test_dist_fleet_ps13.py 6.8 KB
Newer Older
D
danleifeng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os

os.environ["WITH_DISTRIBUTE"] = "ON"

import unittest

import paddle
import paddle.distributed.fleet as fleet
23 24
import paddle.distributed.fleet.base.role_maker as role_maker
import paddle.fluid as fluid
D
danleifeng 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

paddle.enable_static()

# For Net
base_lr = 0.2
emb_lr = base_lr * 3
dict_dim = 1500
emb_dim = 128
hid_dim = 128
margin = 0.1
sample_rate = 1
batch_size = 4


# this unittest is tested for SparseSharedAdamSGDRule
class TestPSPassWithBow(unittest.TestCase):
    def net(self):
        def get_acc(cos_q_nt, cos_q_pt, batch_size):
L
LiYuRio 已提交
43
            cond = paddle.less_than(cos_q_nt, cos_q_pt)
D
danleifeng 已提交
44
            cond = fluid.layers.cast(cond, dtype='float64')
45
            cond_3 = paddle.sum(cond)
46
            acc = paddle.divide(
47 48 49 50 51 52
                cond_3,
                fluid.layers.fill_constant(
                    shape=[1], value=batch_size * 1.0, dtype='float64'
                ),
                name="simnet_acc",
            )
D
danleifeng 已提交
53 54 55
            return acc

        def get_loss(cos_q_pt, cos_q_nt):
56
            loss_op1 = paddle.subtract(
57 58 59 60 61
                fluid.layers.fill_constant_batch_size_like(
                    input=cos_q_pt, shape=[-1, 1], value=margin, dtype='float32'
                ),
                cos_q_pt,
            )
62
            loss_op2 = paddle.add(loss_op1, cos_q_nt)
H
HongyuJia 已提交
63
            loss_op3 = paddle.maximum(
64 65 66 67 68
                fluid.layers.fill_constant_batch_size_like(
                    input=loss_op2, shape=[-1, 1], value=0.0, dtype='float32'
                ),
                loss_op2,
            )
2
201716010711 已提交
69
            avg_cost = paddle.mean(loss_op3)
D
danleifeng 已提交
70 71 72 73 74 75
            return avg_cost

