 619 620 621 622
        else:
            return _DataLoaderIterMultiProcess(self)

    def __call__(self):
        return self.__iter__()

Z
Zeng Jinle 已提交
623
    @staticmethod
624 625 626 627 628 629 630 631 632
    def from_generator(
        feed_list=None,
        capacity=None,
        use_double_buffer=True,
        iterable=True,
        return_list=False,
        use_multiprocess=False,
        drop_last=True,
    ):
Z
Zeng Jinle 已提交
633
        """
K
Kaipeng Deng 已提交
634 635 636 637
        .. warning::
          This API will be deprecated in the future, it is recommended to use
          :code:`paddle.io.DataLoader` which supports multi-processes acceleration.

638 639 640
        .. note::
          **The framework ensures that the data loading order of DataLoader is exactly the same as the user-defined data source.**

641
        Create a DataLoader object for loading data from Python generator.
Z
Zeng Jinle 已提交
642 643 644 645
        Data would be prefetched using Python thread and be pushed
        into a queue asynchronously.

        The created DataLoader object provides 3 methods to set the data source
646
        :code:`set_sample_generator` , :code:`set_sample_list_generator` and
Z
Zeng Jinle 已提交
647 648
        :code:`set_batch_generator` . Please see the following example codes
        to know their usages.
649

Z
Zeng Jinle 已提交
650 651 652
        If iterable = True, the created DataLoader object is a Python generator
        object, which is iterable using for-range loop.

653
        If iterable = False, the created DataLoader object provides
Z
Zeng Jinle 已提交
654
        :code:`start()` and :code:`reset()` method to control the data reading
655
        process.
Z
Zeng Jinle 已提交
656

657
        Args:
658 659
            feed_list (list(Tensor)|tuple(Tensor)): feed Tensor list.
                The Tensors should be created by :code:`fluid.data()`.
Z
Zeng Jinle 已提交
660
            capacity (int): capacity of the queue maintained in DataLoader.
661 662
                The unit is batch number. Set larger capacity if your reader
                is fast.
663
            use_double_buffer (bool, optional): whether to use double_buffer_reader.
664 665
                If use_double_buffer=True, the DataLoader would prefetch next
                batch data asynchronously, so it would speed up data feeding
Z
Zeng Jinle 已提交
666
                and occupies a little more CPU or GPU memory, i.e., the memory
667
                of one batch input data.
668 669
            iterable (bool, optional): whether the created DataLoader is iterable.
            return_list (bool, optional): whether the return value on each device is
670 671 672 673
                presented as a list. It is only valid when iterable=True.
                If return_list=False, the return value on each device would
                be a dict of str -> LoDTensor, where the key of the dict is
                the name of each fed Tensors. If return_list=True, the
Z
Zeng Jinle 已提交
674 675
                return value on each device would be a list(LoDTensor). It is
                recommended to use return_list=False in static graph mode and
676
                use return_list=True in dygraph mode.
677 678 679
            use_multiprocess (bool, optional): whether to use multi-process to
                speed up the data loading process in dygraph. Note: this parameter
                only can be used in the dygraph mode. In the static graph mode,
680 681
                whether this parameter is set or not has no effect.
                The Default value is False.
682 683 684
            drop_last (bool, optional): whether to drop the last batches whose
                number is less than the CPU core/GPU card number. The default
                value is True. In training phase, users should not set drop_last=False,
685
                because all CPU cores/GPU cards must read data from DataLoader.
686 687
                In inference phase, users can set drop_last=False, so that the
                last batches whose number is less than the CPU core/GPU card
688
                number can be tested.
Z
Zeng Jinle 已提交
689 690 691 692

        Returns:
            loader (DataLoader): the created DataLoader object.

693
        Examples 1:
694

Z
Zeng Jinle 已提交
695
            .. code-block:: python
S
sneaxiy 已提交
696

697 698 699
                '''
                Example in static graph mode
                '''
Z
Zeng Jinle 已提交
700
                import numpy as np
701

702 703 704 705 706
                import paddle
                import paddle.static as static
                import paddle.nn.functional as F


707
                BATCH_NUM = 10
Z
Zeng Jinle 已提交
708 709 710 711 712 713 714 715
                BATCH_SIZE = 16
                EPOCH_NUM = 4

                CLASS_NUM = 10

                ITERABLE = True # whether the created DataLoader object is iterable
                USE_GPU = False # whether to use GPU

716
                DATA_FORMAT = 'batch_generator' # data format of data source user provides
Z
Zeng Jinle 已提交
717

718 719
                paddle.enable_static()

Z
Zeng Jinle 已提交
720
                def simple_net(image, label):
721 722 723 724
                    fc_tmp = static.nn.fc(image, size=CLASS_NUM)
                    cross_entropy = F.softmax_with_cross_entropy(image, label)
                    loss = paddle.mean(cross_entropy)
                    sgd = paddle.optimizer.SGD(learning_rate=1e-3)
Z
Zeng Jinle 已提交
725 726 727 728 729 730 731 732 733 734
                    sgd.minimize(loss)
                    return loss

                def get_random_images_and_labels(image_shape, label_shape):
                    image = np.random.random(size=image_shape).astype('float32')
                    label = np.random.random(size=label_shape).astype('int64')
                    return image, label

                # If the data generator yields one sample each time,
                # use DataLoader.set_sample_generator to set the data source.
735
                def sample_generator_creator():
Z
Zeng Jinle 已提交
736 737 738 739 740 741 742 743 744 745 746
                    def __reader__():
                        for _ in range(BATCH_NUM * BATCH_SIZE):
                            image, label = get_random_images_and_labels([784], [1])
                            yield image, label

                    return __reader__

                # If the data generator yield list of samples each time,
                # use DataLoader.set_sample_list_generator to set the data source.
                def sample_list_generator_creator():
                    def __reader__():
747
                        for _ in range(BATCH_NUM):
Z
Zeng Jinle 已提交
748 749 750 751 752 753 754
                            sample_list = []
                            for _ in range(BATCH_SIZE):
                                image, label = get_random_images_and_labels([784], [1])
                                sample_list.append([image, label])

                            yield sample_list

755
                    return __reader__
Z
Zeng Jinle 已提交
756

757
                # If the data generator yields a batch each time,
Z
Zeng Jinle 已提交
758 759 760 761
                # use DataLoader.set_batch_generator to set the data source.
                def batch_generator_creator():
                    def __reader__():
                        for _ in range(BATCH_NUM):
762
                            batch_image, batch_label = get_random_images_and_labels([BATCH_SIZE, 784], [BATCH_SIZE, 1])
Z
Zeng Jinle 已提交
763
                            yield batch_image, batch_label
H
Huihuang Zheng 已提交
764

Z
Zeng Jinle 已提交
765
                    return __reader__
766

767
                # If DataLoader is iterable, use for loop to train the network
Z
Zeng Jinle 已提交
768 769 770 771
                def train_iterable(exe, prog, loss, loader):
                    for _ in range(EPOCH_NUM):
                        for data in loader():
                            exe.run(prog, feed=data, fetch_list=[loss])
772

773
                # If DataLoader is not iterable, use start() and reset() method to control the process
Z
Zeng Jinle 已提交
774 775 776 777 778 779
                def train_non_iterable(exe, prog, loss, loader):
                    for _ in range(EPOCH_NUM):
                        loader.start() # call DataLoader.start() before each epoch starts
                        try:
                            while True:
                                exe.run(prog, fetch_list=[loss])
780
                        except paddle.core.EOFException:
781
                            loader.reset() # call DataLoader.reset() after catching EOFException
Z
Zeng Jinle 已提交
782 783 784 785 786 787 788 789 790 791

                def set_data_source(loader, places):
                    if DATA_FORMAT == 'sample_generator':
                        loader.set_sample_generator(sample_generator_creator(), batch_size=BATCH_SIZE, drop_last=True, places=places)
                    elif DATA_FORMAT == 'sample_list_generator':
                        loader.set_sample_list_generator(sample_list_generator_creator(), places=places)
                    elif DATA_FORMAT == 'batch_generator':
                        loader.set_batch_generator(batch_generator_creator(), places=places)
                    else:
                        raise ValueError('Unsupported data format')
792

