test_repeat_interleave_op.py 8.1 KB
Newer Older
K
kuizhiqing 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import paddle
import numpy as np
from op_test import OpTest
import paddle.fluid as fluid
from paddle.fluid import Program, program_guard


class TestRepeatInterleaveOp(OpTest):
24

K
kuizhiqing 已提交
25 26
    def setUp(self):
        self.op_type = "repeat_interleave"
S
seemingwang 已提交
27
        self.python_api = paddle.repeat_interleave
K
kuizhiqing 已提交
28 29 30 31
        self.init_dtype_type()
        index_np = np.random.randint(
            low=0, high=3, size=self.index_size).astype(self.index_type)
        x_np = np.random.random(self.x_shape).astype(self.x_type)
S
seemingwang 已提交
32

K
kuizhiqing 已提交
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
        self.inputs = {'X': x_np, 'RepeatsTensor': index_np}
        self.attrs = {'dim': self.dim}

        outer_loop = np.prod(self.x_shape[:self.dim])
        x_reshape = [outer_loop] + list(self.x_shape[self.dim:])
        x_np_reshape = np.reshape(x_np, tuple(x_reshape))
        out_list = []
        for i in range(outer_loop):
            for j in range(self.index_size):
                for k in range(index_np[j]):
                    out_list.append(x_np_reshape[i, j])
        self.out_shape = list(self.x_shape)
        self.out_shape[self.dim] = np.sum(index_np)
        self.out_shape = tuple(self.out_shape)

        out = np.reshape(out_list, self.out_shape)
        self.outputs = {'Out': out}

    def init_dtype_type(self):
        self.dim = 1
        self.x_type = np.float64
        self.index_type = np.int64
        self.x_shape = (8, 4, 5)
        self.index_size = self.x_shape[self.dim]

    def test_check_output(self):
S
seemingwang 已提交
59
        self.check_output(check_eager=True)
K
kuizhiqing 已提交
60 61

    def test_check_grad_normal(self):
S
seemingwang 已提交
62
        self.check_grad(['X'], 'Out', check_eager=True)
K
kuizhiqing 已提交
63 64 65


class TestRepeatInterleaveOp2(OpTest):
66

K
kuizhiqing 已提交
67 68
    def setUp(self):
        self.op_type = "repeat_interleave"
S
seemingwang 已提交
69
        self.python_api = paddle.repeat_interleave
K
kuizhiqing 已提交
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
        self.init_dtype_type()
        index_np = 2
        x_np = np.random.random(self.x_shape).astype(self.x_type)
        self.inputs = {'X': x_np}  #, 'RepeatsTensor': None}
        self.attrs = {'dim': self.dim, 'Repeats': index_np}

        outer_loop = np.prod(self.x_shape[:self.dim])
        x_reshape = [outer_loop] + list(self.x_shape[self.dim:])
        x_np_reshape = np.reshape(x_np, tuple(x_reshape))
        out_list = []
        for i in range(outer_loop):
            for j in range(self.index_size):
                for k in range(index_np):
                    out_list.append(x_np_reshape[i, j])
        self.out_shape = list(self.x_shape)
        self.out_shape[self.dim] = index_np * self.index_size
        self.out_shape = tuple(self.out_shape)

        out = np.reshape(out_list, self.out_shape)
        self.outputs = {'Out': out}

    def init_dtype_type(self):
        self.dim = 1
        self.x_type = np.float64
        self.x_shape = (8, 4, 5)
        self.index_size = self.x_shape[self.dim]

    def test_check_output(self):
S
seemingwang 已提交
98
        self.check_output(check_eager=True)
K
kuizhiqing 已提交
99 100

    def test_check_grad_normal(self):
S
seemingwang 已提交
101
        self.check_grad(['X'], 'Out', check_eager=True)
K
kuizhiqing 已提交
102 103 104


class TestIndexSelectAPI(unittest.TestCase):
105

K
kuizhiqing 已提交
106 107 108 109 110 111 112 113 114 115 116 117
    def input_data(self):
        self.data_x = np.array([[1.0, 2.0, 3.0, 4.0], [5.0, 6.0, 7.0, 8.0],
                                [9.0, 10.0, 11.0, 12.0]])
        self.data_index = np.array([0, 1, 2, 1]).astype('int32')

    def test_repeat_interleave_api(self):
        paddle.enable_static()
        self.input_data()

        # case 1:
        with program_guard(Program(), Program()):
            x = fluid.layers.data(name='x', shape=[-1, 4])
S
seemingwang 已提交
118
            index = fluid.layers.data(name='repeats_',
119 120 121
                                      shape=[4],
                                      dtype='int32',
                                      append_batch_size=False)
K
kuizhiqing 已提交
122 123
            z = paddle.repeat_interleave(x, index, axis=1)
            exe = fluid.Executor(fluid.CPUPlace())
124 125
            res, = exe.run(feed={
                'x': self.data_x,
S
seemingwang 已提交
126
                'repeats_': self.data_index
127
            },
K
kuizhiqing 已提交
128 129 130
                           fetch_list=[z.name],
                           return_numpy=False)
        expect_out = np.repeat(self.data_x, self.data_index, axis=1)
131
        np.testing.assert_allclose(expect_out, np.array(res), rtol=1e-05)
K
kuizhiqing 已提交
132 133 134 135 136

