test_repeat_interleave_op.py 8.1 KB
Newer Older
K
kuizhiqing 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import paddle
import numpy as np
import paddle.fluid.core as core
from op_test import OpTest
import paddle.fluid as fluid
from paddle.fluid import Program, program_guard


class TestRepeatInterleaveOp(OpTest):
27

K
kuizhiqing 已提交
28 29
    def setUp(self):
        self.op_type = "repeat_interleave"
S
seemingwang 已提交
30
        self.python_api = paddle.repeat_interleave
K
kuizhiqing 已提交
31 32 33 34
        self.init_dtype_type()
        index_np = np.random.randint(
            low=0, high=3, size=self.index_size).astype(self.index_type)
        x_np = np.random.random(self.x_shape).astype(self.x_type)
S
seemingwang 已提交
35

K
kuizhiqing 已提交
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
        self.inputs = {'X': x_np, 'RepeatsTensor': index_np}
        self.attrs = {'dim': self.dim}

        outer_loop = np.prod(self.x_shape[:self.dim])
        x_reshape = [outer_loop] + list(self.x_shape[self.dim:])
        x_np_reshape = np.reshape(x_np, tuple(x_reshape))
        out_list = []
        for i in range(outer_loop):
            for j in range(self.index_size):
                for k in range(index_np[j]):
                    out_list.append(x_np_reshape[i, j])
        self.out_shape = list(self.x_shape)
        self.out_shape[self.dim] = np.sum(index_np)
        self.out_shape = tuple(self.out_shape)

        out = np.reshape(out_list, self.out_shape)
        self.outputs = {'Out': out}

    def init_dtype_type(self):
        self.dim = 1
        self.x_type = np.float64
        self.index_type = np.int64
        self.x_shape = (8, 4, 5)
        self.index_size = self.x_shape[self.dim]

    def test_check_output(self):
S
seemingwang 已提交
62
        self.check_output(check_eager=True)
K
kuizhiqing 已提交
63 64

    def test_check_grad_normal(self):
S
seemingwang 已提交
65
        self.check_grad(['X'], 'Out', check_eager=True)
K
kuizhiqing 已提交
66 67 68


class TestRepeatInterleaveOp2(OpTest):
69

K
kuizhiqing 已提交
70 71
    def setUp(self):
        self.op_type = "repeat_interleave"
S
seemingwang 已提交
72
        self.python_api = paddle.repeat_interleave
K
kuizhiqing 已提交
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
        self.init_dtype_type()
        index_np = 2
        x_np = np.random.random(self.x_shape).astype(self.x_type)
        self.inputs = {'X': x_np}  #, 'RepeatsTensor': None}
        self.attrs = {'dim': self.dim, 'Repeats': index_np}

        outer_loop = np.prod(self.x_shape[:self.dim])
        x_reshape = [outer_loop] + list(self.x_shape[self.dim:])
        x_np_reshape = np.reshape(x_np, tuple(x_reshape))
        out_list = []
        for i in range(outer_loop):
            for j in range(self.index_size):
                for k in range(index_np):
                    out_list.append(x_np_reshape[i, j])
        self.out_shape = list(self.x_shape)
        self.out_shape[self.dim] = index_np * self.index_size
        self.out_shape = tuple(self.out_shape)

        out = np.reshape(out_list, self.out_shape)
        self.outputs = {'Out': out}

    def init_dtype_type(self):
        self.dim = 1
        self.x_type = np.float64
        self.x_shape = (8, 4, 5)
        self.index_size = self.x_shape[self.dim]

    def test_check_output(self):
S
seemingwang 已提交
101
        self.check_output(check_eager=True)
K
kuizhiqing 已提交
102 103

    def test_check_grad_normal(self):
S
seemingwang 已提交
104
        self.check_grad(['X'], 'Out', check_eager=True)
K
kuizhiqing 已提交
105 106 107


class TestIndexSelectAPI(unittest.TestCase):
108

K
kuizhiqing 已提交
109 110 111 112 113 114 115 116 117 118 119 120
    def input_data(self):
        self.data_x = np.array([[1.0, 2.0, 3.0, 4.0], [5.0, 6.0, 7.0, 8.0],
                                [9.0, 10.0, 11.0, 12.0]])
        self.data_index = np.array([0, 1, 2, 1]).astype('int32')

    def test_repeat_interleave_api(self):
        paddle.enable_static()
        self.input_data()