793 794
                image = static.data(name='image', shape=[None, 784], dtype='float32')
                label = static.data(name='label', shape=[None, 1], dtype='int64')
795

796
                # Define DataLoader
797
                loader = paddle.io.DataLoader.from_generator(feed_list=[image, label], capacity=16, iterable=ITERABLE)
798

Z
Zeng Jinle 已提交
799 800
                # Define network
                loss = simple_net(image, label)
S
sneaxiy 已提交
801

Z
Zeng Jinle 已提交
802 803
                # Set data source of DataLoader
                #
804 805 806 807
                # If DataLoader is iterable, places must be given and the number of places must be the same with device number.
                #  - If you are using GPU, call `paddle.static.cuda_places()` to get all GPU places.
                #  - If you are using CPU, call `paddle.static.cpu_places()` to get all CPU places.
                #
Z
Zeng Jinle 已提交
808
                # If DataLoader is not iterable, places can be None.
809
                places = static.cuda_places() if USE_GPU else static.cpu_places()
Z
Zeng Jinle 已提交
810
                set_data_source(loader, places)
S
sneaxiy 已提交
811

812 813
                exe = static.Executor(places[0])
                exe.run(static.default_startup_program())
H
Huihuang Zheng 已提交
814

815
                prog = static.CompiledProgram(static.default_main_program()).with_data_parallel(loss_name=loss.name)
816

Z
Zeng Jinle 已提交
817 818 819 820 821 822
                if loader.iterable:
                    train_iterable(exe, prog, loss, loader)
                else:
                    train_non_iterable(exe, prog, loss, loader)


823 824 825 826
        Examples 2:

            .. code-block:: python

Z
Zeng Jinle 已提交
827
                '''
828
                Example in dynamic graph mode.
Z
Zeng Jinle 已提交
829
                '''
830
                import numpy as np
831

832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861
                import paddle
                import paddle.nn as nn
                import paddle.optimizer as opt
                import paddle.distributed as dist

                BATCH_SIZE = 16
                BATCH_NUM = 4
                EPOCH_NUM = 4

                IMAGE_SIZE = 784
                CLASS_NUM = 10

                USE_GPU = False # whether to use GPU

                def _get_random_images_and_labels(image_shape, label_shape):
                        image = np.random.random(size=image_shape).astype('float32')
                        label = np.random.random(size=label_shape).astype('int64')
                        return image, label

                def __reader__():
                        for _ in range(BATCH_NUM):
                            batch_image, batch_label = _get_random_images_and_labels(
                                [BATCH_SIZE, IMAGE_SIZE], [BATCH_SIZE, CLASS_NUM])
                            yield batch_image, batch_label

                def random_batch_reader():
                    return __reader__

                class LinearNet(nn.Layer):
                    def __init__(self):
862
                        super().__init__()
863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894
                        self._linear = nn.Linear(IMAGE_SIZE, CLASS_NUM)

                    @paddle.jit.to_static
                    def forward(self, x):
                        return self._linear(x)

                # set device
                paddle.set_device('gpu' if USE_GPU else 'cpu')

                # create network
                layer = LinearNet()
                dp_layer = paddle.DataParallel(layer)
                loss_fn = nn.CrossEntropyLoss()
                adam = opt.Adam(learning_rate=0.001, parameters=dp_layer.parameters())

                # create data loader
                loader = paddle.io.DataLoader.from_generator(capacity=5)
                loader.set_batch_generator(random_batch_reader())

                for epoch_id in range(EPOCH_NUM):
                    for batch_id, (image, label) in enumerate(loader()):
                        out = layer(image)
                        loss = loss_fn(out, label)

                        loss.backward()

                        adam.step()
                        adam.clear_grad()
                        print("Epoch {} batch {}: loss = {}".format(
                            epoch_id, batch_id, np.mean(loss.numpy())))

        Examples 3:
895 896 897

            .. code-block:: python

898 899 900 901 902
                '''
                Example of `drop_last` using in static graph multi-cards mode
                '''
                import paddle
                import paddle.static as static
903 904 905
                import numpy as np
                import os

906
                # We use 2 CPU cores to run inference network
907 908
                os.environ['CPU_NUM'] = '2'

909 910
                paddle.enable_static()

911 912
                # The data source has only 3 batches, which can not be
                # divided evenly to each CPU core
913
                def batch_generator():
914
                    for i in range(3):
915
                        yield np.array([i+1]).astype('float32'),
916

917
                x = static.data(name='x', shape=[None], dtype='float32')
918 919
                y = x * x

920
                def run_inference(drop_last):
921
                    loader = paddle.io.DataLoader.from_generator(feed_list=[x],
922
                            capacity=8, drop_last=drop_last)
923
                    loader.set_batch_generator(batch_generator, static.cpu_places())
924

925 926
                    exe = static.Executor(paddle.CPUPlace())
                    prog = static.CompiledProgram(static.default_main_program())
927 928 929 930 931 932 933 934 935 936 937 938 939 940 941
                    prog = prog.with_data_parallel()

                    result = []
                    for data in loader():
                        each_ret, = exe.run(prog, feed=data, fetch_list=[y])
                        result.extend(each_ret)
                    return result

                # Set drop_last to True, so that the last batch whose
                # number is less than CPU core number would be discarded.
                print(run_inference(drop_last=True)) # [1.0, 4.0]

                # Set drop_last to False, so that the last batch whose
                # number is less than CPU core number can be tested.
                print(run_inference(drop_last=False)) # [1.0, 4.0, 9.0]
Z
Zeng Jinle 已提交
942
        """
J
Jiabin Yang 已提交
943
        if _non_static_mode():
944 945 946 947 948 949 950 951
            return DygraphGeneratorLoader(
                feed_list,
                capacity,
                use_double_buffer,
                iterable,
                return_list,
                use_multiprocess,
            )
952
        else:
953 954 955 956 957 958 959 960
            return GeneratorLoader(
                feed_list,
                capacity,
                use_double_buffer,
                iterable,
                return_list,
                drop_last,
            )
Z
Zeng Jinle 已提交
961 962 963 964

    @staticmethod
    def from_dataset(dataset, places, drop_last=True):
        """
K
Kaipeng Deng 已提交
965 966 967 968
        .. warning::
          This API will be deprecated in the future, it is recommended to use
          :code:`paddle.io.DataLoader` which supports multi-processes acceleration.

