test_repeat_interleave_op.py 9.3 KB
Newer Older
K
kuizhiqing 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
16

K
kuizhiqing 已提交
17 18
import numpy as np
from op_test import OpTest
19 20

import paddle
K
kuizhiqing 已提交
21 22 23 24 25 26 27
import paddle.fluid as fluid
from paddle.fluid import Program, program_guard


class TestRepeatInterleaveOp(OpTest):
    def setUp(self):
        self.op_type = "repeat_interleave"
S
seemingwang 已提交
28
        self.python_api = paddle.repeat_interleave
K
kuizhiqing 已提交
29 30
        self.init_dtype_type()
        index_np = np.random.randint(
31 32
            low=0, high=3, size=self.index_size
        ).astype(self.index_type)
K
kuizhiqing 已提交
33
        x_np = np.random.random(self.x_shape).astype(self.x_type)
S
seemingwang 已提交
34

K
kuizhiqing 已提交
35 36 37
        self.inputs = {'X': x_np, 'RepeatsTensor': index_np}
        self.attrs = {'dim': self.dim}

38 39
        outer_loop = np.prod(self.x_shape[: self.dim])
        x_reshape = [outer_loop] + list(self.x_shape[self.dim :])
K
kuizhiqing 已提交
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
        x_np_reshape = np.reshape(x_np, tuple(x_reshape))
        out_list = []
        for i in range(outer_loop):
            for j in range(self.index_size):
                for k in range(index_np[j]):
                    out_list.append(x_np_reshape[i, j])
        self.out_shape = list(self.x_shape)
        self.out_shape[self.dim] = np.sum(index_np)
        self.out_shape = tuple(self.out_shape)

        out = np.reshape(out_list, self.out_shape)
        self.outputs = {'Out': out}

    def init_dtype_type(self):
        self.dim = 1
        self.x_type = np.float64
        self.index_type = np.int64
        self.x_shape = (8, 4, 5)
        self.index_size = self.x_shape[self.dim]

    def test_check_output(self):
S
seemingwang 已提交
61
        self.check_output(check_eager=True)
K
kuizhiqing 已提交
62 63

    def test_check_grad_normal(self):
S
seemingwang 已提交
64
        self.check_grad(['X'], 'Out', check_eager=True)
K
kuizhiqing 已提交
65 66 67 68 69


class TestRepeatInterleaveOp2(OpTest):
    def setUp(self):
        self.op_type = "repeat_interleave"
S
seemingwang 已提交
70
        self.python_api = paddle.repeat_interleave
K
kuizhiqing 已提交
71 72 73
        self.init_dtype_type()
        index_np = 2
        x_np = np.random.random(self.x_shape).astype(self.x_type)
74
        self.inputs = {'X': x_np}  # , 'RepeatsTensor': None}
K
kuizhiqing 已提交
75 76
        self.attrs = {'dim': self.dim, 'Repeats': index_np}

77 78
        outer_loop = np.prod(self.x_shape[: self.dim])
        x_reshape = [outer_loop] + list(self.x_shape[self.dim :])
K
kuizhiqing 已提交
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
        x_np_reshape = np.reshape(x_np, tuple(x_reshape))
        out_list = []
        for i in range(outer_loop):
            for j in range(self.index_size):
                for k in range(index_np):
                    out_list.append(x_np_reshape[i, j])
        self.out_shape = list(self.x_shape)
        self.out_shape[self.dim] = index_np * self.index_size
        self.out_shape = tuple(self.out_shape)

        out = np.reshape(out_list, self.out_shape)
        self.outputs = {'Out': out}

    def init_dtype_type(self):
        self.dim = 1
        self.x_type = np.float64
        self.x_shape = (8, 4, 5)
        self.index_size = self.x_shape[self.dim]

    def test_check_output(self):
S
seemingwang 已提交
99
        self.check_output(check_eager=True)
K
kuizhiqing 已提交
100 101