        # case 1:
        with program_guard(Program(), Program()):
            x = fluid.layers.data(name='x', shape=[-1, 4])
S
seemingwang 已提交
121
            index = fluid.layers.data(name='repeats_',
122 123 124
                                      shape=[4],
                                      dtype='int32',
                                      append_batch_size=False)
K
kuizhiqing 已提交
125 126
            z = paddle.repeat_interleave(x, index, axis=1)
            exe = fluid.Executor(fluid.CPUPlace())
127 128
            res, = exe.run(feed={
                'x': self.data_x,
S
seemingwang 已提交
129
                'repeats_': self.data_index
130
            },
K
kuizhiqing 已提交
131 132 133 134 135 136 137 138 139
                           fetch_list=[z.name],
                           return_numpy=False)
        expect_out = np.repeat(self.data_x, self.data_index, axis=1)
        self.assertTrue(np.allclose(expect_out, np.array(res)))

        # case 2:
        repeats = np.array([1, 2, 1]).astype('int32')
        with program_guard(Program(), Program()):
            x = fluid.layers.data(name='x', shape=[-1, 4])
S
seemingwang 已提交
140
            index = fluid.layers.data(name='repeats_',
141 142 143
                                      shape=[3],
                                      dtype='int32',
                                      append_batch_size=False)
K
kuizhiqing 已提交
144 145 146 147
            z = paddle.repeat_interleave(x, index, axis=0)
            exe = fluid.Executor(fluid.CPUPlace())
            res, = exe.run(feed={
                'x': self.data_x,
S
seemingwang 已提交
148
                'repeats_': repeats,
K
kuizhiqing 已提交
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
            },
                           fetch_list=[z.name],
                           return_numpy=False)
        expect_out = np.repeat(self.data_x, repeats, axis=0)
        self.assertTrue(np.allclose(expect_out, np.array(res)))

        repeats = 2
        with program_guard(Program(), Program()):
            x = fluid.layers.data(name='x', shape=[-1, 4])
            z = paddle.repeat_interleave(x, repeats, axis=0)
            exe = fluid.Executor(fluid.CPUPlace())
            res, = exe.run(feed={'x': self.data_x},
                           fetch_list=[z.name],
                           return_numpy=False)
        expect_out = np.repeat(self.data_x, repeats, axis=0)
        self.assertTrue(np.allclose(expect_out, np.array(res)))

    def test_dygraph_api(self):
        self.input_data()
        # case axis none
        input_x = np.array([[1, 2, 1], [1, 2, 3]]).astype('int32')
        index_x = np.array([1, 1, 2, 1, 2, 2]).astype('int32')

        with fluid.dygraph.guard():
            x = fluid.dygraph.to_variable(input_x)
            index = fluid.dygraph.to_variable(index_x)
            z = paddle.repeat_interleave(x, index, None)
            np_z = z.numpy()
        expect_out = np.repeat(input_x, index_x, axis=None)
        self.assertTrue(np.allclose(expect_out, np_z))

        # case repeats int
        with fluid.dygraph.guard():
            x = fluid.dygraph.to_variable(input_x)
            index = 2
            z = paddle.repeat_interleave(x, index, None)
            np_z = z.numpy()
        expect_out = np.repeat(input_x, index, axis=None)
        self.assertTrue(np.allclose(expect_out, np_z))

        # case 1:
        with fluid.dygraph.guard():
            x = fluid.dygraph.to_variable(self.data_x)
            index = fluid.dygraph.to_variable(self.data_index)
            z = paddle.repeat_interleave(x, index, -1)
            np_z = z.numpy()
        expect_out = np.repeat(self.data_x, self.data_index, axis=-1)
        self.assertTrue(np.allclose(expect_out, np_z))

        with fluid.dygraph.guard():
            x = fluid.dygraph.to_variable(self.data_x)
            index = fluid.dygraph.to_variable(self.data_index)
            z = paddle.repeat_interleave(x, index, 1)
            np_z = z.numpy()
        expect_out = np.repeat(self.data_x, self.data_index, axis=1)
        self.assertTrue(np.allclose(expect_out, np_z))

        # case 2:
        index_x = np.array([1, 2, 1]).astype('int32')
        with fluid.dygraph.guard():
            x = fluid.dygraph.to_variable(self.data_x)
            index = fluid.dygraph.to_variable(index_x)
            z = paddle.repeat_interleave(x, index, axis=0)
            np_z = z.numpy()
        expect_out = np.repeat(self.data_x, index, axis=0)
        self.assertTrue(np.allclose(expect_out, np_z))


if __name__ == '__main__':
    unittest.main()