test_conv2d_op.py 34.5 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17 18
import unittest
import numpy as np
D
dzhwinter 已提交
19

20
import paddle
21
import paddle.fluid.core as core
L
liym27 已提交
22
import paddle.fluid as fluid
W
wuhuanzhou 已提交
23 24
from op_test import OpTest, convert_float_to_uint16, get_numeric_gradient
from paddle.fluid.tests.unittests.testsuite import create_op
25
from paddle.fluid import Program, program_guard
26 27


L
liym27 已提交
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
def conv2d_forward_naive(input,
                         filter,
                         group,
                         conv_param,
                         padding_algorithm='EXPLICIT',
                         data_format='NCHW'):
    if padding_algorithm not in ["SAME", "VALID", "EXPLICIT"]:
        raise ValueError("Unknown Attr(padding_algorithm): '%s'. "
                         "It can only be 'SAME' or 'VALID'." %
                         str(padding_algorithm))

    if data_format not in ["NCHW", "NHWC"]:
        raise ValueError("Unknown Attr(data_format): '%s' ."
                         "It can only be 'NCHW' or 'NHWC'." % str(data_format))

    channel_last = (data_format == "NHWC")
    if channel_last:
        input = np.transpose(input, [0, 3, 1, 2])

C
chengduoZH 已提交
47
    in_n, in_c, in_h, in_w = input.shape
L
liym27 已提交
48 49 50
    f_n, f_c, f_h, f_w = filter.shape
    out_n = in_n
    out_c = f_n
C
chengduoZH 已提交
51 52
    assert f_c * group == in_c
    assert np.mod(out_c, group) == 0
M
minqiyang 已提交
53
    sub_out_c = out_c // group
L
liym27 已提交
54
    sub_f_n = f_n // group
C
chengduoZH 已提交
55

C
chengduoZH 已提交
56 57
    stride, pad, dilation = conv_param['stride'], conv_param['pad'], conv_param[
        'dilation']
L
liym27 已提交
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77

    # update pad and dilation
    def _get_padding_with_SAME(input_shape, pool_size, pool_stride):
        padding = []
        for input_size, filter_size, stride_size in zip(input_shape, pool_size,
                                                        pool_stride):
            out_size = int((input_size + stride_size - 1) / stride_size)
            pad_sum = np.max((
                (out_size - 1) * stride_size + filter_size - input_size, 0))
            pad_0 = int(pad_sum / 2)
            pad_1 = int(pad_sum - pad_0)
            padding.append(pad_0)
            padding.append(pad_1)
        return padding

    ksize = filter.shape[2:4]
    if padding_algorithm == "VALID":
        pad = [0, 0, 0, 0]
    elif padding_algorithm == "SAME":
        dilation = [1, 1]
78
        input_data_shape = input.shape[2:4]
L
liym27 已提交
79 80 81 82 83 84 85 86 87 88 89 90
        pad = _get_padding_with_SAME(input_data_shape, ksize, stride)

    pad_h_0, pad_h_1 = pad[0], pad[0]
    pad_w_0, pad_w_1 = pad[1], pad[1]
    if len(pad) == 4:
        pad_h_0, pad_h_1 = pad[0], pad[1]
        pad_w_0, pad_w_1 = pad[2], pad[3]
    out_h = 1 + (in_h + pad_h_0 + pad_h_1 - (dilation[0] *
                                             (f_h - 1) + 1)) // stride[0]
    out_w = 1 + (in_w + pad_w_0 + pad_w_1 - (dilation[1] *
                                             (f_w - 1) + 1)) // stride[1]
    out = np.zeros((out_n, out_c, out_h, out_w))
C
chengduoZH 已提交
91

武毅 已提交
92 93
    d_bolck_h = (dilation[0] * (f_h - 1) + 1)
    d_bolck_w = (dilation[1] * (f_w - 1) + 1)
C
chengduoZH 已提交
94

L
liym27 已提交
95 96
    input_pad = np.pad(input, ((0, 0), (0, 0), (pad_h_0, pad_h_1),
                               (pad_w_0, pad_w_1)),
C
chengduoZH 已提交
97 98
                       mode='constant',
                       constant_values=0)
C
chengduoZH 已提交
99

L
liym27 已提交
100
    filter_dilation = np.zeros((f_n, f_c, d_bolck_h, d_bolck_w))
C
chengduoZH 已提交
101 102 103
    filter_dilation[:, :, 0:d_bolck_h:dilation[0], 0:d_bolck_w:dilation[
        1]] = filter

C
chengduoZH 已提交
104 105 106
    for i in range(out_h):
        for j in range(out_w):
            for g in range(group):
C
chengduoZH 已提交
107 108
                input_pad_masked = \
                    input_pad[:, g * f_c:(g + 1) * f_c,
C
chengduoZH 已提交
109 110
                    i * stride[0]:i * stride[0] + d_bolck_h,
                    j * stride[1]:j * stride[1] + d_bolck_w]
C
chengduoZH 已提交
111

L
liym27 已提交
112 113
                f_sub = filter_dilation[g * sub_f_n:(g + 1) * sub_f_n, :, :, :]
                # sub_f_n == sub_out_c
C
chengduoZH 已提交
114
                for k in range(sub_out_c):
L
liym27 已提交
115
                    # Multiplication of Corresponding Elements, then sum all
C
chengduoZH 已提交
116 117 118
                    out[:, g * sub_out_c + k, i, j] = \
                        np.sum(input_pad_masked * f_sub[k, :, :, :],
                               axis=(1, 2, 3))
C
chengduoZH 已提交
119

