paddle_pass_builder.cc 16.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/inference/api/paddle_pass_builder.h"
16 17 18
#ifdef PADDLE_WITH_CUDA
#include <cudnn.h>
#endif
19 20 21
#ifdef PADDLE_WITH_HIP
#include <miopen/miopen.h>
#endif
22
#include <glog/logging.h>
23

24
#include <algorithm>
25
#include <sstream>
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54

namespace paddle {

void PaddlePassBuilder::AppendPass(const std::string &pass_type) {
  passes_.push_back(pass_type);
}

void PaddlePassBuilder::TurnOnDebug() {
  std::vector<std::string> passes;
  auto it = std::begin(passes_);
  while (it != std::end(passes_)) {
    if (*it != "graph_viz_pass") {
      it = passes_.insert(it + 1, "graph_viz_pass");
    } else {
      ++it;
    }
  }
}

std::string PaddlePassBuilder::DebugString() {
  std::stringstream ss;
  ss << "Passes to apply:\n";
  for (auto &pass : passes_) {
    ss << "  - " << pass << '\n';
  }
  return ss.str();
}

void PaddlePassBuilder::DeletePass(const std::string &pass_type) {
55
  deleted_passes_.insert(pass_type);
56 57 58 59 60 61 62 63 64 65
  auto it = std::begin(passes_);
  while (it != std::end(passes_)) {
    if (*it == pass_type) {
      it = passes_.erase(it);
    } else {
      ++it;
    }
  }
}

66 67 68 69 70 71
size_t PaddlePassBuilder::GetPassIndex(const std::string &pass_type) {
  auto iter = std::find(std::begin(passes_), std::end(passes_), pass_type);
  if (iter == std::end(passes_)) return -1;
  return std::distance(std::begin(passes_), iter);
}

72 73 74 75 76 77 78 79
void PaddlePassBuilder::InsertPass(size_t idx, const std::string &pass_type) {
  passes_.insert(std::begin(passes_) + idx, pass_type);
}

void PaddlePassBuilder::DeletePass(size_t idx) {
  passes_.erase(std::begin(passes_) + idx);
}

W
Wojciech Uss 已提交
80 81
void PaddlePassBuilder::AppendAnalysisPass(const std::string &pass) {
  analysis_passes_.push_back(pass);
82 83
}

W
Wojciech Uss 已提交
84 85
void PaddlePassBuilder::ClearPasses() { passes_.clear(); }

86
const std::vector<std::string> kTRTSubgraphPasses({
87 88
  "identity_scale_op_clean_pass",              //
      "adaptive_pool2d_convert_global_pass",   //
89 90
      "shuffle_channel_detect_pass",           //
      "quant_conv2d_dequant_fuse_pass",        //
S
shentanyue 已提交
91
      "delete_fill_constant_op_pass",          //
92 93 94 95 96
      "delete_quant_dequant_op_pass",          //
      "delete_quant_dequant_filter_op_pass",   //
      "delete_weight_dequant_linear_op_pass",  //
      "delete_quant_dequant_linear_op_pass",   //
      "add_support_int8_pass",                 //
97 98
      // "fc_fuse_pass",                        //
      "simplify_with_basic_ops_pass",                 //
99
      "trt_embedding_eltwise_layernorm_fuse_pass",    //
100
      "preln_embedding_eltwise_layernorm_fuse_pass",  //
101
      "delete_c_identity_op_pass",                    //
102 103 104
      "trt_multihead_matmul_fuse_pass_v2",            //
      "trt_multihead_matmul_fuse_pass_v3",            //
      "trt_skip_layernorm_fuse_pass",                 //
105
      "preln_skip_layernorm_fuse_pass",               //
106
      "preln_residual_bias_fuse_pass",                //
107
      // "set_transformer_input_convert_pass",           //
108 109 110 111 112 113 114 115 116 117 118 119
      "conv_bn_fuse_pass",                           //
      "unsqueeze2_eltwise_fuse_pass",                //
      "trt_squeeze2_matmul_fuse_pass",               //
      "trt_reshape2_matmul_fuse_pass",               //
      "trt_flatten2_matmul_fuse_pass",               //
      "trt_map_matmul_v2_to_mul_pass",               //
      "trt_map_matmul_v2_to_matmul_pass",            //
      "trt_map_matmul_to_mul_pass",                  //
      "fc_fuse_pass",                                //
      "conv_elementwise_add_fuse_pass",              //
      "remove_padding_recover_padding_pass",         //
      "delete_remove_padding_recover_padding_pass",  //
120
      // "yolo_box_fuse_pass",      //
121 122 123 124
      "dense_fc_to_sparse_pass",                //
      "dense_multihead_matmul_to_sparse_pass",  //
      "tensorrt_subgraph_pass",                 //
      "conv_bn_fuse_pass",                      //
125 126
#if CUDNN_VERSION >= 7100  // To run conv_fusion, the version of cudnn must be
                           // guaranteed at least v7
127 128 129
// cudnn8.0 has memory leak problem in conv + eltwise + act, so we
// disable the pass.
#if !(CUDNN_VERSION >= 8000 && CUDNN_VERSION < 8100)
130 131
      "conv_elementwise_add_act_fuse_pass",   //
      "conv_elementwise_add2_act_fuse_pass",  //
132 133
#endif
#endif
134 135 136
      "transpose_flatten_concat_fuse_pass",
});