969
        Create an iterable DataLoader object for loading data from Dataset.
Z
Zeng Jinle 已提交
970
        Dataset is only supported in Linux system currently.
971

Z
Zeng Jinle 已提交
972 973
        Args:
            dataset (InMemoryDataset|QueueDataset): the dataset object.
974 975 976
            places (list(CUDAPlace)|list(CPUPlace)|list(str)): places where the result
                data should be converted. If places is list of string, the string in the list
                can be ``cpu``, ``gpu:x`` and ``gpu_pinned``, where x is the index of the GPUs.
977 978 979
            drop_last (bool, optional): whether to drop the last batch whose
                sample number is less than batch size. If drop_last = True,
                they would be dropped. If drop_last = False, they would be kept.
980

Z
Zeng Jinle 已提交
981
        Returns:
982 983
            loader (DataLoader): the created DataLoader object, which can be
                treated as a Python generator.
984

Z
Zeng Jinle 已提交
985 986 987
        Examples:

            .. code-block:: python
988

989 990 991 992
                import paddle
                import paddle.static as static

                paddle.enable_static()
993

994 995
                image = static.data(name='image', shape=[None, 784], dtype='float32')
                label = static.data(name='label', shape=[None, 1], dtype='int64')
996

997 998 999 1000 1001
                dataset = paddle.distributed.QueueDataset()
                dataset.init(
                    batch_size=32,
                    pipe_command='cat',
                    use_var=[image, label])
Z
Zeng Jinle 已提交
1002
                dataset.set_filelist(['a.txt', 'b.txt', 'c.txt'])
1003

1004
                loader = paddle.io.DataLoader.from_dataset(dataset, static.cpu_places())
Z
Zeng Jinle 已提交
1005 1006
        """
        return DatasetLoader(dataset, places, drop_last)
S
sneaxiy 已提交
1007

S
sneaxiy 已提交
1008

1009 1010 1011 1012
class DygraphGeneratorLoader(DataLoaderBase):
    """
    The GeneratorLoader of dygraph

1013
    The multiprocess dygraph GeneratorLoader's most functions are different from
1014 1015 1016
    static graph GeneratorLoader, Separate implementation to keep code readable.
    """

1017 1018 1019 1020 1021 1022 1023 1024 1025
    def __init__(
        self,
        feed_list=None,
        capacity=None,
        use_double_buffer=True,
        iterable=True,
        return_list=True,
        use_multiprocess=False,
    ):
1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
        self._batch_reader = None
        self._places = None
        self._feed_list = feed_list

        if not capacity:
            raise ValueError("Please give value to capacity.")
        self._capacity = capacity
        self._use_double_buffer = use_double_buffer

        if not iterable:
1036 1037
            warnings.warn(
                "Please NOTE: DygraphGeneratorLoader supports iterable mode only. Change to iterable mode."
1038 1039 1040
            )
        self._iterable = True
        if not return_list:
1041 1042
            warnings.warn(
                "Please NOTE: DygraphGeneratorLoader supports returning as list only. Change to return as list."
1043 1044 1045 1046 1047
            )
        self._return_list = True

        # NOTE: the multiprocessing in different platform is incompatible, we will solve it later
        self._use_multiprocess = use_multiprocess
1048 1049 1050
        if self._use_multiprocess and (
            sys.platform == 'darwin' or sys.platform == 'win32'
        ):
1051 1052
            warnings.warn(
                "NOTE: DygraphGeneratorLoader with multiprocess mode is not currently supported on MacOs and Windows."
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
            )
            self._use_multiprocess = False

        if self._use_multiprocess:
            # NOTE: the multiprocessing.Queue used to save loading data in self._process
            self._data_queue = None
            # NOTE: this process is used to load data asynchronously from self._batch_reader
            self._process = None

        # NOTE: the C++ LoDTensorBlockingQueue instance
        self._blocking_queue = None
        # NOTE: 1. In multiprocess mode, this thread is used to get next batch data from
        # self._data_queue, then push it into self._blocking_queue; 2. In singleprocess
1066
        # mode, this thread is used to get next batch data from self._batch_reader, then
1067 1068
        # push it into self._blocking_queue
        self._thread = None
1069 1070 1071
        self._pin_memory = (
            True if use_pinned_memory() is None else use_pinned_memory()
        )
1072 1073 1074 1075 1076 1077 1078 1079 1080

    @property
    def queue(self):
        return self._blocking_queue

    @property
    def iterable(self):
        return self._iterable

1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
    def _clear_and_remove_data_queue(self):
        if self._data_queue is not None:
            while True:
                try:
                    self._data_queue.get_nowait()
                except queue.Empty:
                    break
            global multiprocess_queue_set
            multiprocess_queue_set.remove(self._data_queue)

1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
    def _wait_thread_ends(self):
        thread = self._thread
        if thread is not None:
            self._blocking_queue.close()
            thread.join()

    def _wait_process_ends(self):
        process = self._process
        if process is not None:
            process.join()
            # erase process id
1102
            core._erase_process_pids(id(self))
1103

1104 1105 1106 1107 1108 1109 1110 1111 1112
    def _init_iterable(self):
        self._wait_thread_ends()
        if self._use_multiprocess:
            self._wait_process_ends()
        self._var_names = []
        self._shapes = []
        self._dtypes = []
        self._need_check_feed = []
        self._blocking_queue = core.init_lod_tensor_blocking_queue(
1113 1114
            core.Variable(), self._capacity, False
        )
1115
        self._reader = None
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
        self._reader = core.create_py_reader(
            self.queue,
            self._var_names,
            self._shapes,
            self._dtypes,
            self._need_check_feed,
            self._places,
            self._use_double_buffer,
            True,
            self._pin_memory,
        )
1127 1128 1129

    def _start(self):
        if self._use_multiprocess:
1130 1131 1132
            # clear old _data_queue and remove it from multiprocess_queue_set
            self._clear_and_remove_data_queue()
            # set data_queue and process
1133
            self._data_queue = multiprocessing.Queue(self._capacity)
1134 1135 1136
            # add _data_queue into global queue set
            global multiprocess_queue_set
            multiprocess_queue_set.add(self._data_queue)
1137 1138 1139 1140
            self._process = multiprocessing.Process(
                target=_reader_process_loop,
                args=(self._batch_reader, self._data_queue),
            )
1141 1142 1143 1144 1145
            self._process.daemon = True
            self._process.start()

            # Set child process signal handler
            # NOTE: [ avoiding hang ] 1. if the child process dies due to bus error/segfault
1146
            # or just hang, the main process will hang waiting for data, so here need to deal
1147
            # with SIGSEGV and SIGBUS of child process; 2. if the main process end before child
1148
            # process, it shuts the all its daemonic children down with a SIGTERM (instead of
1149
            # joining them without a timeout), so here nedd to deal with SIGTERM.
1150 1151
            core._set_process_pids(id(self), [self._process.pid])
            _set_SIGCHLD_handler()
1152 1153 1154 1155

            # Set reader_thread
            self._thread_done_event = threading.Event()
            self._thread = threading.Thread(
1156
                target=self._reader_thread_loop_for_multiprocess,
1157 1158
                args=(_current_expected_place(),),
            )
1159 1160 1161
            self._thread.daemon = True
            self._thread.start()
        else:
1162
            self._thread = threading.Thread(
1163
                target=self._reader_thread_loop_for_singleprocess,
1164 1165
                args=(_current_expected_place(),),
            )
1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
            self._thread.daemon = True
            self._thread.start()

    def _reset(self):
        self._reader.reset()
        self._wait_thread_ends()
        if self._use_multiprocess:
            self._wait_process_ends()

    def __iter__(self):
        assert self.iterable, "DataLoader is not iterable"
1177 1178 1179
        assert (
            self._batch_reader is not None
        ), "Data source of DataLoader has not set yet"
1180 1181 1182 1183 1184 1185 1186

        self._init_iterable()
        self._start()
        return self

    def __next__(self):
        try:
J
Jiabin Yang 已提交
1187
            if _in_eager_without_dygraph_check():
1188
                return core.eager.read_next_tensor_list(
1189 1190
                    self._reader.read_next_list()[0]
                )
1191 1192
            else:
                return self._reader.read_next_var_list()
1193 1194
        except StopIteration:
            self._reset()
1195
            raise
1196

1197 1198 1199 1200 1201 1202 1203 1204 1205
    def _exit_thread_expectedly(self):
        self._thread_done_event.set()
        self._blocking_queue.close()

    def _exit_thread_unexpectedly(self):
        self._thread_done_event.set()
        self._blocking_queue.kill()
        logging.error("DataLoader reader thread raised an exception!")