L
liym27 已提交
120 121 122
    if channel_last:
        out = np.transpose(out, [0, 2, 3, 1])

123
    return out, in_n, out_h, out_w, out_c
C
chengduoZH 已提交
124 125


L
liym27 已提交
126 127 128 129 130 131
def create_test_cudnn_class(parent):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestCUDNNCase(parent):
        def init_kernel_type(self):
            self.use_cudnn = True
132 133
            self.dtype = np.float32 if core.is_compiled_with_rocm(
            ) else np.float64
L
liym27 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157

    cls_name = "{0}_{1}".format(parent.__name__, "CUDNN")
    TestCUDNNCase.__name__ = cls_name
    globals()[cls_name] = TestCUDNNCase


def create_test_cudnn_fp16_class(parent, grad_check=True):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestConv2DCUDNNFp16(parent):
        def init_kernel_type(self):
            self.use_cudnn = True
            self.dtype = np.float16

        def test_check_output(self):
            if core.is_compiled_with_cuda():
                place = core.CUDAPlace(0)
                if core.is_float16_supported(place):
                    self.check_output_with_place(place, atol=2e-2)

        def test_check_grad_no_filter(self):
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place) and grad_check:
                self.check_grad_with_place(
158
                    place, ['Input'], 'Output', no_grad_set=set(['Filter']))
L
liym27 已提交
159 160 161 162 163

        def test_check_grad_no_input(self):
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place) and grad_check:
                self.check_grad_with_place(
164
                    place, ['Filter'], 'Output', no_grad_set=set(['Input']))
L
liym27 已提交
165 166 167 168 169 170

    cls_name = "{0}_{1}".format(parent.__name__, "CUDNNFp16")
    TestConv2DCUDNNFp16.__name__ = cls_name
    globals()[cls_name] = TestConv2DCUDNNFp16


W
wuhuanzhou 已提交
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
def create_test_cudnn_bf16_class(parent):
    @unittest.skipIf(
        not core.is_compiled_with_cuda() or core.cudnn_version() < 8100,
        "core is not compiled with CUDA and cudnn version need larger than 8.1.0"
    )
    class TestConv2DCUDNNBF16(parent):
        def get_numeric_grad(self, place, check_name):
            scope = core.Scope()
            self._check_grad_helper()
            op = create_op(scope, self.op_type, self.inputs, self.outputs,
                           self.attrs)
            return get_numeric_gradient(place, scope, op, self.inputs_fp32,
                                        check_name, ['Output'])

        def init_kernel_type(self):
            self.use_cudnn = True
            self.no_need_check_grad = True
            self.dtype = np.uint16

        def test_check_output(self):
            place = core.CUDAPlace(0)
            self.check_output_with_place(place, atol=1e-2)

        def test_check_grad_no_filter(self):
            place = core.CUDAPlace(0)
            numeric_grads = self.get_numeric_grad(place, 'Input')
            self.check_grad_with_place(
                place, ['Input'],
                'Output',
                no_grad_set=set(['Filter']),
                user_defined_grads=[numeric_grads])

        def test_check_grad_no_input(self):
            place = core.CUDAPlace(0)
            numeric_grads = self.get_numeric_grad(place, 'Filter')
            self.check_grad_with_place(
                place, ['Filter'],
                'Output',
                no_grad_set=set(['Input']),
                user_defined_grads=[numeric_grads])

    cls_name = "{0}_{1}".format(parent.__name__, "CUDNNBF16")
    TestConv2DCUDNNBF16.__name__ = cls_name
    globals()[cls_name] = TestConv2DCUDNNBF16


L
liym27 已提交
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
def create_test_channel_last_class(parent):
    class TestChannelLastCase(parent):
        def init_data_format(self):
            self.data_format = "NHWC"

        def init_test_case_2(self):
            N, C, H, W = self.input_size
            self.input_size = [N, H, W, C]

    cls_name = "{0}_{1}".format(parent.__name__, "ChannelLast")
    TestChannelLastCase.__name__ = cls_name
    globals()[cls_name] = TestChannelLastCase


def create_test_cudnn_channel_last_class(parent):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestCudnnChannelLastCase(parent):
        def init_kernel_type(self):
            self.use_cudnn = True
237 238
            self.dtype = np.float32 if core.is_compiled_with_rocm(
            ) else np.float64
L
liym27 已提交
239 240 241 242 243 244 245 246 247 248 249 250 251

        def init_data_format(self):
            self.data_format = "NHWC"

        def init_test_case_2(self):
            N, C, H, W = self.input_size
            self.input_size = [N, H, W, C]

    cls_name = "{0}_{1}".format(parent.__name__, "CudnnChannelLast")
    TestCudnnChannelLastCase.__name__ = cls_name
    globals()[cls_name] = TestCudnnChannelLastCase


