paddle_pass_builder.cc 12.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/inference/api/paddle_pass_builder.h"
16 17 18
#ifdef PADDLE_WITH_CUDA
#include <cudnn.h>
#endif
19 20 21
#ifdef PADDLE_WITH_HIP
#include <miopen/miopen.h>
#endif
22
#include <glog/logging.h>
23
#include <sstream>
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70

namespace paddle {

void PaddlePassBuilder::AppendPass(const std::string &pass_type) {
  passes_.push_back(pass_type);
}

void PaddlePassBuilder::TurnOnDebug() {
  std::vector<std::string> passes;
  auto it = std::begin(passes_);
  while (it != std::end(passes_)) {
    if (*it != "graph_viz_pass") {
      it = passes_.insert(it + 1, "graph_viz_pass");
    } else {
      ++it;
    }
  }
}

std::string PaddlePassBuilder::DebugString() {
  std::stringstream ss;
  ss << "Passes to apply:\n";
  for (auto &pass : passes_) {
    ss << "  - " << pass << '\n';
  }
  return ss.str();
}

void PaddlePassBuilder::DeletePass(const std::string &pass_type) {
  auto it = std::begin(passes_);
  while (it != std::end(passes_)) {
    if (*it == pass_type) {
      it = passes_.erase(it);
    } else {
      ++it;
    }
  }
}

void PaddlePassBuilder::InsertPass(size_t idx, const std::string &pass_type) {
  passes_.insert(std::begin(passes_) + idx, pass_type);
}

void PaddlePassBuilder::DeletePass(size_t idx) {
  passes_.erase(std::begin(passes_) + idx);
}

W
Wojciech Uss 已提交
71 72
void PaddlePassBuilder::AppendAnalysisPass(const std::string &pass) {
  analysis_passes_.push_back(pass);
73 74
}

W
Wojciech Uss 已提交
75 76
void PaddlePassBuilder::ClearPasses() { passes_.clear(); }

77
const std::vector<std::string> kTRTSubgraphPasses({
78 79 80 81 82
  "adaptive_pool2d_convert_global_pass",
      "shuffle_channel_detect_pass",          //
      "quant_conv2d_dequant_fuse_pass",       //
      "delete_quant_dequant_op_pass",         //
      "delete_quant_dequant_filter_op_pass",  //
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
      // "fc_fuse_pass",                        //
      "simplify_with_basic_ops_pass",                 //
      "embedding_eltwise_layernorm_fuse_pass",        //
      "preln_embedding_eltwise_layernorm_fuse_pass",  //
      "multihead_matmul_fuse_pass_v2",                //
      "multihead_matmul_fuse_pass_v3",                //
      "skip_layernorm_fuse_pass",                     //
      "preln_skip_layernorm_fuse_pass",               //
      "conv_bn_fuse_pass",                            //
      "unsqueeze2_eltwise_fuse_pass",                 //
      "trt_squeeze2_matmul_fuse_pass",                //
      "trt_reshape2_matmul_fuse_pass",                //
      "trt_flatten2_matmul_fuse_pass",                //
      "trt_map_matmul_v2_to_mul_pass",                //
      "trt_map_matmul_v2_to_matmul_pass",             //
      "trt_map_matmul_to_mul_pass",                   //
      "fc_fuse_pass",                                 //
      "conv_elementwise_add_fuse_pass",               //
101 102 103
      "add_support_int8_pass",
      "tensorrt_subgraph_pass",  //
      "conv_bn_fuse_pass",       //
104 105
#if CUDNN_VERSION >= 7100  // To run conv_fusion, the version of cudnn must be
                           // guaranteed at least v7
106 107 108
// cudnn8.0 has memory leak problem in conv + eltwise + act, so we
// disable the pass.
#if !(CUDNN_VERSION >= 8000 && CUDNN_VERSION < 8100)
109 110
      "conv_elementwise_add_act_fuse_pass",   //
      "conv_elementwise_add2_act_fuse_pass",  //
111 112
#endif
#endif
113 114 115
      "transpose_flatten_concat_fuse_pass",
});

