paddle_pass_builder.cc 16.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/inference/api/paddle_pass_builder.h"
16 17 18
#ifdef PADDLE_WITH_CUDA
#include <cudnn.h>
#endif
19 20 21
#ifdef PADDLE_WITH_HIP
#include <miopen/miopen.h>
#endif
22
#include <glog/logging.h>
23

24
#include <algorithm>
25
#include <sstream>
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54

namespace paddle {

void PaddlePassBuilder::AppendPass(const std::string &pass_type) {
  passes_.push_back(pass_type);
}

void PaddlePassBuilder::TurnOnDebug() {
  std::vector<std::string> passes;
  auto it = std::begin(passes_);
  while (it != std::end(passes_)) {
    if (*it != "graph_viz_pass") {
      it = passes_.insert(it + 1, "graph_viz_pass");
    } else {
      ++it;
    }
  }
}

std::string PaddlePassBuilder::DebugString() {
  std::stringstream ss;
  ss << "Passes to apply:\n";
  for (auto &pass : passes_) {
    ss << "  - " << pass << '\n';
  }
  return ss.str();
}

void PaddlePassBuilder::DeletePass(const std::string &pass_type) {
55
  deleted_passes_.insert(pass_type);
56 57 58 59 60 61 62 63 64 65
  auto it = std::begin(passes_);
  while (it != std::end(passes_)) {
    if (*it == pass_type) {
      it = passes_.erase(it);
    } else {
      ++it;
    }
  }
}

66 67 68 69 70 71
size_t PaddlePassBuilder::GetPassIndex(const std::string &pass_type) {
  auto iter = std::find(std::begin(passes_), std::end(passes_), pass_type);
  if (iter == std::end(passes_)) return -1;
  return std::distance(std::begin(passes_), iter);
}

72 73 74 75 76 77 78 79
void PaddlePassBuilder::InsertPass(size_t idx, const std::string &pass_type) {
  passes_.insert(std::begin(passes_) + idx, pass_type);
}

void PaddlePassBuilder::DeletePass(size_t idx) {
  passes_.erase(std::begin(passes_) + idx);
}

W
Wojciech Uss 已提交
80 81
void PaddlePassBuilder::AppendAnalysisPass(const std::string &pass) {
  analysis_passes_.push_back(pass);
82 83
}

W
Wojciech Uss 已提交
84 85
void PaddlePassBuilder::ClearPasses() { passes_.clear(); }

86
const std::vector<std::string> kTRTSubgraphPasses({
87 88
  "identity_scale_op_clean_pass",              //
      "adaptive_pool2d_convert_global_pass",   //
89 90
      "shuffle_channel_detect_pass",           //
      "quant_conv2d_dequant_fuse_pass",        //
S
shentanyue 已提交
91
      "delete_fill_constant_op_pass",          //
92 93 94 95 96
      "delete_quant_dequant_op_pass",          //
      "delete_quant_dequant_filter_op_pass",   //
      "delete_weight_dequant_linear_op_pass",  //
      "delete_quant_dequant_linear_op_pass",   //
      "add_support_int8_pass",                 //
97 98
      // "fc_fuse_pass",                        //
      "simplify_with_basic_ops_pass",                 //
99
      "trt_embedding_eltwise_layernorm_fuse_pass",    //
100
      "preln_embedding_eltwise_layernorm_fuse_pass",  //
101
      "delete_c_identity_op_pass",                    //
102 103 104
      "trt_multihead_matmul_fuse_pass_v2",            //
      "trt_multihead_matmul_fuse_pass_v3",            //
      "trt_skip_layernorm_fuse_pass",                 //
105
      "preln_skip_layernorm_fuse_pass",               //
106
      "preln_residual_bias_fuse_pass",                //
107
      // "set_transformer_input_convert_pass",           //
108 109 110 111 112 113 114 115 116 117 118 119
      "conv_bn_fuse_pass",                           //
      "unsqueeze2_eltwise_fuse_pass",                //
      "trt_squeeze2_matmul_fuse_pass",               //
      "trt_reshape2_matmul_fuse_pass",               //
      "trt_flatten2_matmul_fuse_pass",               //
      "trt_map_matmul_v2_to_mul_pass",               //
      "trt_map_matmul_v2_to_matmul_pass",            //
      "trt_map_matmul_to_mul_pass",                  //
      "fc_fuse_pass",                                //
      "conv_elementwise_add_fuse_pass",              //
      "remove_padding_recover_padding_pass",         //
      "delete_remove_padding_recover_padding_pass",  //
120
      // "yolo_box_fuse_pass",      //
121 122 123 124
      "dense_fc_to_sparse_pass",                //
      "dense_multihead_matmul_to_sparse_pass",  //
      "tensorrt_subgraph_pass",                 //
      "conv_bn_fuse_pass",                      //
125 126
#if CUDNN_VERSION >= 7100  // To run conv_fusion, the version of cudnn must be
                           // guaranteed at least v7
127 128 129
// cudnn8.0 has memory leak problem in conv + eltwise + act, so we
// disable the pass.
#if !(CUDNN_VERSION >= 8000 && CUDNN_VERSION < 8100)
130 131
      "conv_elementwise_add_act_fuse_pass",   //
      "conv_elementwise_add2_act_fuse_pass",  //
132 133
#endif
#endif
134 135 136
      "transpose_flatten_concat_fuse_pass",
});