D
denglin-github 已提交
137 138
const std::vector<std::string> kDlnneSubgraphPasses({
    "is_test_pass",                  //
M
ming1753 已提交
139
    "delete_dropout_op_pass",        //
D
denglin-github 已提交
140 141 142 143 144 145 146
    "simplify_with_basic_ops_pass",  //
    "conv_bn_fuse_pass",             //
    "depthwise_conv_bn_fuse_pass",   //
    "shuffle_channel_detect_pass",   //
    "dlnne_subgraph_pass",           //
});

石晓伟 已提交
147 148 149 150 151 152
const std::vector<std::string> kLiteSubgraphPasses({
#ifdef PADDLE_WITH_LITE
    "lite_subgraph_pass",
#endif
});

153 154 155 156
// TODO(inference): Most of the existing pass fusion operators do not
// support fp16/bf16 precision, temporarily use low precision pass to prevent
// running errors. After fusion operator supports low precision, delete this.
const std::vector<std::string> kGpuLowerPrecisionPasses{
157 158 159 160
    "conv_bn_fuse_pass",
    "conv_eltwiseadd_bn_fuse_pass",
    "conv_elementwise_add_act_fuse_pass",
    "conv_elementwise_add2_act_fuse_pass",
M
ming1753 已提交
161 162 163 164
    "conv_elementwise_add_fuse_pass",
    "gpu_cpu_map_matmul_v2_to_mul_pass",     //
    "gpu_cpu_map_matmul_v2_to_matmul_pass",  //
    "fc_fuse_pass"};
165

166 167 168
const std::vector<std::string> kTrtLowerPrecisionPasses{
    // "conv_bn_fuse_pass",
    // "conv_eltwiseadd_bn_fuse_pass",
169 170 171 172
    "trt_map_matmul_v2_to_mul_pass",
    "trt_map_matmul_v2_to_matmul_pass",
    "trt_map_matmul_to_mul_pass",
    "fc_fuse_pass",
173 174 175
    "tensorrt_subgraph_pass",
};

176 177
GpuPassStrategy::GpuPassStrategy() : PassStrategy({}) {
  passes_.assign({
178
    //   "identity_scale_op_clean_pass",             //
179 180 181 182 183 184 185 186 187 188 189
    "is_test_pass",                               //
        "simplify_with_basic_ops_pass",           //
        "conv_bn_fuse_pass",                      //
        "conv_eltwiseadd_bn_fuse_pass",           //
        "embedding_eltwise_layernorm_fuse_pass",  //
        "multihead_matmul_fuse_pass_v2",          //
        "gpu_cpu_squeeze2_matmul_fuse_pass",      //
        "gpu_cpu_reshape2_matmul_fuse_pass",      //
        "gpu_cpu_flatten2_matmul_fuse_pass",      //
        "gpu_cpu_map_matmul_v2_to_mul_pass",      //
        "gpu_cpu_map_matmul_v2_to_matmul_pass",   //
190 191
        "matmul_scale_fuse_pass",                 //
        "multihead_matmul_fuse_pass_v3",          //
192 193 194
        "gpu_cpu_map_matmul_to_mul_pass",         //
        "fc_fuse_pass",                           //
        "fc_elementwise_layernorm_fuse_pass",     //
195 196
#if CUDNN_VERSION >= 7100  // To run conv_fusion, the version of cudnn must be
                           // guaranteed at least v7
197 198 199
// cudnn8.0 has memory leak problem in conv + eltwise + act, so we
// disable the pass.
#if !(CUDNN_VERSION >= 8000 && CUDNN_VERSION < 8100)
200 201
        "conv_elementwise_add_act_fuse_pass",   //
        "conv_elementwise_add2_act_fuse_pass",  //
202 203 204 205
#endif
        "conv_elementwise_add_fuse_pass",      //
#endif                                         //
        "transpose_flatten_concat_fuse_pass",  //
206
        // following pass should be located in the last, since it will
207 208
        // work on all fused ops.
        "runtime_context_cache_pass"
209 210 211 212 213
  });