252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
def create_test_cudnn_channel_last_fp16_class(parent, grad_check=True):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestCudnnChannelLastFp16(parent):
        def init_kernel_type(self):
            self.use_cudnn = True
            self.dtype = np.float16

        def test_check_output(self):
            if core.is_compiled_with_cuda():
                place = core.CUDAPlace(0)
                if core.is_float16_supported(place):
                    self.check_output_with_place(place, atol=2e-2)

        def test_check_grad_no_filter(self):
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place) and grad_check:
                self.check_grad_with_place(
270
                    place, ['Input'], 'Output', no_grad_set=set(['Filter']))
271 272 273 274 275

        def test_check_grad_no_input(self):
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place) and grad_check:
                self.check_grad_with_place(
276
                    place, ['Filter'], 'Output', no_grad_set=set(['Input']))
277 278 279 280 281 282 283 284 285 286 287 288 289

        def init_data_format(self):
            self.data_format = "NHWC"

        def init_test_case_2(self):
            N, C, H, W = self.input_size
            self.input_size = [N, H, W, C]

    cls_name = "{0}_{1}".format(parent.__name__, "CudnnChannelLastFp16")
    TestCudnnChannelLastFp16.__name__ = cls_name
    globals()[cls_name] = TestCudnnChannelLastFp16


L
liym27 已提交
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
def create_test_padding_SAME_class(parent):
    class TestPaddingSMAECase(parent):
        def init_paddings(self):
            self.pad = [0, 0]
            self.padding_algorithm = "SAME"

    cls_name = "{0}_{1}".format(parent.__name__, "PaddingSAMEOp")
    TestPaddingSMAECase.__name__ = cls_name
    globals()[cls_name] = TestPaddingSMAECase


def create_test_padding_VALID_class(parent):
    class TestPaddingVALIDCase(parent):
        def init_paddings(self):
            self.pad = [1, 1]
            self.padding_algorithm = "VALID"

    cls_name = "{0}_{1}".format(parent.__name__, "PaddingVALIDOp")
    TestPaddingVALIDCase.__name__ = cls_name
    globals()[cls_name] = TestPaddingVALIDCase


def create_test_cudnn_padding_SAME_class(parent):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestCUDNNPaddingSMAECase(parent):
        def init_kernel_type(self):
            self.use_cudnn = True
318 319
            self.dtype = np.float32 if core.is_compiled_with_rocm(
            ) else np.float64
L
liym27 已提交
320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335

        def init_paddings(self):
            self.pad = [1, 1]
            self.padding_algorithm = "SAME"

    cls_name = "{0}_{1}".format(parent.__name__, "CudnnPaddingSAMEOp")
    TestCUDNNPaddingSMAECase.__name__ = cls_name
    globals()[cls_name] = TestCUDNNPaddingSMAECase


def create_test_cudnn_padding_VALID_class(parent):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestCUDNNPaddingVALIDCase(parent):
        def init_kernel_type(self):
            self.use_cudnn = True
336 337
            self.dtype = np.float32 if core.is_compiled_with_rocm(
            ) else np.float64
L
liym27 已提交
338 339 340 341 342 343 344 345 346 347

        def init_paddings(self):
            self.pad = [1, 1]
            self.padding_algorithm = "VALID"

    cls_name = "{0}_{1}".format(parent.__name__, "CudnnPaddingVALIDOp")
    TestCUDNNPaddingVALIDCase.__name__ = cls_name
    globals()[cls_name] = TestCUDNNPaddingVALIDCase


C
cnn 已提交
348
class TestConv2DOp(OpTest):
349
    def setUp(self):
K
Kexin Zhao 已提交
350
        self.op_type = "conv2d"
351
        self.use_cudnn = False
352
        self.exhaustive_search = False
353
        self.use_cuda = False
354
        self.use_mkldnn = False
355
        self.fuse_relu_before_depthwise_conv = False
356
        self.data_format = "AnyLayout"
357
        self.dtype = np.float64
K
Kexin Zhao 已提交
358
        self.init_kernel_type()
C
chengduoZH 已提交
359
        self.init_group()
C
chengduoZH 已提交
360
        self.init_dilation()
C
chengduoZH 已提交
361
        self.init_test_case()
C
chengduoZH 已提交
362

C
chengduoZH 已提交
363 364 365 366 367
        conv2d_param = {
            'stride': self.stride,
            'pad': self.pad,
            'dilation': self.dilations
        }
368

W
wuhuanzhou 已提交
369 370 371 372 373 374 375 376 377
        if self.is_bfloat16_op():
            input = np.random.random(self.input_size).astype(np.float32)
            filter = np.random.uniform(-1, 1,
                                       self.filter_size).astype(np.float32)
        else:
            input = np.random.random(self.input_size).astype(self.dtype)
            filter = np.random.uniform(-1, 1,
                                       self.filter_size).astype(self.dtype)

G
guomingz 已提交
378
        if not self.has_cuda():
379 380 381 382 383 384 385 386
            self.fuse_relu_before_depthwise_conv = False
        if self.fuse_relu_before_depthwise_conv:
            input = input - 0.5
            input -= (input < 0) * 0.1
            input += (input >= 0) * 0.1
            input2 = np.maximum(input, 0.0)
        else:
            input2 = input
L
liym27 已提交
387

388
        output, _, _, _, _ = conv2d_forward_naive(input2, filter, self.groups,
389
                                                  conv2d_param)
K
Kexin Zhao 已提交
390