D
denglin-github 已提交
137 138
const std::vector<std::string> kDlnneSubgraphPasses({
    "is_test_pass",                  //
M
ming1753 已提交
139
    "delete_dropout_op_pass",        //
D
denglin-github 已提交
140 141 142 143 144 145 146
    "simplify_with_basic_ops_pass",  //
    "conv_bn_fuse_pass",             //
    "depthwise_conv_bn_fuse_pass",   //
    "shuffle_channel_detect_pass",   //
    "dlnne_subgraph_pass",           //
});

石晓伟 已提交
147 148 149 150 151 152
const std::vector<std::string> kLiteSubgraphPasses({
#ifdef PADDLE_WITH_LITE
    "lite_subgraph_pass",
#endif
});

153 154 155 156
// TODO(inference): Most of the existing pass fusion operators do not
// support fp16/bf16 precision, temporarily use low precision pass to prevent
// running errors. After fusion operator supports low precision, delete this.
const std::vector<std::string> kGpuLowerPrecisionPasses{
W
Wilber 已提交
157
    "simplify_with_basic_ops_pass",
158 159 160 161
    "conv_bn_fuse_pass",
    "conv_eltwiseadd_bn_fuse_pass",
    "conv_elementwise_add_act_fuse_pass",
    "conv_elementwise_add2_act_fuse_pass",
M
ming1753 已提交
162
    "conv_elementwise_add_fuse_pass",
W
Wilber 已提交
163 164 165
    "multihead_matmul_fuse_pass_v2",
    "gpu_cpu_map_matmul_v2_to_mul_pass",
    "gpu_cpu_map_matmul_v2_to_matmul_pass",
166 167 168
    "fc_fuse_pass",
    "fc_elementwise_layernorm_fuse_pass",
};
169

170
const std::vector<std::string> kTrtLowerPrecisionPasses{
W
Wilber 已提交
171
    "simplify_with_basic_ops_pass",
172 173
    // "conv_bn_fuse_pass",
    // "conv_eltwiseadd_bn_fuse_pass",
174 175 176 177
    "trt_map_matmul_v2_to_mul_pass",
    "trt_map_matmul_v2_to_matmul_pass",
    "trt_map_matmul_to_mul_pass",
    "fc_fuse_pass",
178 179 180
    "tensorrt_subgraph_pass",
};