D
denglin-github 已提交
116 117
const std::vector<std::string> kDlnneSubgraphPasses({
    "is_test_pass",                  //
D
denglin-github 已提交
118
    "delete_dropout_op_pass"         //
D
denglin-github 已提交
119 120 121 122 123 124 125
    "simplify_with_basic_ops_pass",  //
    "conv_bn_fuse_pass",             //
    "depthwise_conv_bn_fuse_pass",   //
    "shuffle_channel_detect_pass",   //
    "dlnne_subgraph_pass",           //
});

石晓伟 已提交
126 127 128 129 130 131
const std::vector<std::string> kLiteSubgraphPasses({
#ifdef PADDLE_WITH_LITE
    "lite_subgraph_pass",
#endif
});

132 133
GpuPassStrategy::GpuPassStrategy() : PassStrategy({}) {
  passes_.assign({
134
    //   "identity_scale_op_clean_pass",             //
135 136 137 138 139 140 141 142 143 144 145 146 147 148
    "is_test_pass",                               //
        "simplify_with_basic_ops_pass",           //
        "conv_bn_fuse_pass",                      //
        "conv_eltwiseadd_bn_fuse_pass",           //
        "embedding_eltwise_layernorm_fuse_pass",  //
        "multihead_matmul_fuse_pass_v2",          //
        "gpu_cpu_squeeze2_matmul_fuse_pass",      //
        "gpu_cpu_reshape2_matmul_fuse_pass",      //
        "gpu_cpu_flatten2_matmul_fuse_pass",      //
        "gpu_cpu_map_matmul_v2_to_mul_pass",      //
        "gpu_cpu_map_matmul_v2_to_matmul_pass",   //
        "gpu_cpu_map_matmul_to_mul_pass",         //
        "fc_fuse_pass",                           //
        "fc_elementwise_layernorm_fuse_pass",     //
149 150
#if CUDNN_VERSION >= 7100  // To run conv_fusion, the version of cudnn must be
                           // guaranteed at least v7
151 152 153
// cudnn8.0 has memory leak problem in conv + eltwise + act, so we
// disable the pass.
#if !(CUDNN_VERSION >= 8000 && CUDNN_VERSION < 8100)
154 155
        "conv_elementwise_add_act_fuse_pass",   //
        "conv_elementwise_add2_act_fuse_pass",  //
156 157 158 159
#endif
        "conv_elementwise_add_fuse_pass",      //
#endif                                         //
        "transpose_flatten_concat_fuse_pass",  //
160
        // following pass should be located in the last, since it will
161 162
        // work on all fused ops.
        "runtime_context_cache_pass"
163 164 165 166 167
  });

  use_gpu_ = true;
}

168 169 170 171 172 173 174
void GpuPassStrategy::EnableCUDNN() {
  if (!use_cudnn_) {
    passes_.insert(passes_.begin(), "cudnn_placement_pass");
  }
  use_cudnn_ = true;
}

175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
void GpuPassStrategy::Exp_EnableUseGpuFp16() {
  passes_.assign({
    "is_test_pass",                               //
        "simplify_with_basic_ops_pass",           //
        "conv_bn_fuse_pass",                      //
        "conv_eltwiseadd_bn_fuse_pass",           //
        "embedding_eltwise_layernorm_fuse_pass",  //
        "multihead_matmul_fuse_pass_v2",          //
        "gpu_cpu_squeeze2_matmul_fuse_pass",      //
        "gpu_cpu_reshape2_matmul_fuse_pass",      //
        "gpu_cpu_flatten2_matmul_fuse_pass",      //
        "gpu_cpu_map_matmul_v2_to_mul_pass",      //
        "gpu_cpu_map_matmul_v2_to_matmul_pass",   //
        "gpu_cpu_map_matmul_to_mul_pass",         //
        // "fc_fuse_pass",                        //
        "fc_elementwise_layernorm_fuse_pass",  //
#if CUDNN_VERSION >= 7100  // To run conv_fusion, the version of cudnn must be
                           // guaranteed at least v7
// cudnn8.0 has memory leak problem in conv + eltwise + act, so we
// disable the pass.
#if !(CUDNN_VERSION >= 8000 && CUDNN_VERSION < 8100)
        "conv_elementwise_add_act_fuse_pass",   //
        "conv_elementwise_add2_act_fuse_pass",  //
#endif
        "conv_elementwise_add_fuse_pass",      //
#endif                                         //
        "transpose_flatten_concat_fuse_pass",  //
        "mixed_precision_configure_pass",      //
        "runtime_context_cache_pass"           //
  });