W
wuhuanzhou 已提交
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
        if self.is_bfloat16_op():
            output = output.astype(np.float32)
            self.inputs = {
                'Input': convert_float_to_uint16(input),
                'Filter': convert_float_to_uint16(filter)
            }
            self.inputs_fp32 = {
                'Input': OpTest.np_dtype_to_fluid_dtype(input),
                'Filter': OpTest.np_dtype_to_fluid_dtype(filter)
            }
        else:
            output = output.astype(self.dtype)
            self.inputs = {
                'Input': OpTest.np_dtype_to_fluid_dtype(input),
                'Filter': OpTest.np_dtype_to_fluid_dtype(filter)
            }

H
hedaoyuan 已提交
408
        self.attrs = {
C
chengduoZH 已提交
409 410
            'strides': self.stride,
            'paddings': self.pad,
C
chengduoZH 已提交
411
            'groups': self.groups,
412
            'dilations': self.dilations,
413
            'use_cudnn': self.use_cudnn,
414
            'use_mkldnn': self.use_mkldnn,
415
            'data_format': self.data_format,
416 417
            'fuse_relu_before_depthwise_conv':
            self.fuse_relu_before_depthwise_conv,
418
            'exhaustive_search': self.exhaustive_search
H
hedaoyuan 已提交
419
        }
420 421
        self.outputs = {'Output': output}

G
guomingz 已提交
422
    def has_cuda(self):
423 424
        return core.is_compiled_with_cuda() and (self.use_cudnn or
                                                 self.use_cuda)
425

H
hedaoyuan 已提交
426
    def test_check_output(self):
G
guomingz 已提交
427
        place = core.CUDAPlace(0) if self.has_cuda() else core.CPUPlace()
428 429 430
        # TODO(wangzhongpu): support mkldnn op in dygraph mode
        self.check_output_with_place(
            place, atol=1e-5, check_dygraph=(self.use_mkldnn == False))
H
hedaoyuan 已提交
431

H
hedaoyuan 已提交
432
    def test_check_grad(self):
433 434
        if self.dtype == np.float16 or (hasattr(self, "no_need_check_grad") and
                                        self.no_need_check_grad == True):
K
Kexin Zhao 已提交
435
            return
G
guomingz 已提交
436
        place = core.CUDAPlace(0) if self.has_cuda() else core.CPUPlace()
437
        # TODO(wangzhongpu): support mkldnn op in dygraph mode
438
        self.check_grad_with_place(
439 440 441 442
            place, {'Input', 'Filter'},
            'Output',
            max_relative_error=0.02,
            check_dygraph=(self.use_mkldnn == False))
H
hedaoyuan 已提交
443

444
    def test_check_grad_no_filter(self):
445 446
        if self.dtype == np.float16 or (hasattr(self, "no_need_check_grad") and
                                        self.no_need_check_grad == True):
K
Kexin Zhao 已提交
447
            return
G
guomingz 已提交
448
        place = core.CUDAPlace(0) if self.has_cuda() else core.CPUPlace()
449
        # TODO(wangzhongpu): support mkldnn op in dygraph mode
450 451 452 453
        self.check_grad_with_place(
            place, ['Input'],
            'Output',
            max_relative_error=0.02,
454 455
            no_grad_set=set(['Filter']),
            check_dygraph=(self.use_mkldnn == False))
456 457

    def test_check_grad_no_input(self):
458 459
        if self.dtype == np.float16 or (hasattr(self, "no_need_check_grad") and
                                        self.no_need_check_grad == True):
K
Kexin Zhao 已提交
460
            return
G
guomingz 已提交
461
        place = core.CUDAPlace(0) if self.has_cuda() else core.CPUPlace()
462
        # TODO(wangzhongpu): support mkldnn op in dygraph mode
463 464 465
        self.check_grad_with_place(
            place, ['Filter'],
            'Output',
466 467
            no_grad_set=set(['Input']),
            check_dygraph=(self.use_mkldnn == False))
468

C
chengduoZH 已提交
469 470 471 472 473
    def init_test_case(self):
        self.pad = [0, 0]
        self.stride = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
M
minqiyang 已提交
474
        f_c = self.input_size[1] // self.groups
C
chengduoZH 已提交
475 476
        self.filter_size = [6, f_c, 3, 3]

L
liym27 已提交
477 478 479
    def init_test_case_2(self):
        pass

C
chengduoZH 已提交
480 481 482
    def init_dilation(self):
        self.dilations = [1, 1]

C
chengduoZH 已提交
483
    def init_group(self):
H
hedaoyuan 已提交
484 485
        self.groups = 1

K
Kexin Zhao 已提交
486 487
    def init_kernel_type(self):
        pass
武毅 已提交
488

H
hedaoyuan 已提交
489

C
cnn 已提交
490
class TestWithPad(TestConv2DOp):
C
chengduoZH 已提交
491 492 493 494 495
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
M
minqiyang 已提交
496
        f_c = self.input_size[1] // self.groups
C
chengduoZH 已提交
497 498 499
        self.filter_size = [6, f_c, 3, 3]


C
cnn 已提交
500
class TestWithStride(TestConv2DOp):
C
chengduoZH 已提交
501 502 503 504 505
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [2, 2]
        self.input_size = [2, 3, 6, 6]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
M
minqiyang 已提交
506
        f_c = self.input_size[1] // self.groups
C
chengduoZH 已提交
507 508 509
        self.filter_size = [6, f_c, 3, 3]