181 182
GpuPassStrategy::GpuPassStrategy() : PassStrategy({}) {
  passes_.assign({
183
    //   "identity_scale_op_clean_pass",             //
184 185 186 187 188 189 190 191 192 193 194
    "is_test_pass",                               //
        "simplify_with_basic_ops_pass",           //
        "conv_bn_fuse_pass",                      //
        "conv_eltwiseadd_bn_fuse_pass",           //
        "embedding_eltwise_layernorm_fuse_pass",  //
        "multihead_matmul_fuse_pass_v2",          //
        "gpu_cpu_squeeze2_matmul_fuse_pass",      //
        "gpu_cpu_reshape2_matmul_fuse_pass",      //
        "gpu_cpu_flatten2_matmul_fuse_pass",      //
        "gpu_cpu_map_matmul_v2_to_mul_pass",      //
        "gpu_cpu_map_matmul_v2_to_matmul_pass",   //
195 196
        "matmul_scale_fuse_pass",                 //
        "multihead_matmul_fuse_pass_v3",          //
197 198 199
        "gpu_cpu_map_matmul_to_mul_pass",         //
        "fc_fuse_pass",                           //
        "fc_elementwise_layernorm_fuse_pass",     //
200 201
#if CUDNN_VERSION >= 7100  // To run conv_fusion, the version of cudnn must be
                           // guaranteed at least v7
202 203 204
// cudnn8.0 has memory leak problem in conv + eltwise + act, so we
// disable the pass.
#if !(CUDNN_VERSION >= 8000 && CUDNN_VERSION < 8100)
205 206
        "conv_elementwise_add_act_fuse_pass",   //
        "conv_elementwise_add2_act_fuse_pass",  //
207 208 209 210
#endif
        "conv_elementwise_add_fuse_pass",      //
#endif                                         //
        "transpose_flatten_concat_fuse_pass",  //
211
        // following pass should be located in the last, since it will
212 213
        // work on all fused ops.
        "runtime_context_cache_pass"
214 215 216 217 218
  });

  use_gpu_ = true;
}

219 220 221 222 223 224 225
void GpuPassStrategy::EnableCUDNN() {
  if (!use_cudnn_) {
    passes_.insert(passes_.begin(), "cudnn_placement_pass");
  }
  use_cudnn_ = true;
}

W
Wojciech Uss 已提交
226 227
void GpuPassStrategy::EnableMKLDNN() {
  LOG(ERROR) << "GPU not support MKLDNN yet";
228 229
}

W
Wojciech Uss 已提交
230 231
void GpuPassStrategy::EnableMkldnnQuantizer() {
  LOG(ERROR) << "GPU not support MKL-DNN quantization";
Y
Yan Chunwei 已提交
232 233
}

234 235 236 237
void GpuPassStrategy::EnableMkldnnBfloat16() {
  LOG(ERROR) << "GPU not support MKL-DNN bfloat16";
}

B
baoachun 已提交
238 239 240 241
void GpuPassStrategy::EnableMkldnnInt8() {
  LOG(ERROR) << "GPU not support MKL-DNN int8";
}

242 243 244
CpuPassStrategy::CpuPassStrategy() : PassStrategy({}) {
  // NOTE the large fusions should be located in the front, so that they will
  // not be damaged by smaller ones.
245 246
  passes_.assign({"simplify_with_basic_ops_pass",  //
                  "layer_norm_fuse_pass",
247
                  "attention_lstm_fuse_pass",       //
248 249
                  "seqconv_eltadd_relu_fuse_pass",  //
                  // "seqpool_concat_fuse_pass",    //
250
                  "seqpool_cvm_concat_fuse_pass",  //
251
                  // "embedding_fc_lstm_fuse_pass", //
252
                  // TODO(wilber): fix correctness problem.
253
                  // "fc_lstm_fuse_pass",                    //
254 255 256 257
                  "mul_lstm_fuse_pass",                      //
                  "fc_gru_fuse_pass",                        //
                  "mul_gru_fuse_pass",                       //
                  "seq_concat_fc_fuse_pass",                 //
258 259 260
                  "gpu_cpu_squeeze2_matmul_fuse_pass",       //
                  "gpu_cpu_reshape2_matmul_fuse_pass",       //
                  "gpu_cpu_flatten2_matmul_fuse_pass",       //
H
heliqi 已提交
261
                  "matmul_v2_scale_fuse_pass",               //
262 263
                  "gpu_cpu_map_matmul_v2_to_mul_pass",       //
                  "gpu_cpu_map_matmul_v2_to_matmul_pass",    //
H
heliqi 已提交
264
                  "matmul_scale_fuse_pass",                  //
265
                  "gpu_cpu_map_matmul_to_mul_pass",          //
266 267 268 269 270 271 272 273
                  "fc_fuse_pass",                            //
                  "repeated_fc_relu_fuse_pass",              //
                  "squared_mat_sub_fuse_pass",               //
                  "conv_bn_fuse_pass",                       //
                  "conv_eltwiseadd_bn_fuse_pass",            //
                  "conv_transpose_bn_fuse_pass",             //
                  "conv_transpose_eltwiseadd_bn_fuse_pass",  //
                  "is_test_pass",                            //
274 275
                  // following pass should be located in the last, since
                  // it will work on all fused ops.
276
                  "runtime_context_cache_pass"});
Y
Yan Chunwei 已提交
277