    def test_check_grad_normal(self):
S
seemingwang 已提交
102
        self.check_grad(['X'], 'Out', check_eager=True)
K
kuizhiqing 已提交
103 104 105 106


class TestIndexSelectAPI(unittest.TestCase):
    def input_data(self):
107
        self.data_zero_dim_x = np.array(0.5)
108 109 110 111 112 113 114
        self.data_x = np.array(
            [
                [1.0, 2.0, 3.0, 4.0],
                [5.0, 6.0, 7.0, 8.0],
                [9.0, 10.0, 11.0, 12.0],
            ]
        )
K
kuizhiqing 已提交
115 116 117 118 119 120 121 122
        self.data_index = np.array([0, 1, 2, 1]).astype('int32')

    def test_repeat_interleave_api(self):
        paddle.enable_static()
        self.input_data()

        # case 1:
        with program_guard(Program(), Program()):
G
GGBond8488 已提交
123 124 125
            x = paddle.static.data(name='x', shape=[-1, 4], dtype='float32')
            x.desc.set_need_check_feed(False)
            index = paddle.static.data(
126 127 128 129
                name='repeats_',
                shape=[4],
                dtype='int32',
            )
G
GGBond8488 已提交
130
            index.desc.set_need_check_feed(False)
K
kuizhiqing 已提交
131 132
            z = paddle.repeat_interleave(x, index, axis=1)
            exe = fluid.Executor(fluid.CPUPlace())
133 134 135 136 137
            (res,) = exe.run(
                feed={'x': self.data_x, 'repeats_': self.data_index},
                fetch_list=[z.name],
                return_numpy=False,
            )
K
kuizhiqing 已提交
138
        expect_out = np.repeat(self.data_x, self.data_index, axis=1)
139
        np.testing.assert_allclose(expect_out, np.array(res), rtol=1e-05)
K
kuizhiqing 已提交
140 141 142 143

        # case 2:
        repeats = np.array([1, 2, 1]).astype('int32')
        with program_guard(Program(), Program()):
G
GGBond8488 已提交
144 145 146
            x = paddle.static.data(name='x', shape=[-1, 4], dtype="float32")
            x.desc.set_need_check_feed(False)
            index = paddle.static.data(
147 148 149 150
                name='repeats_',
                shape=[3],
                dtype='int32',
            )
G
GGBond8488 已提交
151
            index.desc.set_need_check_feed(False)
K
kuizhiqing 已提交
152 153
            z = paddle.repeat_interleave(x, index, axis=0)
            exe = fluid.Executor(fluid.CPUPlace())
154 155 156 157 158 159 160 161
            (res,) = exe.run(
                feed={
                    'x': self.data_x,
                    'repeats_': repeats,
                },
                fetch_list=[z.name],
                return_numpy=False,
            )
K
kuizhiqing 已提交
162
        expect_out = np.repeat(self.data_x, repeats, axis=0)
163
        np.testing.assert_allclose(expect_out, np.array(res), rtol=1e-05)
K
kuizhiqing 已提交
164 165 166

        repeats = 2
        with program_guard(Program(), Program()):
G
GGBond8488 已提交
167 168
            x = paddle.static.data(name='x', shape=[-1, 4], dtype='float32')
            x.desc.set_need_check_feed(False)
K
kuizhiqing 已提交
169 170
            z = paddle.repeat_interleave(x, repeats, axis=0)
            exe = fluid.Executor(fluid.CPUPlace())
171 172 173
            (res,) = exe.run(
                feed={'x': self.data_x}, fetch_list=[z.name], return_numpy=False
            )
K
kuizhiqing 已提交
174
        expect_out = np.repeat(self.data_x, repeats, axis=0)
175
        np.testing.assert_allclose(expect_out, np.array(res), rtol=1e-05)
K
kuizhiqing 已提交
176