  use_gpu_ = true;
}

214 215 216 217 218 219 220
void GpuPassStrategy::EnableCUDNN() {
  if (!use_cudnn_) {
    passes_.insert(passes_.begin(), "cudnn_placement_pass");
  }
  use_cudnn_ = true;
}

W
Wojciech Uss 已提交
221 222
void GpuPassStrategy::EnableMKLDNN() {
  LOG(ERROR) << "GPU not support MKLDNN yet";
223 224
}

W
Wojciech Uss 已提交
225 226
void GpuPassStrategy::EnableMkldnnQuantizer() {
  LOG(ERROR) << "GPU not support MKL-DNN quantization";
Y
Yan Chunwei 已提交
227 228
}

229 230 231 232
void GpuPassStrategy::EnableMkldnnBfloat16() {
  LOG(ERROR) << "GPU not support MKL-DNN bfloat16";
}

B
baoachun 已提交
233 234 235 236
void GpuPassStrategy::EnableMkldnnInt8() {
  LOG(ERROR) << "GPU not support MKL-DNN int8";
}

237 238 239
CpuPassStrategy::CpuPassStrategy() : PassStrategy({}) {
  // NOTE the large fusions should be located in the front, so that they will
  // not be damaged by smaller ones.
240 241
  passes_.assign({"simplify_with_basic_ops_pass",  //
                  "layer_norm_fuse_pass",
242
                  "attention_lstm_fuse_pass",       //
243 244
                  "seqconv_eltadd_relu_fuse_pass",  //
                  // "seqpool_concat_fuse_pass",    //
245
                  "seqpool_cvm_concat_fuse_pass",  //
246
                  // "embedding_fc_lstm_fuse_pass", //
247
                  // TODO(wilber): fix correctness problem.
248
                  // "fc_lstm_fuse_pass",                    //
249 250 251 252
                  "mul_lstm_fuse_pass",                      //
                  "fc_gru_fuse_pass",                        //
                  "mul_gru_fuse_pass",                       //
                  "seq_concat_fc_fuse_pass",                 //
253 254 255
                  "gpu_cpu_squeeze2_matmul_fuse_pass",       //
                  "gpu_cpu_reshape2_matmul_fuse_pass",       //
                  "gpu_cpu_flatten2_matmul_fuse_pass",       //
H
heliqi 已提交
256
                  "matmul_v2_scale_fuse_pass",               //
257 258
                  "gpu_cpu_map_matmul_v2_to_mul_pass",       //
                  "gpu_cpu_map_matmul_v2_to_matmul_pass",    //
H
heliqi 已提交
259
                  "matmul_scale_fuse_pass",                  //
260
                  "gpu_cpu_map_matmul_to_mul_pass",          //
261 262 263 264 265 266 267 268
                  "fc_fuse_pass",                            //
                  "repeated_fc_relu_fuse_pass",              //
                  "squared_mat_sub_fuse_pass",               //
                  "conv_bn_fuse_pass",                       //
                  "conv_eltwiseadd_bn_fuse_pass",            //
                  "conv_transpose_bn_fuse_pass",             //
                  "conv_transpose_eltwiseadd_bn_fuse_pass",  //
                  "is_test_pass",                            //
269 270
                  // following pass should be located in the last, since
                  // it will work on all fused ops.
271
                  "runtime_context_cache_pass"});
Y
Yan Chunwei 已提交
272