1206 1207
    def _reader_thread_loop_for_multiprocess(self, legacy_expected_place):
        # See _DataLoaderIterSingleProcess._thread_loop() for why set expected place here.
L
Leo Chen 已提交
1208
        core.set_current_thread_name("Dataloader_" + str(id(self)))
1209 1210
        _set_expected_place(legacy_expected_place)

1211 1212
        while not self._thread_done_event.is_set():
            try:
1213 1214 1215 1216
                # NOTE: [ avoid hanging ] Even with carefully designed data dependencies
                # (i.e., a put() always corresponding to a get()), hanging on get() can
                # still happen when data in queue is corrupted (e.g., due to
                # Queue.cancel_join_thread or unexpected exit). So we set a timeout whenever
1217
                # we try to get data from `data_queue`
1218 1219 1220 1221 1222 1223 1224
                # NOTE: [ avoid failed quickly ] Here, the time setting of QUEUE_GET_TIMEOUT
                # is relatively long, currently it is 60 seconds, because in some models,
                # if the reader child process starts with a heavy burden, the child process
                # has no enough time to put the data in the queue when the main process
                # start trying to get data from queue. At this time, the child thread needs
                # to wait slightly longer
                tensor_list = self._data_queue.get(timeout=QUEUE_GET_TIMEOUT)
1225
            except Exception as e:
1226 1227 1228
                # NOTE [ avoid handing ] After adding the shared memory mechanism, not only
                # the queue.Empty exception will occur here, but other exceptions will also
                # occur, such as mmap failure. If it is not handled here, it will hang.
1229
                self._exit_thread_unexpectedly()
1230 1231
                logging.error(
                    "DataLoader reader thread failed to read data from the multiprocessing.Queue."
1232
                )
1233
                raise e
1234 1235

            if not self._thread_done_event.is_set():
1236
                if tensor_list is not None:
1237 1238
                    try:
                        array = core.LoDTensorArray()
1239 1240
                        for tensor in tensor_list:
                            array.append(tensor)
1241 1242
                        if not self._blocking_queue.push(array):
                            self._blocking_queue.close()
1243
                    except Exception as e:
1244
                        self._exit_thread_unexpectedly()
1245
                        raise e
1246
                else:
1247
                    self._exit_thread_expectedly()
1248

1249
    def _reader_thread_loop_for_singleprocess(self, legacy_expected_place):
1250
        try:
1251
            # See _DataLoaderIterSingleProcess._thread_loop() for why set expected place here.
L
Leo Chen 已提交
1252
            core.set_current_thread_name("Dataloader_" + str(id(self)))
1253 1254
            _set_expected_place(legacy_expected_place)

1255 1256 1257 1258
            for sample in self._batch_reader():
                array = core.LoDTensorArray()
                for item in sample:
                    if not isinstance(item, core.LoDTensor):
1259
                        item = self._check_input_array(item)
1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270
                        tmp = core.LoDTensor()
                        tmp.set(item, core.CPUPlace())
                        item = tmp

                    array.append(item)

                if not self._blocking_queue.push(array):
                    break

            self._blocking_queue.close()
            self._thread = None
1271
        except Exception as e:
1272 1273 1274
            self._blocking_queue.kill()
            self._thread = None
            logging.warning(
1275 1276
                "DygraphDataLoader reader thread raised an exception."
            )
1277
            raise e
1278

1279 1280 1281
    def set_sample_generator(
        self, reader, batch_size, drop_last=True, places=None
    ):
1282
        assert batch_size > 0, "batch_size must be larger than 0"
1283 1284 1285 1286
        if isinstance(places, (list, tuple)):
            places = _get_paddle_place_list(places)
        else:
            places = _get_paddle_place(places)
1287 1288 1289 1290
        self.set_sample_list_generator(
            paddle.batch(reader, batch_size=batch_size, drop_last=drop_last),
            places=places,
        )
1291 1292 1293
        return self

    def set_sample_list_generator(self, reader, places=None):
1294 1295 1296 1297 1298
        if isinstance(places, (list, tuple)):
            places = _get_paddle_place_list(places)
        else:
            places = _get_paddle_place(places)

1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
        def __batch_reader_impl__():
            for batch in reader():
                slots = []
                for items in batch:
                    for i, item in enumerate(items):
                        if len(slots) < len(items):
                            slots.append([item])
                        else:
                            slots[i].append(item)
                yield slots

        self.set_batch_generator(__batch_reader_impl__, places)
        return self

    def set_batch_generator(self, reader, places=None):
1314 1315 1316 1317
        if isinstance(places, (list, tuple)):
            places = _get_paddle_place_list(places)
        else:
            places = _get_paddle_place(places)
1318
        self._batch_reader = reader
1319 1320
        if places is None:
            places = _current_expected_place()
1321
        self._places = _convert_places(places)
1322 1323 1324
        assert (
            len(self._places) == 1
        ), "Number of places must be 1 in imperative mode"
1325 1326 1327
        return self


Z
Zeng Jinle 已提交
1328
class GeneratorLoader(DataLoaderBase):
1329 1330 1331 1332 1333 1334 1335 1336 1337
    def __init__(
        self,
        feed_list=None,
        capacity=None,
        use_double_buffer=True,
        iterable=True,
        return_list=False,
        drop_last=True,
    ):
S
sneaxiy 已提交
1338
        self._tensor_reader = None
Z
Zeng Jinle 已提交
1339
        self._places = None
S
sneaxiy 已提交
1340
        self._thread = None
1341
        self._queue = None
1342
        self._feed_list = feed_list
1343 1344 1345
        self._exited = False
        self._drop_last = drop_last
        self._keep_order = keep_data_loader_order()
1346 1347
        if not capacity:
            raise ValueError("Please give value to capacity.")
1348 1349 1350 1351
        self._iterable = iterable
        self._return_list = return_list
        if not self._feed_list:
            raise Exception("Feed list must be given under static mode.")
S
sneaxiy 已提交
1352 1353 1354 1355
        self._use_double_buffer = use_double_buffer
        self._capacity = capacity
        if not self._iterable:
            self._init_non_iterable()
S
sneaxiy 已提交
1356

Z
Zeng Jinle 已提交
1357
    def _wait_thread_ends(self):
1358
        # Get self._thread first to prevent data race, because __thread_main__
Z
Zeng Jinle 已提交
1359 1360 1361 1362 1363 1364 1365 1366
        # would set self._thread be None at the end
        thread = self._thread
        if thread is not None and self._iterable:
            self._queue.close()
            thread.join()

    def _init_iterable(self):
        self._wait_thread_ends()
1367 1368 1369 1370 1371 1372
        self._var_names = [v.name for v in self._feed_list]
        self._shapes = [v.shape for v in self._feed_list]
        self._dtypes = [v.dtype for v in self._feed_list]
        self._need_check_feed = [
            v.desc.need_check_feed() for v in self._feed_list
        ]
1373
        self._queue = core.init_lod_tensor_blocking_queue(
1374 1375
            core.Variable(), self._capacity, self._keep_order
        )
1376
        self._reader = None
1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
        self._reader = core.create_py_reader(
            self.queue,
            self._var_names,
            self._shapes,
            self._dtypes,
            self._need_check_feed,
            self._places,
            self._use_double_buffer,
            self._drop_last,
            False,
        )
S
sneaxiy 已提交
1388 1389 1390 1391 1392 1393 1394

    def _init_non_iterable(self):
        lod_levels = []
        dtypes = []
        shape_concat = []
        ranks = []
        shapes = []
1395
        need_check_feed = []
S
sneaxiy 已提交
1396 1397 1398 1399 1400 1401 1402

        for feed_data in self._feed_list:
            dtypes.append(feed_data.dtype)
            shape_concat.extend(feed_data.shape)
            ranks.append(len(feed_data.shape))
            shapes.append(feed_data.shape)
            lod_levels.append(feed_data.lod_level)
1403
            need_check_feed.append(int(feed_data.desc.need_check_feed()))
S
sneaxiy 已提交
1404