177 178
        # case 3 zero_dim:
        with program_guard(Program(), Program()):
G
GGBond8488 已提交
179 180
            x = paddle.static.data(name='x', shape=[-1], dtype="float32")
            x.desc.set_need_check_feed(False)
181 182 183 184 185 186 187 188 189 190
            z = paddle.repeat_interleave(x, repeats)
            exe = fluid.Executor(fluid.CPUPlace())
            (res,) = exe.run(
                feed={'x': self.data_zero_dim_x},
                fetch_list=[z.name],
                return_numpy=False,
            )
        expect_out = np.repeat(self.data_zero_dim_x, repeats)
        np.testing.assert_allclose(expect_out, np.array(res), rtol=1e-05)

K
kuizhiqing 已提交
191 192 193 194 195 196 197 198 199 200 201 202
    def test_dygraph_api(self):
        self.input_data()
        # case axis none
        input_x = np.array([[1, 2, 1], [1, 2, 3]]).astype('int32')
        index_x = np.array([1, 1, 2, 1, 2, 2]).astype('int32')

        with fluid.dygraph.guard():
            x = fluid.dygraph.to_variable(input_x)
            index = fluid.dygraph.to_variable(index_x)
            z = paddle.repeat_interleave(x, index, None)
            np_z = z.numpy()
        expect_out = np.repeat(input_x, index_x, axis=None)
203
        np.testing.assert_allclose(expect_out, np_z, rtol=1e-05)
K
kuizhiqing 已提交
204 205 206 207 208 209 210 211

        # case repeats int
        with fluid.dygraph.guard():
            x = fluid.dygraph.to_variable(input_x)
            index = 2
            z = paddle.repeat_interleave(x, index, None)
            np_z = z.numpy()
        expect_out = np.repeat(input_x, index, axis=None)
212
        np.testing.assert_allclose(expect_out, np_z, rtol=1e-05)
K
kuizhiqing 已提交
213 214 215 216 217 218 219 220

        # case 1:
        with fluid.dygraph.guard():
            x = fluid.dygraph.to_variable(self.data_x)
            index = fluid.dygraph.to_variable(self.data_index)
            z = paddle.repeat_interleave(x, index, -1)
            np_z = z.numpy()
        expect_out = np.repeat(self.data_x, self.data_index, axis=-1)
221
        np.testing.assert_allclose(expect_out, np_z, rtol=1e-05)
K
kuizhiqing 已提交
222 223 224 225 226 227 228

        with fluid.dygraph.guard():
            x = fluid.dygraph.to_variable(self.data_x)
            index = fluid.dygraph.to_variable(self.data_index)
            z = paddle.repeat_interleave(x, index, 1)
            np_z = z.numpy()
        expect_out = np.repeat(self.data_x, self.data_index, axis=1)
229
        np.testing.assert_allclose(expect_out, np_z, rtol=1e-05)
K
kuizhiqing 已提交
230 231 232 233 234 235 236 237 238

        # case 2:
        index_x = np.array([1, 2, 1]).astype('int32')
        with fluid.dygraph.guard():
            x = fluid.dygraph.to_variable(self.data_x)
            index = fluid.dygraph.to_variable(index_x)
            z = paddle.repeat_interleave(x, index, axis=0)
            np_z = z.numpy()
        expect_out = np.repeat(self.data_x, index, axis=0)
239
        np.testing.assert_allclose(expect_out, np_z, rtol=1e-05)
K
kuizhiqing 已提交
240

241 242 243 244 245 246 247 248 249
        # case 3 zero_dim:
        with fluid.dygraph.guard():
            x = fluid.dygraph.to_variable(self.data_zero_dim_x)
            index = 2
            z = paddle.repeat_interleave(x, index, None)
            np_z = z.numpy()
        expect_out = np.repeat(self.data_zero_dim_x, index, axis=None)
        np.testing.assert_allclose(expect_out, np_z, rtol=1e-05)

K
kuizhiqing 已提交
250 251 252

if __name__ == '__main__':
    unittest.main()