C
cnn 已提交
510
class TestWithGroup(TestConv2DOp):
Z
zhupengyang 已提交
511 512 513 514 515 516 517 518
    def init_test_case(self):
        self.pad = [0, 0]
        self.stride = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        self.group = 3
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
        self.filter_size = [18, f_c, 3, 3]
H
hedaoyuan 已提交
519

武毅 已提交
520

C
cnn 已提交
521
class TestWith1x1(TestConv2DOp):
C
chengduoZH 已提交
522 523 524 525 526
    def init_test_case(self):
        self.pad = [0, 0]
        self.stride = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
M
minqiyang 已提交
527
        f_c = self.input_size[1] // self.groups
Z
zhupengyang 已提交
528
        self.filter_size = [120, f_c, 1, 1]
C
chengduoZH 已提交
529 530 531 532 533

    def init_group(self):
        self.groups = 3


C
cnn 已提交
534
class TestWithDepthWise3x3(TestConv2DOp):
535 536 537 538 539 540
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [1, 1]
        self.input_size = [3, 4, 10, 10]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
Z
zhupengyang 已提交
541
        self.filter_size = [12, f_c, 3, 3]
542 543 544 545 546 547 548 549

    def init_dilation(self):
        self.dilations = [2, 2]

    def init_group(self):
        self.groups = 4


C
cnn 已提交
550
class TestWithDepthWise5x5(TestConv2DOp):
551 552 553 554 555 556 557 558 559 560 561 562
    def init_test_case(self):
        self.pad = [0, 0]
        self.stride = [1, 1]
        self.input_size = [2, 4, 10, 10]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
        self.filter_size = [8, f_c, 5, 5]

    def init_group(self):
        self.groups = 4


C
cnn 已提交
563
class TestWithDepthWise7x7(TestConv2DOp):
564 565 566 567 568 569 570 571 572 573 574 575
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [2, 2]
        self.input_size = [2, 8, 10, 10]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
        self.filter_size = [16, f_c, 7, 7]

    def init_group(self):
        self.groups = 8


C
cnn 已提交
576
class TestWithDilation(TestConv2DOp):
C
chengduoZH 已提交
577 578 579 580 581
    def init_test_case(self):
        self.pad = [0, 0]
        self.stride = [1, 1]
        self.input_size = [2, 3, 10, 10]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
M
minqiyang 已提交
582
        f_c = self.input_size[1] // self.groups
Z
zhupengyang 已提交
583
        self.filter_size = [12, f_c, 3, 3]
C
chengduoZH 已提交
584

C
chengduoZH 已提交
585 586
    def init_dilation(self):
        self.dilations = [2, 2]
C
chengduoZH 已提交
587

C
chengduoZH 已提交
588
    def init_group(self):
C
chengduoZH 已提交
589
        self.groups = 3
武毅 已提交
590

C
chengduoZH 已提交
591

C
cnn 已提交
592
class TestWithInput1x1Filter1x1(TestConv2DOp):
593 594 595
    def init_test_case(self):
        self.pad = [0, 0]
        self.stride = [1, 1]
Z
zhupengyang 已提交
596
        self.input_size = [100, 3, 1, 1]  # NCHW
597
        assert np.mod(self.input_size[1], self.groups) == 0
M
minqiyang 已提交
598
        f_c = self.input_size[1] // self.groups
Z
zhupengyang 已提交
599
        self.filter_size = [120, f_c, 1, 1]
600 601 602 603 604

    def init_group(self):
        self.groups = 3


C
cnn 已提交
605
#----------------Conv2DCUDNN----------------
C
chengduoZH 已提交
606

C
cnn 已提交
607
create_test_cudnn_class(TestConv2DOp)
C
chengduo 已提交
608 609 610 611 612
create_test_cudnn_class(TestWithPad)
create_test_cudnn_class(TestWithStride)
create_test_cudnn_class(TestWithGroup)
create_test_cudnn_class(TestWith1x1)
create_test_cudnn_class(TestWithInput1x1Filter1x1)
K
Kexin Zhao 已提交
613

C
cnn 已提交
614
#----------------Conv2DCUDNN fp16----------------
C
chengduo 已提交
615

C
cnn 已提交
616
create_test_cudnn_fp16_class(TestConv2DOp, grad_check=False)
C
chengduo 已提交
617 618 619 620 621
create_test_cudnn_fp16_class(TestWithPad, grad_check=False)
create_test_cudnn_fp16_class(TestWithStride, grad_check=False)
create_test_cudnn_fp16_class(TestWithGroup, grad_check=False)
create_test_cudnn_fp16_class(TestWith1x1, grad_check=False)
create_test_cudnn_fp16_class(TestWithInput1x1Filter1x1, grad_check=False)
C
chengduo 已提交
622

W
wuhuanzhou 已提交
623 624 625 626 627 628 629 630 631
#----------------Conv2DCUDNN bf16----------------

create_test_cudnn_bf16_class(TestConv2DOp)
create_test_cudnn_bf16_class(TestWithPad)
create_test_cudnn_bf16_class(TestWithStride)
create_test_cudnn_bf16_class(TestWithGroup)
create_test_cudnn_bf16_class(TestWith1x1)
create_test_cudnn_bf16_class(TestWithInput1x1Filter1x1)