Z
Zeng Jinle 已提交
1405
        queue_name = data_loader_unique_name_generator(
1406 1407
            'lod_tensor_blocking_queue'
        )
Z
Zeng Jinle 已提交
1408
        reader_name = data_loader_unique_name_generator('create_py_reader')
1409
        double_buffer_name = data_loader_unique_name_generator('double_buffer')
S
sneaxiy 已提交
1410

S
sneaxiy 已提交
1411
        var = global_scope().var(queue_name)
1412
        self._queue = core.init_lod_tensor_blocking_queue(
1413 1414
            var, self._capacity, self._keep_order
        )
1415 1416 1417 1418 1419

        if self._keep_order:
            block = default_main_program().current_block()
        else:
            block = default_startup_program().current_block()
S
sneaxiy 已提交
1420

1421
        reader_var = block.create_var(name=reader_name)
S
sneaxiy 已提交
1422

1423
        dtype_int = [int(t) for t in dtypes]
1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435
        block.append_op(
            type='create_py_reader',
            inputs={'blocking_queue': [queue_name]},
            outputs={'Out': [reader_var]},
            attrs={
                'shape_concat': shape_concat,
                'lod_levels': lod_levels,
                'dtypes': dtype_int,
                'need_check_feed': need_check_feed,
                'ranks': ranks,
            },
        )
S
sneaxiy 已提交
1436

1437 1438 1439
        reader_var.desc.set_dtypes(dtypes)
        reader_var.persistable = True
        reader_var.stop_gradient = True
S
sneaxiy 已提交
1440

1441 1442 1443 1444 1445 1446
        if self._keep_order:
            main_prog_var = reader_var
            reader = main_prog_var
            reader.reset = self._queue.reset
        else:
            main_prog_var = _copy_reader_var_(
1447 1448
                default_main_program().current_block(), reader_var
            )
1449 1450 1451

            main_prog_var.stop_gradient = True
            main_prog_var.persistable = True
S
sneaxiy 已提交
1452

1453
            reader = monkey_patch_reader_methods(main_prog_var)
S
sneaxiy 已提交
1454

1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466
        if self._use_double_buffer:
            double_buffer_reader = __create_unshared_decorated_reader__(
                'create_double_buffer_reader',
                reader,
                {},
                name=double_buffer_name,
            )
            # we return a double buffer reader. However, the reset method comes from
            # py_reader.
            double_buffer_reader.reset = reader.reset
            reader = double_buffer_reader

S
sneaxiy 已提交
1467 1468 1469 1470 1471
        self._reader = reader

        default_main_program().current_block().append_op(
            type='read',
            inputs={'Reader': [self._reader]},
1472
            outputs={'Out': self._feed_list},
1473 1474
            attrs={'drop_last': self._drop_last},
        )
S
sneaxiy 已提交
1475 1476 1477 1478 1479 1480 1481 1482

    @property
    def queue(self):
        return self._queue

    @property
    def iterable(self):
        return self._iterable
S
sneaxiy 已提交
1483

Z
Zeng Jinle 已提交
1484 1485
    def __iter__(self):
        assert self.iterable, "DataLoader is not iterable"
1486 1487 1488
        assert (
            self._tensor_reader is not None
        ), "Data source of DataLoader has not set yet"
S
sneaxiy 已提交
1489

Z
Zeng Jinle 已提交
1490
        self._init_iterable()
S
sneaxiy 已提交
1491
        self._start()
Z
Zeng Jinle 已提交
1492 1493 1494 1495
        return self

    def __next__(self):
        try:
1496
            if self._return_list:
1497 1498 1499 1500
                data = self._reader.read_next_list()
                for i in range(len(data)):
                    data[i] = data[i]._move_to_list()
                return data
1501
            else:
1502
                return self._reader.read_next()
Z
Zeng Jinle 已提交
1503 1504 1505
        except StopIteration:
            self._queue.close()
            self._reset()
1506
            raise
Z
Zeng Jinle 已提交
1507 1508

    def start(self):
1509 1510 1511
        assert (
            not self._iterable
        ), "start() cannot be called when DataLoader is iterable"
1512
        self._start()
Z
Zeng Jinle 已提交
1513 1514

    def reset(self):
1515 1516 1517
        assert (
            not self._iterable
        ), "reset() cannot be called when DataLoader is iterable"
1518
        self._reset()
Z
Zeng Jinle 已提交
1519 1520

    def _start(self):
1521
        def __thread_main__(legacy_expected_place):
Z
Zeng Jinle 已提交
1522
            try:
1523
                # See _DataLoaderIterSingleProcess._thread_loop() for why set expected place here.
L
Leo Chen 已提交
1524
                core.set_current_thread_name("Dataloader_" + str(id(self)))
1525 1526
                _set_expected_place(legacy_expected_place)

1527 1528 1529 1530
                while not self._queue.wait_for_inited(1):
                    if self._exited:
                        return

Z
Zeng Jinle 已提交
1531 1532 1533 1534
                for tensors in self._tensor_reader():
                    array = core.LoDTensorArray()
                    for item in tensors:
                        if not isinstance(item, core.LoDTensor):
1535
                            item = self._check_input_array(item)
Z
Zeng Jinle 已提交
1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546
                            tmp = core.LoDTensor()
                            tmp.set(item, core.CPUPlace())
                            item = tmp

                        array.append(item)

                    if not self._queue.push(array):
                        break

                self._queue.close()
                self._thread = None
1547
            except Exception as e:
Z
Zeng Jinle 已提交
1548
                self._queue.kill()
Z
Zeng Jinle 已提交
1549
                self._thread = None
1550
                logging.warning('Your reader has raised an exception!')
1551
                raise e
Z
Zeng Jinle 已提交
1552

1553 1554 1555
        self._thread = threading.Thread(
            target=__thread_main__, args=(_current_expected_place(),)
        )
Z
Zeng Jinle 已提交
1556 1557
        self._thread.daemon = True
        self._thread.start()
S
sneaxiy 已提交
1558

S
sneaxiy 已提交
1559
    def _reset(self):
1560
        self._queue.close()
1561
        self._exited = True
Z
Zeng Jinle 已提交
1562 1563 1564 1565
        thread = self._thread
        if thread is not None:
            thread.join()

1566
        self._exited = False
1567 1568
        self._reader.reset()

1569 1570 1571
    def set_sample_generator(
        self, reader, batch_size, drop_last=True, places=None
    ):
Z
Zeng Jinle 已提交
1572
        assert batch_size > 0, "batch_size must be larger than 0"
1573 1574 1575 1576
        if isinstance(places, (list, tuple)):
            places = _get_paddle_place_list(places)
        else:
            places = _get_paddle_place(places)
1577 1578 1579 1580 1581 1582 1583
        has_lod = False
        for f in self._feed_list:
            if f.lod_level != 0:
                has_lod = True
                break

        if has_lod:
1584 1585 1586 1587 1588 1589
            self.set_sample_list_generator(
                paddle.batch(
                    reader, batch_size=batch_size, drop_last=drop_last
                ),
                places=places,
            )
1590
        else:
1591 1592 1593 1594 1595 1596 1597
            reader = BatchedTensorProvider(
                feed_list=self._feed_list,
                place=core.CPUPlace(),
                batch_size=batch_size,
                generator=reader,
                drop_last=drop_last,
            )
1598
            self.set_batch_generator(reader, places=places)
Z
Zeng Jinle 已提交
1599 1600 1601
        return self

    def set_sample_list_generator(self, reader, places=None):
1602 1603 1604 1605
        if isinstance(places, (list, tuple)):
            places = _get_paddle_place_list(places)
        else:
            places = _get_paddle_place(places)
1606
        with program_guard(Program(), Program()):
1607 1608 1609
            feeder = DataFeeder(
                feed_list=self._feed_list, place=core.CPUPlace()
            )
1610
            paddle_reader = feeder.decorate_reader(reader, multi_devices=False)
Z
Zeng Jinle 已提交
1611