        is_distributed = False
        is_sparse = True

        # query
G
GGBond8488 已提交
76 77
        q = paddle.static.data(
            name="query_ids", shape=[-1, 1], dtype="int64", lod_level=1
78
        )
D
danleifeng 已提交
79 80 81 82 83 84 85
        # embedding
        q_emb = fluid.contrib.layers.sparse_embedding(
            input=q,
            size=[dict_dim, emb_dim],
            param_attr=fluid.ParamAttr(
                initializer=fluid.initializer.Constant(value=0.01),
                name="__emb__",
86 87 88
                learning_rate=emb_lr,
            ),
        )
89
        q_emb = paddle.reshape(q_emb, [-1, emb_dim])
D
danleifeng 已提交
90 91
        # vsum
        q_sum = fluid.layers.sequence_pool(input=q_emb, pool_type='sum')
92
        q_ss = paddle.nn.functional.softsign(q_sum)
D
danleifeng 已提交
93
        # fc layer after conv
C
Charles-hit 已提交
94 95
        q_fc = paddle.static.nn.fc(
            x=q_ss,
D
danleifeng 已提交
96
            size=hid_dim,
C
Charles-hit 已提交
97
            weight_attr=fluid.ParamAttr(
D
danleifeng 已提交
98 99
                initializer=fluid.initializer.Constant(value=0.01),
                name="__q_fc__",
100 101 102
                learning_rate=base_lr,
            ),
        )
D
danleifeng 已提交
103
        # label data
G
GGBond8488 已提交
104
        label = paddle.static.data(name="label", shape=[-1, 1], dtype="int64")
D
danleifeng 已提交
105
        # pt
G
GGBond8488 已提交
106 107
        pt = paddle.static.data(
            name="pos_title_ids", shape=[-1, 1], dtype="int64", lod_level=1
108
        )
D
danleifeng 已提交
109 110 111 112 113 114 115
        # embedding
        pt_emb = fluid.contrib.layers.sparse_embedding(
            input=pt,
            size=[dict_dim, emb_dim],
            param_attr=fluid.ParamAttr(
                initializer=fluid.initializer.Constant(value=0.01),
                name="__emb__",
116 117 118
                learning_rate=emb_lr,
            ),
        )
119
        pt_emb = paddle.reshape(pt_emb, [-1, emb_dim])
D
danleifeng 已提交
120 121
        # vsum
        pt_sum = fluid.layers.sequence_pool(input=pt_emb, pool_type='sum')
122
        pt_ss = paddle.nn.functional.softsign(pt_sum)
D
danleifeng 已提交
123
        # fc layer
C
Charles-hit 已提交
124 125
        pt_fc = paddle.static.nn.fc(
            x=pt_ss,
D
danleifeng 已提交
126
            size=hid_dim,
C
Charles-hit 已提交
127
            weight_attr=fluid.ParamAttr(
D
danleifeng 已提交
128 129
                initializer=fluid.initializer.Constant(value=0.01),
                name="__fc__",
130 131 132 133
                learning_rate=base_lr,
            ),
            bias_attr=fluid.ParamAttr(name="__fc_b__"),
        )
D
danleifeng 已提交
134
        # nt
G
GGBond8488 已提交
135 136
        nt = paddle.static.data(
            name="neg_title_ids", shape=[-1, 1], dtype="int64", lod_level=1
137
        )
D
danleifeng 已提交
138 139 140 141 142 143 144
        # embedding
        nt_emb = fluid.contrib.layers.sparse_embedding(
            input=nt,
            size=[dict_dim, emb_dim],
            param_attr=fluid.ParamAttr(
                initializer=fluid.initializer.Constant(value=0.01),
                name="__emb__",
145 146 147
                learning_rate=emb_lr,
            ),
        )
148
        nt_emb = paddle.reshape(nt_emb, [-1, emb_dim])
D
danleifeng 已提交
149 150
        # vsum
        nt_sum = fluid.layers.sequence_pool(input=nt_emb, pool_type='sum')
151
        nt_ss = paddle.nn.functional.softsign(nt_sum)
D
danleifeng 已提交
152
        # fc layer
C
Charles-hit 已提交
153 154
        nt_fc = paddle.static.nn.fc(
            x=nt_ss,
D
danleifeng 已提交
155
            size=hid_dim,
C
Charles-hit 已提交
156
            weight_attr=fluid.ParamAttr(
D
danleifeng 已提交
157 158
                initializer=fluid.initializer.Constant(value=0.01),
                name="__fc__",
159 160 161 162
                learning_rate=base_lr,
            ),
            bias_attr=fluid.ParamAttr(name="__fc_b__"),
        )
C
ccrrong 已提交
163 164
        cos_q_pt = paddle.nn.functional.cosine_similarity(q_fc, pt_fc)
        cos_q_nt = paddle.nn.functional.cosine_similarity(q_fc, nt_fc)
D
danleifeng 已提交
165 166 167 168 169 170 171 172 173 174 175 176 177 178
        # loss
        avg_cost = get_loss(cos_q_pt, cos_q_nt)
        # acc
        acc = get_acc(cos_q_nt, cos_q_pt, batch_size)
        return [avg_cost, acc, cos_q_pt]

    def test(self):
        os.environ["PADDLE_PSERVER_NUMS"] = "2"
        os.environ["PADDLE_TRAINERS_NUM"] = "2"
        os.environ["POD_IP"] = "127.0.0.1"
        os.environ["PADDLE_PORT"] = "36001"
        os.environ["PADDLE_TRAINER_ID"] = "0"
        os.environ["PADDLE_TRAINERS_NUM"] = "2"
        os.environ[
179 180
            "PADDLE_PSERVERS_IP_PORT_LIST"
        ] = "127.0.0.1:36001,127.0.0.2:36001"
D
danleifeng 已提交
181 182 183 184 185 186 187 188 189 190 191
        os.environ["TRAINING_ROLE"] = "PSERVER"

        role = role_maker.PaddleCloudRoleMaker()
        fleet.init(role)
        loss, acc, _ = self.net()

        strategy = paddle.distributed.fleet.DistributedStrategy()
        strategy.a_sync = True

        configs = {}
        configs['__emb__'] = {
192 193
            "table_parameters.__emb__.accessor.embed_sgd_param.name": "SparseSharedAdamSGDRule",
            "table_parameters.__emb__.accessor.embedx_sgd_param.name": "SparseSharedAdamSGDRule",
D
danleifeng 已提交
194 195 196 197 198 199 200 201 202 203 204
        }
        strategy.sparse_table_configs = configs
        optimizer = paddle.fluid.optimizer.SGD(learning_rate=0.01)
        optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)
        optimizer.minimize(loss)

        fleet.init_server()


if __name__ == '__main__':
    unittest.main()