632

C
cnn 已提交
633
class TestCUDNNExhaustiveSearch(TestConv2DOp):
634 635 636
    def init_kernel_type(self):
        self.use_cudnn = True
        self.exhaustive_search = True
637
        self.dtype = np.float32 if core.is_compiled_with_rocm() else np.float64
638 639


C
cnn 已提交
640
class TestConv2DOpError(unittest.TestCase):
641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661
    def test_errors(self):
        with program_guard(Program(), Program()):

            def test_Variable():
                # the input of conv2d must be Variable.
                x1 = fluid.create_lod_tensor(
                    np.array([-1, 3, 5, 5]), [[1, 1, 1, 1]], fluid.CPUPlace())
                fluid.layers.conv2d(x1, 1, 1)

            self.assertRaises(TypeError, test_Variable)

            def test_dtype():
                # the input dtype of conv2d must be float16 or float32 or float64
                # float16 only can be set on GPU place
                x2 = fluid.layers.data(
                    name='x2', shape=[3, 4, 5, 6], dtype="int32")
                fluid.layers.conv2d(x2, 1, 1)

            self.assertRaises(TypeError, test_dtype)


662 663
# Please Don't remove the following code.
# Currently, CI use cudnn V5.0 which not support dilation conv.
664
# class TestCUDNNWithDilation(TestWithDilation):
C
chengduoZH 已提交
665 666 667
#     def init_op_type(self):
#         self.op_type = "conv_cudnn"

L
liym27 已提交
668 669 670
# ---- test asymmetric padding ----


C
cnn 已提交
671
class TestConv2DOp_v2(OpTest):
L
liym27 已提交
672 673 674 675 676 677 678
    def setUp(self):
        self.op_type = "conv2d"
        self.use_cudnn = False
        self.exhaustive_search = False
        self.use_cuda = False
        self.use_mkldnn = False
        self.fuse_relu_before_depthwise_conv = False
679
        self.dtype = np.float64
L
liym27 已提交
680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733
        self.init_kernel_type()
        self.init_group()
        self.init_dilation()
        self.init_data_format()
        self.init_test_case()
        self.init_paddings()
        self.init_test_case_2()

        conv2d_param = {
            'stride': self.stride,
            'pad': self.pad,
            'dilation': self.dilations
        }

        input = np.random.random(self.input_size).astype(self.dtype)
        if not self.has_cuda():
            self.fuse_relu_before_depthwise_conv = False
        if self.fuse_relu_before_depthwise_conv:
            input = input - 0.5
            input -= (input < 0) * 0.1
            input += (input >= 0) * 0.1
            input2 = np.maximum(input, 0.0)
        else:
            input2 = input
        filter = np.random.uniform(-1, 1, self.filter_size).astype(self.dtype)
        output, _, _, _, _ = conv2d_forward_naive(
            input2, filter, self.groups, conv2d_param, self.padding_algorithm,
            self.data_format)
        output = output.astype(self.dtype)

        self.inputs = {
            'Input': OpTest.np_dtype_to_fluid_dtype(input),
            'Filter': OpTest.np_dtype_to_fluid_dtype(filter)
        }
        self.attrs = {
            'strides': self.stride,
            'paddings': self.pad,
            'padding_algorithm': self.padding_algorithm,
            'groups': self.groups,
            'dilations': self.dilations,
            'use_cudnn': self.use_cudnn,
            'use_mkldnn': self.use_mkldnn,
            'data_format': self.data_format,
            'fuse_relu_before_depthwise_conv':
            self.fuse_relu_before_depthwise_conv,
            'exhaustive_search': self.exhaustive_search
        }
        self.outputs = {'Output': output}

    def has_cuda(self):
        return core.is_compiled_with_cuda() and (self.use_cudnn or
                                                 self.use_cuda)

    def test_check_output(self):
734
        # TODO(wangzhongpu): support mkldnn op in dygraph mode
L
liym27 已提交
735
        place = core.CUDAPlace(0) if self.has_cuda() else core.CPUPlace()
736 737
        self.check_output_with_place(
            place, atol=1e-5, check_dygraph=(self.use_mkldnn == False))
L
liym27 已提交
738 739

    def test_check_grad(self):
740
        # TODO(wangzhongpu): support mkldnn op in dygraph mode
L
liym27 已提交
741 742 743 744
        if self.dtype == np.float16:
            return
        place = core.CUDAPlace(0) if self.has_cuda() else core.CPUPlace()
        self.check_grad_with_place(
745 746 747 748
            place, {'Input', 'Filter'},
            'Output',
            max_relative_error=0.02,
            check_dygraph=(self.use_mkldnn == False))
L
liym27 已提交
749 750

    def test_check_grad_no_filter(self):
751
        # TODO(wangzhongpu): support mkldnn op in dygraph mode
L
liym27 已提交
752 753 754 755 756 757 758
        if self.dtype == np.float16:
            return
        place = core.CUDAPlace(0) if self.has_cuda() else core.CPUPlace()
        self.check_grad_with_place(
            place, ['Input'],
            'Output',
            max_relative_error=0.02,
759 760
            no_grad_set=set(['Filter']),
            check_dygraph=(self.use_mkldnn == False))
L
liym27 已提交
761 762