  use_gpu_fp16_ = true;
}

W
Wojciech Uss 已提交
209 210
void GpuPassStrategy::EnableMKLDNN() {
  LOG(ERROR) << "GPU not support MKLDNN yet";
211 212
}

W
Wojciech Uss 已提交
213 214
void GpuPassStrategy::EnableMkldnnQuantizer() {
  LOG(ERROR) << "GPU not support MKL-DNN quantization";
Y
Yan Chunwei 已提交
215 216
}

217 218 219 220
void GpuPassStrategy::EnableMkldnnBfloat16() {
  LOG(ERROR) << "GPU not support MKL-DNN bfloat16";
}

221 222 223
CpuPassStrategy::CpuPassStrategy() : PassStrategy({}) {
  // NOTE the large fusions should be located in the front, so that they will
  // not be damaged by smaller ones.
224 225
  passes_.assign({"simplify_with_basic_ops_pass",  //
                  "layer_norm_fuse_pass",
226
                  "attention_lstm_fuse_pass",       //
227 228
                  "seqconv_eltadd_relu_fuse_pass",  //
                  // "seqpool_concat_fuse_pass",    //
229
                  "seqpool_cvm_concat_fuse_pass",  //
230
                  // "embedding_fc_lstm_fuse_pass", //
231
                  // TODO(wilber): fix correctness problem.
232
                  // "fc_lstm_fuse_pass",                    //
233 234 235 236
                  "mul_lstm_fuse_pass",                      //
                  "fc_gru_fuse_pass",                        //
                  "mul_gru_fuse_pass",                       //
                  "seq_concat_fc_fuse_pass",                 //
237 238 239
                  "gpu_cpu_squeeze2_matmul_fuse_pass",       //
                  "gpu_cpu_reshape2_matmul_fuse_pass",       //
                  "gpu_cpu_flatten2_matmul_fuse_pass",       //
H
heliqi 已提交
240
                  "matmul_v2_scale_fuse_pass",               //
241 242
                  "gpu_cpu_map_matmul_v2_to_mul_pass",       //
                  "gpu_cpu_map_matmul_v2_to_matmul_pass",    //
H
heliqi 已提交
243
                  "matmul_scale_fuse_pass",                  //
244
                  "gpu_cpu_map_matmul_to_mul_pass",          //
245 246 247 248 249 250 251 252
                  "fc_fuse_pass",                            //
                  "repeated_fc_relu_fuse_pass",              //
                  "squared_mat_sub_fuse_pass",               //
                  "conv_bn_fuse_pass",                       //
                  "conv_eltwiseadd_bn_fuse_pass",            //
                  "conv_transpose_bn_fuse_pass",             //
                  "conv_transpose_eltwiseadd_bn_fuse_pass",  //
                  "is_test_pass",                            //
253 254
                  // following pass should be located in the last, since
                  // it will work on all fused ops.
255
                  "runtime_context_cache_pass"});
Y
Yan Chunwei 已提交
256

257 258
  use_gpu_ = false;
}
W
Wojciech Uss 已提交
259

260 261
void CpuPassStrategy::EnableCUDNN() { LOG(ERROR) << "CPU not support cuDNN"; }

W
Wojciech Uss 已提交
262 263 264 265 266 267
void CpuPassStrategy::EnableMKLDNN() {
// TODO(Superjomn) Consider the way to mix CPU with GPU.
#ifdef PADDLE_WITH_MKLDNN
  if (!use_mkldnn_) {
    passes_.insert(passes_.begin(), "mkldnn_placement_pass");