        # case 2:
        repeats = np.array([1, 2, 1]).astype('int32')
        with program_guard(Program(), Program()):
            x = fluid.layers.data(name='x', shape=[-1, 4])
S
seemingwang 已提交
137
            index = fluid.layers.data(name='repeats_',
138 139 140
                                      shape=[3],
                                      dtype='int32',
                                      append_batch_size=False)
K
kuizhiqing 已提交
141 142 143 144
            z = paddle.repeat_interleave(x, index, axis=0)
            exe = fluid.Executor(fluid.CPUPlace())
            res, = exe.run(feed={
                'x': self.data_x,
S
seemingwang 已提交
145
                'repeats_': repeats,
K
kuizhiqing 已提交
146 147 148 149
            },
                           fetch_list=[z.name],
                           return_numpy=False)
        expect_out = np.repeat(self.data_x, repeats, axis=0)
150
        np.testing.assert_allclose(expect_out, np.array(res), rtol=1e-05)
K
kuizhiqing 已提交
151 152 153 154 155 156 157 158 159 160

        repeats = 2
        with program_guard(Program(), Program()):
            x = fluid.layers.data(name='x', shape=[-1, 4])
            z = paddle.repeat_interleave(x, repeats, axis=0)
            exe = fluid.Executor(fluid.CPUPlace())
            res, = exe.run(feed={'x': self.data_x},
                           fetch_list=[z.name],
                           return_numpy=False)
        expect_out = np.repeat(self.data_x, repeats, axis=0)
161
        np.testing.assert_allclose(expect_out, np.array(res), rtol=1e-05)
K
kuizhiqing 已提交
162 163 164 165 166 167 168 169 170 171 172 173 174

    def test_dygraph_api(self):
        self.input_data()
        # case axis none
        input_x = np.array([[1, 2, 1], [1, 2, 3]]).astype('int32')
        index_x = np.array([1, 1, 2, 1, 2, 2]).astype('int32')

        with fluid.dygraph.guard():
            x = fluid.dygraph.to_variable(input_x)
            index = fluid.dygraph.to_variable(index_x)
            z = paddle.repeat_interleave(x, index, None)
            np_z = z.numpy()
        expect_out = np.repeat(input_x, index_x, axis=None)
175
        np.testing.assert_allclose(expect_out, np_z, rtol=1e-05)
K
kuizhiqing 已提交
176 177 178 179 180 181 182 183

        # case repeats int
        with fluid.dygraph.guard():
            x = fluid.dygraph.to_variable(input_x)
            index = 2
            z = paddle.repeat_interleave(x, index, None)
            np_z = z.numpy()
        expect_out = np.repeat(input_x, index, axis=None)
184
        np.testing.assert_allclose(expect_out, np_z, rtol=1e-05)
K
kuizhiqing 已提交
185 186 187 188 189 190 191 192

        # case 1:
        with fluid.dygraph.guard():
            x = fluid.dygraph.to_variable(self.data_x)
            index = fluid.dygraph.to_variable(self.data_index)
            z = paddle.repeat_interleave(x, index, -1)
            np_z = z.numpy()
        expect_out = np.repeat(self.data_x, self.data_index, axis=-1)
193
        np.testing.assert_allclose(expect_out, np_z, rtol=1e-05)
K
kuizhiqing 已提交
194 195 196 197 198 199 200

        with fluid.dygraph.guard():
            x = fluid.dygraph.to_variable(self.data_x)
            index = fluid.dygraph.to_variable(self.data_index)
            z = paddle.repeat_interleave(x, index, 1)
            np_z = z.numpy()
        expect_out = np.repeat(self.data_x, self.data_index, axis=1)
201
        np.testing.assert_allclose(expect_out, np_z, rtol=1e-05)
K
kuizhiqing 已提交
202 203 204 205 206 207 208 209 210

        # case 2:
        index_x = np.array([1, 2, 1]).astype('int32')
        with fluid.dygraph.guard():
            x = fluid.dygraph.to_variable(self.data_x)
            index = fluid.dygraph.to_variable(index_x)
            z = paddle.repeat_interleave(x, index, axis=0)
            np_z = z.numpy()
        expect_out = np.repeat(self.data_x, index, axis=0)
211
        np.testing.assert_allclose(expect_out, np_z, rtol=1e-05)
K
kuizhiqing 已提交
212 213 214 215


if __name__ == '__main__':
    unittest.main()