    def test_check_grad_no_input(self):
763
        # TODO(wangzhongpu): support mkldnn op in dygraph mode
L
liym27 已提交
764 765 766 767 768 769
        if self.dtype == np.float16:
            return
        place = core.CUDAPlace(0) if self.has_cuda() else core.CPUPlace()
        self.check_grad_with_place(
            place, ['Filter'],
            'Output',
770 771
            no_grad_set=set(['Input']),
            check_dygraph=(self.use_mkldnn == False))
L
liym27 已提交
772 773 774

    def init_test_case(self):
        self.pad = [0, 0]
775
        self.stride = [1, 2]
L
liym27 已提交
776 777 778
        self.input_size = [2, 3, 5, 5]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
779
        self.filter_size = [6, f_c, 4, 3]
L
liym27 已提交
780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800

    def init_dilation(self):
        self.dilations = [1, 1]

    def init_group(self):
        self.groups = 1

    def init_kernel_type(self):
        pass

    def init_paddings(self):
        self.pad = [0, 0]
        self.padding_algorithm = "EXPLICIT"

    def init_data_format(self):
        self.data_format = "NCHW"

    def init_test_case_2(self):
        pass


C
cnn 已提交
801
class TestConv2DOp_AsyPadding(TestConv2DOp_v2):
L
liym27 已提交
802 803 804 805 806
    def init_paddings(self):
        self.pad = [0, 0, 1, 2]
        self.padding_algorithm = "EXPLICIT"


C
cnn 已提交
807
class TestWithPad_AsyPadding(TestConv2DOp_v2):
L
liym27 已提交
808 809 810 811 812 813 814 815 816 817 818 819
    def init_test_case(self):
        self.stride = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
        self.filter_size = [6, f_c, 3, 3]

    def init_paddings(self):
        self.pad = [2, 1, 3, 2]
        self.padding_algorithm = "EXPLICIT"


C
cnn 已提交
820
class TestWithStride_AsyPadding(TestConv2DOp_v2):
L
liym27 已提交
821 822 823 824 825 826 827 828 829 830 831 832
    def init_test_case(self):
        self.stride = [2, 2]
        self.input_size = [2, 3, 6, 6]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
        self.filter_size = [6, f_c, 3, 3]

    def init_paddings(self):
        self.pad = [2, 1, 3, 2]
        self.padding_algorithm = "EXPLICIT"


C
cnn 已提交
833
class TestWithGroup_AsyPadding(TestConv2DOp_v2):
Z
zhupengyang 已提交
834 835 836 837 838 839 840 841
    def init_test_case(self):
        self.pad = [0, 0]
        self.stride = [1, 2]
        self.input_size = [2, 3, 5, 5]  # NCHW
        self.group = 3
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
        self.filter_size = [24, f_c, 4, 3]
L
liym27 已提交
842 843


C
cnn 已提交
844
class TestWith1x1_AsyPadding(TestConv2DOp_v2):
L
liym27 已提交
845 846 847 848 849
    def init_test_case(self):
        self.stride = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
Z
zhupengyang 已提交
850
        self.filter_size = [120, f_c, 1, 1]
L
liym27 已提交
851 852 853 854 855 856 857 858 859

    def init_group(self):
        self.groups = 3

    def init_paddings(self):
        self.pad = [2, 2, 4, 0]
        self.padding_algorithm = "EXPLICIT"


C
cnn 已提交
860
class TestWithDepthWise3x3_AsyPadding(TestConv2DOp_v2):
L
liym27 已提交
861 862 863 864 865
    def init_test_case(self):
        self.stride = [1, 1]
        self.input_size = [3, 4, 10, 10]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
Z
zhupengyang 已提交
866
        self.filter_size = [16, f_c, 3, 3]
L
liym27 已提交
867 868 869 870 871 872 873 874 875 876 877 878

    def init_dilation(self):
        self.dilations = [2, 2]

    def init_group(self):
        self.groups = 4

    def init_paddings(self):
        self.pad = [1, 3, 2, 1]
        self.padding_algorithm = "EXPLICIT"


C
cnn 已提交
879
class TestWithDepthWise5x5_AsyPadding(TestConv2DOp_v2):
L
liym27 已提交
880 881 882 883 884 885 886 887 888 889 890 891 892 893 894
    def init_test_case(self):
        self.stride = [1, 1]
        self.input_size = [2, 4, 10, 10]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
        self.filter_size = [8, f_c, 5, 5]

    def init_group(self):
        self.groups = 4

    def init_paddings(self):
        self.pad = [0, 1, 1, 0]
        self.padding_algorithm = "EXPLICIT"


C
cnn 已提交
895
class TestWithDepthWise7x7_AsyPadding(TestConv2DOp_v2):
L
liym27 已提交
896 897 898 899 900 901 902 903 904 905 906 907 908 909 910
    def init_test_case(self):
        self.stride = [2, 2]
        self.input_size = [2, 8, 10, 10]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
        self.filter_size = [16, f_c, 7, 7]

    def init_group(self):
        self.groups = 8

    def init_paddings(self):
        self.pad = [1, 3, 4, 1]
        self.padding_algorithm = "EXPLICIT"