1612 1613 1614
        def __tensor_reader_impl__():
            for slots in paddle_reader():
                yield [slots[var.name] for var in self._feed_list]
Z
Zeng Jinle 已提交
1615 1616 1617 1618 1619

        self.set_batch_generator(__tensor_reader_impl__, places)
        return self

    def set_batch_generator(self, reader, places=None):
1620 1621 1622 1623
        if isinstance(places, (list, tuple)):
            places = _get_paddle_place_list(places)
        else:
            places = _get_paddle_place(places)
Z
Zeng Jinle 已提交
1624 1625
        self._tensor_reader = reader
        if self._iterable:
1626 1627 1628
            assert (
                places is not None
            ), "Places cannot be None when DataLoader is iterable"
Z
Zeng Jinle 已提交
1629 1630 1631 1632
            self._places = _convert_places(places)
        else:
            if places is not None:
                logging.info(
1633 1634
                    'places would be ommited when DataLoader is not iterable'
                )
Z
Zeng Jinle 已提交
1635 1636 1637 1638
        return self


class PyReader(DataLoaderBase):
1639
    r"""
1640
    Create a reader object for data feeding in Python.
Z
Zeng Jinle 已提交
1641
    Data would be prefetched using Python thread and be pushed
1642
    into a queue asynchronously. Data in the queue would be extracted
Z
Zeng Jinle 已提交
1643 1644
    automatically when `Executor.run(...)` is called.

1645
    Args:
Z
Zeng Jinle 已提交
1646 1647 1648
        feed_list (list(Variable)|tuple(Variable)): feed variable list.
            The variables should be created by :code:`fluid.layers.data()`.
        capacity (int): capacity of the queue maintained in PyReader.
1649 1650 1651 1652 1653
            The unit is batch number. Set larger capacity if your reader
            is fast.
        use_double_buffer (bool): whether to use double_buffer_reader.
            If use_double_buffer=True, PyReader would prefetch next
            batch data asynchronously, so it would speed up data feeding
Z
Zeng Jinle 已提交
1654
            and occupies a little more CPU or GPU memory, i.e., the memory
1655 1656 1657 1658 1659 1660 1661
            of one batch input data.
        iterable (bool): whether the created PyReader is iterable.
        return_list (bool): whether the return value on each device is
            presented as a list. It is only valid when iterable=True.
            If return_list=False, the return value on each device would
            be a dict of str -> LoDTensor, where the key of the dict is
            the name of each fed variables. If return_list=True, the
Z
Zeng Jinle 已提交
1662 1663
            return value on each device would be a list(LoDTensor). It is
            recommended to use return_list=False in static graph mode and
1664
            use return_list=True in dygraph mode.
Z
Zeng Jinle 已提交
1665 1666

    Returns:
G
guofei 已提交
1667 1668 1669 1670
        the created reader object.

    Return type:
        reader(Reader)
Z
Zeng Jinle 已提交
1671 1672 1673

    Examples:
        1. If iterable = False, the created PyReader object is almost the
1674 1675
           same as :code:`fluid.layers.py_reader()`. Operators would be
           inserted into the program. User should call :code:`start()`
Z
Zeng Jinle 已提交
1676
           before each epoch and catch :code:`fluid.core.EOFException`
1677 1678
           thrown by :code:`Executor.run()` when epoch ends. Once the
           exception is caught, user should call :code:`reset()` to reset
Z
Zeng Jinle 已提交
1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689
           the reader manually.

        .. code-block:: python

           import paddle
           import paddle.fluid as fluid
           import numpy as np

           EPOCH_NUM = 3
           ITER_NUM = 5
           BATCH_SIZE = 3
1690

G
guofei 已提交
1691 1692
           def network(image, label):
               # User-defined network, here is an example of softmax regression.
1693
               predict = fluid.layers.fc(input=image, size=10, act='softmax')
G
guofei 已提交
1694
               return fluid.layers.cross_entropy(input=predict, label=label)
Z
Zeng Jinle 已提交
1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705

           def reader_creator_random_image_and_label(height, width):
               def reader():
                   for i in range(ITER_NUM):
                       fake_image = np.random.uniform(low=0,
                                                      high=255,
                                                      size=[height, width])
                       fake_label = np.ones([1])
                       yield fake_image, fake_label
               return reader

G
guofei 已提交
1706 1707
           image = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
           label = fluid.data(name='label', shape=[None, 1], dtype='int64')
Z
Zeng Jinle 已提交
1708 1709 1710 1711 1712 1713 1714 1715

           reader = fluid.io.PyReader(feed_list=[image, label],
                                      capacity=4,
                                      iterable=False)

           user_defined_reader = reader_creator_random_image_and_label(784, 784)
           reader.decorate_sample_list_generator(
               paddle.batch(user_defined_reader, batch_size=BATCH_SIZE))
G
guofei 已提交
1716 1717
           loss = network(image, label)
           executor = fluid.Executor(fluid.CPUPlace())
Z
Zeng Jinle 已提交
1718 1719 1720 1721 1722 1723 1724 1725 1726 1727
           executor.run(fluid.default_startup_program())
           for i in range(EPOCH_NUM):
               reader.start()
               while True:
                   try:
                       executor.run(feed=None)
                   except fluid.core.EOFException:
                       reader.reset()
                       break

1728

Z
Zeng Jinle 已提交
1729
        2. If iterable=True, the created PyReader object is decoupled with
1730 1731 1732 1733
           the program. No operator would be inserted into the program.
           In this case, the created reader is a Python generator, which
           is iterable. User should feed the data yielded from PyReader
           object into :code:`Executor.run(feed=...)`.
Z
Zeng Jinle 已提交
1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744

        .. code-block:: python

           import paddle
           import paddle.fluid as fluid
           import numpy as np

           EPOCH_NUM = 3
           ITER_NUM = 5
           BATCH_SIZE = 10

G
guofei 已提交
1745 1746
           def network(image, label):
               # User-defined network, here is an example of softmax regression.
1747
               predict = fluid.layers.fc(input=image, size=10, act='softmax')
G
guofei 已提交
1748 1749
               return fluid.layers.cross_entropy(input=predict, label=label)

Z
Zeng Jinle 已提交
1750 1751 1752
           def reader_creator_random_image(height, width):
               def reader():
                   for i in range(ITER_NUM):
G
guofei 已提交
1753 1754
                       fake_image = np.random.uniform(low=0, high=255, size=[height, width])
                       fake_label = np.ones([1])
1755
                       yield fake_image, fake_label
Z
Zeng Jinle 已提交
1756 1757
               return reader

G
guofei 已提交
1758 1759 1760
           image = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
           label = fluid.data(name='label', shape=[None, 1], dtype='int64')
           reader = fluid.io.PyReader(feed_list=[image, label], capacity=4, iterable=True, return_list=False)
Z
Zeng Jinle 已提交
1761 1762 1763 1764

           user_defined_reader = reader_creator_random_image(784, 784)
           reader.decorate_sample_list_generator(
               paddle.batch(user_defined_reader, batch_size=BATCH_SIZE),
G
guofei 已提交
1765
                   fluid.core.CPUPlace())
1766

G
guofei 已提交
1767 1768 1769
           loss = network(image, label)
           executor = fluid.Executor(fluid.CPUPlace())
           executor.run(fluid.default_startup_program())
1770

Z
Zeng Jinle 已提交
1771 1772
           for _ in range(EPOCH_NUM):
               for data in reader():
G
guofei 已提交
1773
                   executor.run(feed=data, fetch_list=[loss])
Z
Zeng Jinle 已提交
1774 1775


1776
        3. If return_list=True, the return values would be presented as list instead of dict.
Z
Zeng Jinle 已提交
1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805
           This is usually used in dygraph mode.