273 274
  use_gpu_ = false;
}
W
Wojciech Uss 已提交
275

276 277
void CpuPassStrategy::EnableCUDNN() { LOG(ERROR) << "CPU not support cuDNN"; }

W
Wojciech Uss 已提交
278 279 280 281 282 283
void CpuPassStrategy::EnableMKLDNN() {
// TODO(Superjomn) Consider the way to mix CPU with GPU.
#ifdef PADDLE_WITH_MKLDNN
  if (!use_mkldnn_) {
    passes_.insert(passes_.begin(), "mkldnn_placement_pass");

284
    for (auto &pass : std::vector<std::string>({
285 286 287
             "depthwise_conv_mkldnn_pass",    //
             "conv_bn_fuse_pass",             // Execute BN passes again to
             "conv_eltwiseadd_bn_fuse_pass",  // preserve correct pass order
288 289
             "conv_affine_channel_mkldnn_fuse_pass",    //
             "conv_transpose_bn_fuse_pass",             //
290 291
             "conv_transpose_eltwiseadd_bn_fuse_pass",  //
             "conv_bias_mkldnn_fuse_pass",              //
292
             "conv_transpose_bias_mkldnn_fuse_pass",
293 294
             // TODO(baoachun): Need to support 5-dimensional input.
             // "conv3d_bias_mkldnn_fuse_pass",  //
295 296
             "conv_elementwise_add_mkldnn_fuse_pass",
             "conv_concat_relu_mkldnn_fuse_pass",
297
             "conv_activation_mkldnn_fuse_pass",              //
298 299 300 301 302
             "scale_matmul_fuse_pass",                        //
             "reshape_transpose_matmul_mkldnn_fuse_pass",     //
             "reshape_transpose_matmul_v2_mkldnn_fuse_pass",  //
             "matmul_transpose_reshape_fuse_pass",            //
             "matmul_v2_transpose_reshape_fuse_pass",         //
303
             // Disabled due to topology-dependent speed-up
H
heliqi 已提交
304 305
             //  "fc_mkldnn_pass",
             //  "fc_act_mkldnn_fuse_pass",
306
             "fc_elementwise_add_mkldnn_fuse_pass",   //
307 308
             "batch_norm_act_fuse_pass",              //
             "softplus_activation_mkldnn_fuse_pass",  //
309
             "shuffle_channel_mkldnn_detect_pass",    //
310
             "elt_act_mkldnn_fuse_pass",              //
311
             "matmul_activation_mkldnn_fuse_pass",    //
312 313
             // TODO(intel): Please fix the bug on windows.
             // https://github.com/PaddlePaddle/Paddle/issues/29710
314
             // "mkldnn_inplace_pass",  // This pass should be activated after
315 316
             // fuses. Disabled by default due to
             // little gain and lots of problems
317
         })) {
W
Wojciech Uss 已提交
318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
      passes_.push_back(pass);
    }
  }
  use_mkldnn_ = true;
#else
  use_mkldnn_ = false;
#endif
}

void CpuPassStrategy::EnableMkldnnQuantizer() {
#ifdef PADDLE_WITH_MKLDNN
  if (!use_mkldnn_quantizer_) {
    passes_.push_back("cpu_quantize_placement_pass");
  }
  use_mkldnn_quantizer_ = true;
#else
  use_mkldnn_quantizer_ = false;
#endif
}

338 339
void CpuPassStrategy::EnableMkldnnBfloat16() {
#ifdef PADDLE_WITH_MKLDNN
340
  if (!use_mkldnn_bfloat16_) {
T
Tomasz Socha 已提交
341 342 343 344
    passes_.push_back("fc_mkldnn_pass");
    passes_.push_back("fc_act_mkldnn_fuse_pass");
    passes_.push_back("fc_elementwise_add_mkldnn_fuse_pass");

345 346
    passes_.push_back("cpu_bfloat16_placement_pass");
    passes_.push_back("cpu_bfloat16_pass");
347
    passes_.push_back("cpu_quantize_squash_pass");
348
  }
349 350 351 352 353 354
  use_mkldnn_bfloat16_ = true;
#else
  use_mkldnn_bfloat16_ = false;
#endif
}