278 279
  use_gpu_ = false;
}
W
Wojciech Uss 已提交
280

281 282
void CpuPassStrategy::EnableCUDNN() { LOG(ERROR) << "CPU not support cuDNN"; }

W
Wojciech Uss 已提交
283 284 285 286 287 288
void CpuPassStrategy::EnableMKLDNN() {
// TODO(Superjomn) Consider the way to mix CPU with GPU.
#ifdef PADDLE_WITH_MKLDNN
  if (!use_mkldnn_) {
    passes_.insert(passes_.begin(), "mkldnn_placement_pass");

289
    for (auto &pass : std::vector<std::string>({
290 291 292
             "depthwise_conv_mkldnn_pass",    //
             "conv_bn_fuse_pass",             // Execute BN passes again to
             "conv_eltwiseadd_bn_fuse_pass",  // preserve correct pass order
293 294
             "conv_affine_channel_mkldnn_fuse_pass",    //
             "conv_transpose_bn_fuse_pass",             //
295 296
             "conv_transpose_eltwiseadd_bn_fuse_pass",  //
             "conv_bias_mkldnn_fuse_pass",              //
297
             "conv_transpose_bias_mkldnn_fuse_pass",
298 299
             // TODO(baoachun): Need to support 5-dimensional input.
             // "conv3d_bias_mkldnn_fuse_pass",  //
300 301
             "conv_elementwise_add_mkldnn_fuse_pass",
             "conv_concat_relu_mkldnn_fuse_pass",
302
             "conv_activation_mkldnn_fuse_pass",              //
303 304 305 306 307
             "scale_matmul_fuse_pass",                        //
             "reshape_transpose_matmul_mkldnn_fuse_pass",     //
             "reshape_transpose_matmul_v2_mkldnn_fuse_pass",  //
             "matmul_transpose_reshape_fuse_pass",            //
             "matmul_v2_transpose_reshape_fuse_pass",         //
308
             // Disabled due to topology-dependent speed-up
H
heliqi 已提交
309 310
             //  "fc_mkldnn_pass",
             //  "fc_act_mkldnn_fuse_pass",
311
             "fc_elementwise_add_mkldnn_fuse_pass",   //
312 313
             "batch_norm_act_fuse_pass",              //
             "softplus_activation_mkldnn_fuse_pass",  //
314
             "shuffle_channel_mkldnn_detect_pass",    //
315
             "elt_act_mkldnn_fuse_pass",              //
316
             "matmul_activation_mkldnn_fuse_pass",    //
317 318
             // TODO(intel): Please fix the bug on windows.
             // https://github.com/PaddlePaddle/Paddle/issues/29710
319
             // "mkldnn_inplace_pass",  // This pass should be activated after
320 321
             // fuses. Disabled by default due to
             // little gain and lots of problems
322
         })) {
W
Wojciech Uss 已提交
323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
      passes_.push_back(pass);
    }
  }
  use_mkldnn_ = true;
#else
  use_mkldnn_ = false;
#endif
}

void CpuPassStrategy::EnableMkldnnQuantizer() {
#ifdef PADDLE_WITH_MKLDNN
  if (!use_mkldnn_quantizer_) {
    passes_.push_back("cpu_quantize_placement_pass");
  }
  use_mkldnn_quantizer_ = true;
#else
  use_mkldnn_quantizer_ = false;
#endif
}

343 344
void CpuPassStrategy::EnableMkldnnBfloat16() {
#ifdef PADDLE_WITH_MKLDNN
345
  if (!use_mkldnn_bfloat16_) {
T
Tomasz Socha 已提交
346 347 348 349
    passes_.push_back("fc_mkldnn_pass");
    passes_.push_back("fc_act_mkldnn_fuse_pass");
    passes_.push_back("fc_elementwise_add_mkldnn_fuse_pass");

350 351
    passes_.push_back("cpu_bfloat16_placement_pass");
    passes_.push_back("cpu_bfloat16_pass");
352
    passes_.push_back("cpu_quantize_squash_pass");
353
  }
354 355 356 357 358 359
  use_mkldnn_bfloat16_ = true;
#else
  use_mkldnn_bfloat16_ = false;
#endif
}