C
cnn 已提交
911
class TestWithDilation_AsyPadding(TestConv2DOp_v2):
L
liym27 已提交
912 913 914 915 916
    def init_test_case(self):
        self.stride = [1, 1]
        self.input_size = [2, 3, 10, 10]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
Z
zhupengyang 已提交
917
        self.filter_size = [24, f_c, 3, 3]
L
liym27 已提交
918 919 920 921 922 923 924 925 926 927 928 929

    def init_dilation(self):
        self.dilations = [2, 2]

    def init_group(self):
        self.groups = 3

    def init_paddings(self):
        self.pad = [0, 1, 3, 0]
        self.padding_algorithm = "EXPLICIT"


C
cnn 已提交
930
class TestWithInput1x1Filter1x1_AsyPadding(TestConv2DOp_v2):
L
liym27 已提交
931 932
    def init_test_case(self):
        self.stride = [1, 1]
Z
zhupengyang 已提交
933
        self.input_size = [40, 3, 1, 1]  # NCHW
L
liym27 已提交
934 935
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
Z
zhupengyang 已提交
936
        self.filter_size = [120, f_c, 1, 1]
L
liym27 已提交
937 938 939 940 941 942 943 944 945

    def init_group(self):
        self.groups = 3

    def init_paddings(self):
        self.pad = [0, 3, 4, 0]
        self.padding_algorithm = "EXPLICIT"


C
cnn 已提交
946
create_test_cudnn_class(TestConv2DOp_AsyPadding)
L
liym27 已提交
947 948 949 950 951 952 953
create_test_cudnn_class(TestWithPad_AsyPadding)
create_test_cudnn_class(TestWithStride_AsyPadding)
create_test_cudnn_class(TestWithGroup_AsyPadding)
create_test_cudnn_class(TestWith1x1_AsyPadding)
create_test_cudnn_class(TestWithInput1x1Filter1x1_AsyPadding)

#---------- test SAME VALID -----------
C
cnn 已提交
954
create_test_padding_SAME_class(TestConv2DOp_AsyPadding)
L
liym27 已提交
955 956 957 958 959
create_test_padding_SAME_class(TestWithPad_AsyPadding)
create_test_padding_SAME_class(TestWithStride_AsyPadding)
create_test_padding_SAME_class(TestWithGroup_AsyPadding)
create_test_padding_SAME_class(TestWithInput1x1Filter1x1_AsyPadding)

C
cnn 已提交
960
create_test_padding_VALID_class(TestConv2DOp_AsyPadding)
L
liym27 已提交
961 962 963 964 965
create_test_padding_VALID_class(TestWithPad_AsyPadding)
create_test_padding_VALID_class(TestWithStride_AsyPadding)
create_test_padding_VALID_class(TestWithGroup_AsyPadding)
create_test_padding_VALID_class(TestWithInput1x1Filter1x1_AsyPadding)

C
cnn 已提交
966
create_test_cudnn_padding_SAME_class(TestConv2DOp_AsyPadding)
L
liym27 已提交
967 968 969 970 971
create_test_cudnn_padding_SAME_class(TestWithPad_AsyPadding)
create_test_cudnn_padding_SAME_class(TestWithStride_AsyPadding)
create_test_cudnn_padding_SAME_class(TestWithGroup_AsyPadding)
create_test_cudnn_padding_SAME_class(TestWithInput1x1Filter1x1_AsyPadding)

C
cnn 已提交
972
create_test_cudnn_padding_VALID_class(TestConv2DOp_AsyPadding)
L
liym27 已提交
973 974 975 976 977 978
create_test_cudnn_padding_VALID_class(TestWithPad_AsyPadding)
create_test_cudnn_padding_VALID_class(TestWithStride_AsyPadding)
create_test_cudnn_padding_VALID_class(TestWithGroup_AsyPadding)
create_test_cudnn_padding_VALID_class(TestWithInput1x1Filter1x1_AsyPadding)

# ------------ test channel last ---------
C
cnn 已提交
979
create_test_channel_last_class(TestConv2DOp_AsyPadding)
L
liym27 已提交
980 981 982 983 984
create_test_channel_last_class(TestWithPad_AsyPadding)
create_test_channel_last_class(TestWithGroup_AsyPadding)
create_test_channel_last_class(TestWith1x1_AsyPadding)
create_test_channel_last_class(TestWithInput1x1Filter1x1_AsyPadding)

C
cnn 已提交
985
create_test_cudnn_channel_last_class(TestConv2DOp_AsyPadding)
L
liym27 已提交
986 987 988 989 990
create_test_cudnn_channel_last_class(TestWithPad_AsyPadding)
create_test_cudnn_channel_last_class(TestWithStride_AsyPadding)
create_test_cudnn_channel_last_class(TestWithGroup_AsyPadding)
create_test_cudnn_channel_last_class(TestWithDilation_AsyPadding)

991
create_test_cudnn_channel_last_fp16_class(
C
cnn 已提交
992
    TestConv2DOp_AsyPadding, grad_check=False)
993 994 995 996 997 998 999 1000 1001
create_test_cudnn_channel_last_fp16_class(
    TestWithPad_AsyPadding, grad_check=False)
create_test_cudnn_channel_last_fp16_class(
    TestWithStride_AsyPadding, grad_check=False)
create_test_cudnn_channel_last_fp16_class(
    TestWithGroup_AsyPadding, grad_check=False)
create_test_cudnn_channel_last_fp16_class(
    TestWithDilation_AsyPadding, grad_check=False)

1002 1003
if __name__ == '__main__':
    unittest.main()