B
baoachun 已提交
355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
void CpuPassStrategy::EnableMkldnnInt8() {
#ifdef PADDLE_WITH_MKLDNN
  if (!use_mkldnn_int8_) {
    passes_.clear();
    passes_.push_back("quant_dequant_mkldnn_pass");
    passes_.push_back("layer_norm_fuse_pass");
    passes_.push_back("attention_lstm_fuse_pass");
    passes_.push_back("seqconv_eltadd_relu_fuse_pass");
    passes_.push_back("fc_lstm_fuse_pass");
    passes_.push_back("mul_lstm_fuse_pass");
    passes_.push_back("fc_gru_fuse_pass");
    passes_.push_back("mul_gru_fuse_pass");
    passes_.push_back("multi_gru_fuse_pass");
    passes_.push_back("multi_gru_seq_fuse_pass");
    passes_.push_back("seq_concat_fc_fuse_pass");
    passes_.push_back("gpu_cpu_squeeze2_matmul_fuse_pass");
    passes_.push_back("gpu_cpu_reshape2_matmul_fuse_pass");
    passes_.push_back("gpu_cpu_flatten2_matmul_fuse_pass");
    passes_.push_back("matmul_v2_scale_fuse_pass");
    passes_.push_back("squared_mat_sub_fuse_pass");
    passes_.push_back("is_test_pass");
    passes_.push_back("gpu_cpu_map_matmul_v2_to_mul_pass");
    passes_.push_back("gpu_cpu_map_matmul_v2_to_matmul_pass");
    passes_.push_back("matmul_scale_fuse_pass");
    passes_.push_back("gpu_cpu_map_matmul_to_mul_pass");
    passes_.push_back("repeated_fc_relu_fuse_pass");
    passes_.push_back("mkldnn_placement_pass");
    passes_.push_back("depthwise_conv_mkldnn_pass");
    passes_.push_back("conv_bn_fuse_pass");
    passes_.push_back("conv_eltwiseadd_bn_fuse_pass");
    passes_.push_back("conv_transpose_bn_fuse_pass");
    passes_.push_back("conv_transpose_eltwiseadd_bn_fuse_pass");
    passes_.push_back("conv_bias_mkldnn_fuse_pass");
    passes_.push_back("conv_transpose_bias_mkldnn_fuse_pass");
    passes_.push_back("conv_elementwise_add_mkldnn_fuse_pass");
    passes_.push_back("conv_concat_relu_mkldnn_fuse_pass");
391
    passes_.push_back("conv_activation_mkldnn_fuse_pass");
B
baoachun 已提交
392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
    passes_.push_back("fc_fuse_pass");
    passes_.push_back("repeated_fc_relu_fuse_pass");
    passes_.push_back("fc_mkldnn_pass");
    passes_.push_back("fc_act_mkldnn_fuse_pass");
    passes_.push_back("matmul_transpose_reshape_fuse_pass");
    passes_.push_back("matmul_v2_transpose_reshape_fuse_pass");
    passes_.push_back("batch_norm_act_fuse_pass");
    passes_.push_back("softplus_activation_mkldnn_fuse_pass");
    passes_.push_back("compute_propagate_scales_mkldnn_pass");
    passes_.push_back("scale_matmul_fuse_pass");
    passes_.push_back("reshape_transpose_matmul_mkldnn_fuse_pass");
    passes_.push_back("reshape_transpose_matmul_v2_mkldnn_fuse_pass");
    passes_.push_back("cpu_quantize_placement_pass");
    passes_.push_back("cpu_quantize_pass");
    passes_.push_back("cpu_quantize_squash_pass");
    passes_.push_back("simplify_with_basic_ops_pass");
    passes_.push_back("mkldnn_inplace_pass");
    passes_.push_back("runtime_context_cache_pass");
  }
  use_mkldnn_int8_ = true;
#else
  use_mkldnn_int8_ = false;
#endif
}

J
jianghaicheng 已提交
417 418 419 420
IpuPassStrategy::IpuPassStrategy() : PassStrategy({}) {
  passes_.assign({"inference_process_pass"});
}

421
}  // namespace paddle