        .. code-block:: python

           import paddle
           import paddle.fluid as fluid
           import numpy as np

           ITER_NUM = 5
           BATCH_SIZE = 10

           def reader_creator_random_image(height, width):
               def reader():
                   for i in range(ITER_NUM):
                       yield np.random.uniform(low=0, high=255, size=[height, width]), \
                           np.random.random_integers(low=0, high=9, size=[1])
               return reader

           place = fluid.CPUPlace()
           with fluid.dygraph.guard(place):
               py_reader = fluid.io.PyReader(capacity=2, return_list=True)
               user_defined_reader = reader_creator_random_image(784, 784)
               py_reader.decorate_sample_list_generator(
                   paddle.batch(user_defined_reader, batch_size=BATCH_SIZE),
                   place)
               for image, label in py_reader():
                   relu = fluid.layers.relu(image)
    """

1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816
    def __init__(
        self,
        feed_list=None,
        capacity=None,
        use_double_buffer=True,
        iterable=True,
        return_list=False,
    ):
        self._loader = DataLoader.from_generator(
            feed_list, capacity, use_double_buffer, iterable, return_list
        )
Z
Zeng Jinle 已提交
1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830

    @property
    def queue(self):
        return self._loader.queue

    @property
    def iterable(self):
        return self._loader.iterable

    def __iter__(self):
        return self._loader.__iter__()

    def __next__(self):
        return self._loader.__next__()
S
sneaxiy 已提交
1831 1832

    def start(self):
S
add doc  
sneaxiy 已提交
1833
        '''
1834 1835 1836
        Start the data feeding thread.
        Can only call when the reader object is not iterable.

1837 1838
        Example:
            .. code-block:: python
1839

H
Huihuang Zheng 已提交
1840 1841 1842 1843
                import paddle
                import paddle.fluid as fluid
                import numpy as np

1844 1845 1846 1847 1848 1849
                BATCH_SIZE = 10

                def generator():
                    for i in range(5):
                        yield np.random.uniform(low=0, high=255, size=[784, 784]),

G
guofei 已提交
1850
                image = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
1851 1852 1853 1854
                reader = fluid.io.PyReader(feed_list=[image], capacity=4, iterable=False)
                reader.decorate_sample_list_generator(
                    paddle.batch(generator, batch_size=BATCH_SIZE))

G
guofei 已提交
1855
                executor = fluid.Executor(fluid.CPUPlace())
1856 1857 1858 1859 1860 1861 1862 1863 1864 1865
                executor.run(fluid.default_startup_program())
                for i in range(3):
                    reader.start()
                    while True:
                        try:
                            executor.run(feed=None)
                        except fluid.core.EOFException:
                            reader.reset()
                            break

1866
        '''
Z
Zeng Jinle 已提交
1867
        self._loader.start()
S
sneaxiy 已提交
1868

S
sneaxiy 已提交
1869
    def reset(self):
S
add doc  
sneaxiy 已提交
1870
        '''
1871
        Reset the reader object when :code:`fluid.core.EOFException` raises.
S
add doc  
sneaxiy 已提交
1872
        Can only call when the reader object is not iterable.
1873

1874 1875 1876
        Example:
            .. code-block:: python

H
Huihuang Zheng 已提交
1877 1878 1879 1880
                import paddle
                import paddle.fluid as fluid
                import numpy as np

1881 1882 1883 1884 1885 1886
                BATCH_SIZE = 10

                def generator():
                    for i in range(5):
                        yield np.random.uniform(low=0, high=255, size=[784, 784]),

G
guofei 已提交
1887
                image = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
1888 1889 1890 1891
                reader = fluid.io.PyReader(feed_list=[image], capacity=4, iterable=False)
                reader.decorate_sample_list_generator(
                    paddle.batch(generator, batch_size=BATCH_SIZE))

G
guofei 已提交
1892
                executor = fluid.Executor(fluid.CPUPlace())
1893 1894 1895 1896 1897 1898 1899 1900
                executor.run(fluid.default_startup_program())
                for i in range(3):
                    reader.start()
                    while True:
                        try:
                            executor.run(feed=None)
                        except fluid.core.EOFException:
                            reader.reset()
1901
                            break
1902

S
add doc  
sneaxiy 已提交
1903
        '''
Z
Zeng Jinle 已提交
1904
        self._loader.reset()
S
sneaxiy 已提交
1905

1906 1907 1908
    def decorate_sample_generator(
        self, sample_generator, batch_size, drop_last=True, places=None
    ):
S
sneaxiy 已提交
1909 1910
        '''
        Set the data source of the PyReader object.
1911

S
sneaxiy 已提交
1912
        The provided :code:`sample_generator` should be a Python generator,
1913
        which yields list(numpy.ndarray)-typed data of each sample.
S
sneaxiy 已提交
1914 1915 1916

        :code:`places` must be set when the PyReader object is iterable.

1917
        If all inputs have no lods, this method is faster than
S
sneaxiy 已提交
1918
        :code:`decorate_sample_list_generator(paddle.batch(sample_generator, ...))` .
S
sneaxiy 已提交
1919 1920 1921

        Args:
            sample_generator (generator): Python generator that yields
1922
                list(numpy.ndarray)-typed sample data.
S
sneaxiy 已提交
1923 1924
            batch_size (int): batch size. Must be larger than 0.
            drop_last (bool): Whether to drop the last batch when sample number
1925
                is less than batch_size.
S
sneaxiy 已提交
1926 1927
            places (None|list(CUDAPlace)|list(CPUPlace)): place list. Must
                be provided when PyReader is iterable.
1928 1929 1930 1931

        Example:
            .. code-block:: python

H
Huihuang Zheng 已提交
1932 1933 1934
                import paddle.fluid as fluid
                import numpy as np

1935 1936 1937
                EPOCH_NUM = 3
                ITER_NUM = 15
                BATCH_SIZE = 3
1938

G
guofei 已提交
1939 1940
                def network(image, label):
                    # User-defined network, here is an example of softmax regression.
1941
                    predict = fluid.layers.fc(input=image, size=10, act='softmax')
G
guofei 已提交
1942
                    return fluid.layers.cross_entropy(input=predict, label=label)
1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953

                def random_image_and_label_generator(height, width):
                    def generator():
                        for i in range(ITER_NUM):
                            fake_image = np.random.uniform(low=0,
                                                           high=255,
                                                           size=[height, width])
                            fake_label = np.array([1])
                            yield fake_image, fake_label
                    return generator

G
guofei 已提交
1954 1955
                image = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
                label = fluid.data(name='label', shape=[None, 1], dtype='int64')
1956 1957 1958 1959 1960
                reader = fluid.io.PyReader(feed_list=[image, label], capacity=4, iterable=True)

                user_defined_generator = random_image_and_label_generator(784, 784)
                reader.decorate_sample_generator(user_defined_generator,
                                                 batch_size=BATCH_SIZE,
G
guofei 已提交
1961 1962 1963 1964
                                                 places=[fluid.CPUPlace()])
                loss = network(image, label)
                executor = fluid.Executor(fluid.CPUPlace())
                executor.run(fluid.default_startup_program())
1965 1966 1967

                for _ in range(EPOCH_NUM):
                    for data in reader():
G
guofei 已提交
1968
                        executor.run(feed=data, fetch_list=[loss])
1969

S
sneaxiy 已提交
1970
        '''
1971 1972 1973
        self._loader.set_sample_generator(
            sample_generator, batch_size, drop_last, places
        )
S
sneaxiy 已提交
1974

S
sneaxiy 已提交
1975
    def decorate_sample_list_generator(self, reader, places=None):
S
add doc  
sneaxiy 已提交
1976
        '''
1977
        Set the data source of the PyReader object.
S
add doc  
sneaxiy 已提交
1978 1979

        The provided :code:`reader` should be a Python generator,
1980 1981
        which yields list(numpy.ndarray) typed batched data.

S
add doc  
sneaxiy 已提交
1982 1983 1984
        :code:`places` must be set when the PyReader object is iterable.