268
    for (auto &pass : std::vector<std::string>({
269 270 271 272 273 274
             "depthwise_conv_mkldnn_pass",    //
             "conv_bn_fuse_pass",             // Execute BN passes again to
             "conv_eltwiseadd_bn_fuse_pass",  // preserve correct pass order
             "conv_transpose_bn_fuse_pass",   //
             "conv_transpose_eltwiseadd_bn_fuse_pass",  //
             "conv_bias_mkldnn_fuse_pass",              //
275
             "conv_transpose_bias_mkldnn_fuse_pass",
276 277
             // TODO(baoachun): Need to support 5-dimensional input.
             // "conv3d_bias_mkldnn_fuse_pass",  //
278 279
             "conv_elementwise_add_mkldnn_fuse_pass",
             "conv_concat_relu_mkldnn_fuse_pass",
B
baoachun 已提交
280 281 282 283 284
             "conv_relu_mkldnn_fuse_pass",          //
             "conv_leaky_relu_mkldnn_fuse_pass",    //
             "conv_relu6_mkldnn_fuse_pass",         //
             "conv_swish_mkldnn_fuse_pass",         //
             "conv_hard_swish_mkldnn_fuse_pass",    //
285
             "conv_mish_mkldnn_fuse_pass",          //
B
baoachun 已提交
286
             "conv_hard_sigmoid_mkldnn_fuse_pass",  //
287
             // TODO(baoachun) fix int8 accuracy
B
baoachun 已提交
288
             "conv_gelu_mkldnn_fuse_pass",
289 290 291 292 293
             "scale_matmul_fuse_pass",                        //
             "reshape_transpose_matmul_mkldnn_fuse_pass",     //
             "reshape_transpose_matmul_v2_mkldnn_fuse_pass",  //
             "matmul_transpose_reshape_fuse_pass",            //
             "matmul_v2_transpose_reshape_fuse_pass",         //
294
             // Disabled due to topology-dependent speed-up
H
heliqi 已提交
295 296
             //  "fc_mkldnn_pass",
             //  "fc_act_mkldnn_fuse_pass",
297 298
             "batch_norm_act_fuse_pass",              //
             "softplus_activation_mkldnn_fuse_pass",  //
299
             "elt_act_mkldnn_fuse_pass",              //
300 301
             // TODO(intel): Please fix the bug on windows.
             // https://github.com/PaddlePaddle/Paddle/issues/29710
302
             // "mkldnn_inplace_pass",  // This pass should be activated after
303 304
             // fuses. Disabled by default due to
             // little gain and lots of problems
305
         })) {
W
Wojciech Uss 已提交
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
      passes_.push_back(pass);
    }
  }
  use_mkldnn_ = true;
#else
  use_mkldnn_ = false;
#endif
}

void CpuPassStrategy::EnableMkldnnQuantizer() {
#ifdef PADDLE_WITH_MKLDNN
  if (!use_mkldnn_quantizer_) {
    passes_.push_back("cpu_quantize_placement_pass");
  }
  use_mkldnn_quantizer_ = true;
#else
  use_mkldnn_quantizer_ = false;
#endif
}

326 327
void CpuPassStrategy::EnableMkldnnBfloat16() {
#ifdef PADDLE_WITH_MKLDNN
328 329 330
  if (!use_mkldnn_bfloat16_) {
    passes_.push_back("cpu_bfloat16_placement_pass");
    passes_.push_back("cpu_bfloat16_pass");
331
    passes_.push_back("cpu_quantize_squash_pass");
332
  }
333 334 335 336 337 338
  use_mkldnn_bfloat16_ = true;
#else
  use_mkldnn_bfloat16_ = false;
#endif
}

J
jianghaicheng 已提交
339 340 341 342
IpuPassStrategy::IpuPassStrategy() : PassStrategy({}) {
  passes_.assign({"inference_process_pass"});
}

343
}  // namespace paddle