B
baoachun 已提交
360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
void CpuPassStrategy::EnableMkldnnInt8() {
#ifdef PADDLE_WITH_MKLDNN
  if (!use_mkldnn_int8_) {
    passes_.clear();
    passes_.push_back("quant_dequant_mkldnn_pass");
    passes_.push_back("layer_norm_fuse_pass");
    passes_.push_back("attention_lstm_fuse_pass");
    passes_.push_back("seqconv_eltadd_relu_fuse_pass");
    passes_.push_back("fc_lstm_fuse_pass");
    passes_.push_back("mul_lstm_fuse_pass");
    passes_.push_back("fc_gru_fuse_pass");
    passes_.push_back("mul_gru_fuse_pass");
    passes_.push_back("multi_gru_fuse_pass");
    passes_.push_back("multi_gru_seq_fuse_pass");
    passes_.push_back("seq_concat_fc_fuse_pass");
    passes_.push_back("gpu_cpu_squeeze2_matmul_fuse_pass");
    passes_.push_back("gpu_cpu_reshape2_matmul_fuse_pass");
    passes_.push_back("gpu_cpu_flatten2_matmul_fuse_pass");
    passes_.push_back("matmul_v2_scale_fuse_pass");
    passes_.push_back("squared_mat_sub_fuse_pass");
    passes_.push_back("is_test_pass");
    passes_.push_back("gpu_cpu_map_matmul_v2_to_mul_pass");
    passes_.push_back("gpu_cpu_map_matmul_v2_to_matmul_pass");
    passes_.push_back("matmul_scale_fuse_pass");
    passes_.push_back("gpu_cpu_map_matmul_to_mul_pass");
    passes_.push_back("repeated_fc_relu_fuse_pass");
    passes_.push_back("mkldnn_placement_pass");
    passes_.push_back("depthwise_conv_mkldnn_pass");
    passes_.push_back("conv_bn_fuse_pass");
    passes_.push_back("conv_eltwiseadd_bn_fuse_pass");
    passes_.push_back("conv_transpose_bn_fuse_pass");
    passes_.push_back("conv_transpose_eltwiseadd_bn_fuse_pass");
    passes_.push_back("conv_bias_mkldnn_fuse_pass");
    passes_.push_back("conv_transpose_bias_mkldnn_fuse_pass");
    passes_.push_back("conv_elementwise_add_mkldnn_fuse_pass");
    passes_.push_back("conv_concat_relu_mkldnn_fuse_pass");
396
    passes_.push_back("conv_activation_mkldnn_fuse_pass");
B
baoachun 已提交
397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
    passes_.push_back("fc_fuse_pass");
    passes_.push_back("repeated_fc_relu_fuse_pass");
    passes_.push_back("fc_mkldnn_pass");
    passes_.push_back("fc_act_mkldnn_fuse_pass");
    passes_.push_back("matmul_transpose_reshape_fuse_pass");
    passes_.push_back("matmul_v2_transpose_reshape_fuse_pass");
    passes_.push_back("batch_norm_act_fuse_pass");
    passes_.push_back("softplus_activation_mkldnn_fuse_pass");
    passes_.push_back("compute_propagate_scales_mkldnn_pass");
    passes_.push_back("scale_matmul_fuse_pass");
    passes_.push_back("reshape_transpose_matmul_mkldnn_fuse_pass");
    passes_.push_back("reshape_transpose_matmul_v2_mkldnn_fuse_pass");
    passes_.push_back("cpu_quantize_placement_pass");
    passes_.push_back("cpu_quantize_pass");
    passes_.push_back("cpu_quantize_squash_pass");
    passes_.push_back("simplify_with_basic_ops_pass");
    passes_.push_back("mkldnn_inplace_pass");
    passes_.push_back("runtime_context_cache_pass");
  }
  use_mkldnn_int8_ = true;
#else
  use_mkldnn_int8_ = false;
#endif
}

J
jianghaicheng 已提交
422 423 424 425
IpuPassStrategy::IpuPassStrategy() : PassStrategy({}) {
  passes_.assign({"inference_process_pass"});
}

426
}  // namespace paddle