        Args:
1985 1986
            reader (generator): Python generator that yields
                list(numpy.ndarray)-typed batched data.
S
sneaxiy 已提交
1987 1988
            places (None|list(CUDAPlace)|list(CPUPlace)): place list. Must
                be provided when PyReader is iterable.
1989

1990 1991 1992
        Example:
            .. code-block:: python

H
Huihuang Zheng 已提交
1993 1994 1995 1996
                import paddle
                import paddle.fluid as fluid
                import numpy as np

1997 1998 1999 2000
                EPOCH_NUM = 3
                ITER_NUM = 15
                BATCH_SIZE = 3

G
guofei 已提交
2001 2002
                def network(image, label):
                    # User-defined network, here is an example of softmax regression.
2003
                    predict = fluid.layers.fc(input=image, size=10, act='softmax')
G
guofei 已提交
2004 2005
                    return fluid.layers.cross_entropy(input=predict, label=label)

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
                def random_image_and_label_generator(height, width):
                    def generator():
                        for i in range(ITER_NUM):
                            fake_image = np.random.uniform(low=0,
                                                           high=255,
                                                           size=[height, width])
                            fake_label = np.ones([1])
                            yield fake_image, fake_label
                    return generator

G
guofei 已提交
2016 2017
                image = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
                label = fluid.data(name='label', shape=[None, 1], dtype='int64')
2018 2019 2020 2021 2022
                reader = fluid.io.PyReader(feed_list=[image, label], capacity=4, iterable=True)

                user_defined_generator = random_image_and_label_generator(784, 784)
                reader.decorate_sample_list_generator(
                    paddle.batch(user_defined_generator, batch_size=BATCH_SIZE),
G
guofei 已提交
2023
                    fluid.core.CPUPlace())
2024

G
guofei 已提交
2025 2026 2027
                loss = network(image, label)
                executor = fluid.Executor(fluid.core.CPUPlace())
                executor.run(fluid.default_startup_program())
2028 2029 2030

                for _ in range(EPOCH_NUM):
                    for data in reader():
G
guofei 已提交
2031
                        executor.run(feed=data, fetch_list=[loss])
2032

S
add doc  
sneaxiy 已提交
2033
        '''
Z
Zeng Jinle 已提交
2034
        self._loader.set_sample_list_generator(reader, places)
S
sneaxiy 已提交
2035

S
sneaxiy 已提交
2036
    def decorate_batch_generator(self, reader, places=None):
S
add doc  
sneaxiy 已提交
2037 2038 2039 2040
        '''
        Set the data source of the PyReader object.

        The provided :code:`reader` should be a Python generator,
S
sneaxiy 已提交
2041
        which yields numpy.ndarray-typed or LoDTensor-typed batched data.
S
add doc  
sneaxiy 已提交
2042 2043 2044 2045 2046 2047

        :code:`places` must be set when the PyReader object is iterable.

        Args:
            reader (generator): Python generator that yields LoDTensor-typed
                batched data.
S
sneaxiy 已提交
2048
            places (None|list(CUDAPlace)|list(CPUPlace)): place list. Must
S
sneaxiy 已提交
2049
                be provided when PyReader is iterable.
2050 2051 2052 2053

        Example:
            .. code-block:: python

H
Huihuang Zheng 已提交
2054 2055 2056
                import paddle.fluid as fluid
                import numpy as np

2057 2058 2059
                EPOCH_NUM = 3
                ITER_NUM = 15
                BATCH_SIZE = 3
2060

G
guofei 已提交
2061 2062
                def network(image, label):
                    # User-defined network, here is an example of softmax regression.
2063
                    predict = fluid.layers.fc(input=image, size=10, act='softmax')
G
guofei 已提交
2064
                    return fluid.layers.cross_entropy(input=predict, label=label)
2065 2066 2067 2068 2069 2070 2071 2072

                def random_image_and_label_generator(height, width):
                    def generator():
                        for i in range(ITER_NUM):
                            batch_image = np.random.uniform(low=0,
                                                            high=255,
                                                            size=[BATCH_SIZE, height, width])
                            batch_label = np.ones([BATCH_SIZE, 1])
G
guofei 已提交
2073 2074
                            batch_image = batch_image.astype('float32')
                            batch_label = batch_label.astype('int64')
2075 2076 2077
                            yield batch_image, batch_label
                    return generator

G
guofei 已提交
2078 2079
                image = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
                label = fluid.data(name='label', shape=[None, 1], dtype='int64')
2080 2081 2082
                reader = fluid.io.PyReader(feed_list=[image, label], capacity=4, iterable=True)

                user_defined_generator = random_image_and_label_generator(784, 784)
G
guofei 已提交
2083
                reader.decorate_batch_generator(user_defined_generator, fluid.CPUPlace())
2084

G
guofei 已提交
2085 2086 2087
                loss = network(image, label)
                executor = fluid.Executor(fluid.CPUPlace())
                executor.run(fluid.default_startup_program())
2088 2089 2090

                for _ in range(EPOCH_NUM):
                    for data in reader():
G
guofei 已提交
2091
                        executor.run(feed=data, fetch_list=[loss])
2092

S
add doc  
sneaxiy 已提交
2093
        '''
Z
Zeng Jinle 已提交
2094 2095 2096 2097 2098
        self._loader.set_batch_generator(reader, places)


class DatasetLoader(DataLoaderBase):
    def __init__(self, dataset, places, drop_last):
2099 2100 2101 2102 2103
        assert isinstance(
            dataset, paddle.distributed.fleet.dataset.DatasetBase
        ), "dataset must be type of DatasetBase"
        assert (
            not _non_static_mode()
Z
Zeng Jinle 已提交
2104
        ), "DatasetLoader is not supported in dygraph mode yet"
2105 2106 2107 2108
        if isinstance(places, (list, tuple)):
            places = _get_paddle_place_list(places)
        else:
            places = _get_paddle_place(places)
Z
Zeng Jinle 已提交
2109 2110 2111

        thread_num = len(places)

2112 2113 2114 2115 2116
        assert (
            len(dataset.filelist) >= thread_num
        ), "Filelist number of dataset {} must be not less than place number {}".format(
            len(dataset.filelist), thread_num
        )
Z
Zeng Jinle 已提交
2117 2118

        if dataset.thread_num != 0 and dataset.thread_num != thread_num:
2119 2120
            logging.warn(
                'thread_num {} which is set in Dataset is ignored'.format(
2121 2122 2123
                    dataset.thread_num
                )
            )
Z
Zeng Jinle 已提交
2124

2125
        dataset._set_thread(thread_num)
Z
Zeng Jinle 已提交
2126

2127 2128 2129 2130 2131 2132
        if (
            isinstance(
                dataset, paddle.distributed.fleet.dataset.InMemoryDataset
            )
            and dataset.queue_num > thread_num
        ):
2133 2134
            logging.warn(
                "queue_num {} which is set in Dataset is ignored".format(
2135 2136 2137
                    dataset.queue_num
                )
            )
2138
            dataset._set_queue_num(thread_num)
Z
Zeng Jinle 已提交
2139 2140 2141

        self._dataset = dataset
        use_slots = [
2142 2143
            slot.name
            for slot in dataset.proto_desc.multi_slot_desc.slots
Z
Zeng Jinle 已提交
2144 2145 2146 2147
            if slot.is_used
        ]

        self._iterable_dataset = core.IterableDatasetWrapper(
2148 2149 2150 2151 2152 2153
            dataset.dataset,
            use_slots,
            _convert_places(places),
            dataset.proto_desc.batch_size,
            drop_last,
        )
Z
Zeng Jinle 已提交
2154 2155 2156 2157 2158 2159 2160 2161 2162

    def __iter__(self):
        self._dataset._finish_to_run()
        self._dataset._prepare_to_run()
        self._iterable_dataset._start()
        return self

    def __next__(self):
        return self._iterable_dataset._next()