test_compare_op.py 21.0 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Y
Yu Yang 已提交
15
import unittest
16

Y
Yu Yang 已提交
17
import numpy
18
import numpy as np
19 20
import op_test

21
import paddle
22
import paddle.fluid as fluid
W
wawltor 已提交
23
import paddle.fluid.core as core
24
from paddle.fluid import Program, program_guard
Y
Yu Yang 已提交
25 26 27 28 29 30 31 32


def create_test_class(op_type, typename, callback):
    class Cls(op_test.OpTest):
        def setUp(self):
            a = numpy.random.random(size=(10, 7)).astype(typename)
            b = numpy.random.random(size=(10, 7)).astype(typename)
            c = callback(a, b)
H
hong 已提交
33
            self.python_api = eval("paddle." + op_type)
Y
Yu Yang 已提交
34 35 36 37 38
            self.inputs = {'X': a, 'Y': b}
            self.outputs = {'Out': c}
            self.op_type = op_type

        def test_output(self):
H
hong 已提交
39
            self.check_output(check_eager=False)
Y
Yu Yang 已提交
40

41
        def test_errors(self):
42
            paddle.enable_static()
43
            with program_guard(Program(), Program()):
G
GGBond8488 已提交
44 45 46
                x = paddle.static.data(name='x', shape=[-1, 2], dtype='int32')
                y = paddle.static.data(name='y', shape=[-1, 2], dtype='int32')
                a = paddle.static.data(name='a', shape=[-1, 2], dtype='int16')
47
                op = eval("paddle.%s" % self.op_type)
48 49 50
                self.assertRaises(TypeError, op, x=x, y=a)
                self.assertRaises(TypeError, op, x=a, y=y)

Y
Yu Yang 已提交
51 52 53 54 55
    cls_name = "{0}_{1}".format(op_type, typename)
    Cls.__name__ = cls_name
    globals()[cls_name] = Cls


56
for _type_name in {'float32', 'float64', 'int32', 'int64', 'float16'}:
F
furnace 已提交
57 58
    if _type_name == 'float64' and core.is_compiled_with_rocm():
        _type_name = 'float32'
59 60
    if _type_name == 'float16' and (not core.is_compiled_with_cuda()):
        continue
F
furnace 已提交
61

Y
Yu Yang 已提交
62
    create_test_class('less_than', _type_name, lambda _a, _b: _a < _b)
63
    create_test_class('less_equal', _type_name, lambda _a, _b: _a <= _b)
Q
qiaolongfei 已提交
64 65
    create_test_class('greater_than', _type_name, lambda _a, _b: _a > _b)
    create_test_class('greater_equal', _type_name, lambda _a, _b: _a >= _b)
Y
Yu Yang 已提交
66
    create_test_class('equal', _type_name, lambda _a, _b: _a == _b)
Q
qiaolongfei 已提交
67
    create_test_class('not_equal', _type_name, lambda _a, _b: _a != _b)
Y
Yu Yang 已提交
68

69

W
wawltor 已提交
70 71 72 73
def create_paddle_case(op_type, callback):
    class PaddleCls(unittest.TestCase):
        def setUp(self):
            self.op_type = op_type
74 75
            self.input_x = np.array([1, 2, 3, 4]).astype(np.int64)
            self.input_y = np.array([1, 3, 2, 4]).astype(np.int64)
W
wawltor 已提交
76
            self.real_result = callback(self.input_x, self.input_y)
77 78 79
            self.place = fluid.CPUPlace()
            if core.is_compiled_with_cuda():
                self.place = paddle.CUDAPlace(0)
W
wawltor 已提交
80 81

        def test_api(self):
82
            paddle.enable_static()
W
wawltor 已提交
83
            with program_guard(Program(), Program()):
84 85
                x = fluid.data(name='x', shape=[4], dtype='int64')
                y = fluid.data(name='y', shape=[4], dtype='int64')
W
wawltor 已提交
86 87
                op = eval("paddle.%s" % (self.op_type))
                out = op(x, y)
88
                exe = fluid.Executor(self.place)
89 90 91 92
                (res,) = exe.run(
                    feed={"x": self.input_x, "y": self.input_y},
                    fetch_list=[out],
                )
W
wawltor 已提交
93 94
            self.assertEqual((res == self.real_result).all(), True)

95 96 97 98 99 100 101 102 103
        def test_api_float(self):
            if self.op_type == "equal":
                paddle.enable_static()
                with program_guard(Program(), Program()):
                    x = fluid.data(name='x', shape=[4], dtype='int64')
                    y = fluid.data(name='y', shape=[1], dtype='int64')
                    op = eval("paddle.%s" % (self.op_type))
                    out = op(x, y)
                    exe = fluid.Executor(self.place)
104 105 106
                    (res,) = exe.run(
                        feed={"x": self.input_x, "y": 1.0}, fetch_list=[out]
                    )
107 108 109
                self.real_result = np.array([1, 0, 0, 0]).astype(np.int64)
                self.assertEqual((res == self.real_result).all(), True)

110 111 112 113 114 115 116 117 118
        def test_dynamic_api(self):
            paddle.disable_static()
            x = paddle.to_tensor(self.input_x)
            y = paddle.to_tensor(self.input_y)
            op = eval("paddle.%s" % (self.op_type))
            out = op(x, y)
            self.assertEqual((out.numpy() == self.real_result).all(), True)
            paddle.enable_static()

119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
        def test_dynamic_api_int(self):
            if self.op_type == "equal":
                paddle.disable_static()
                x = paddle.to_tensor(self.input_x)
                op = eval("paddle.%s" % (self.op_type))
                out = op(x, 1)
                self.real_result = np.array([1, 0, 0, 0]).astype(np.int64)
                self.assertEqual((out.numpy() == self.real_result).all(), True)
                paddle.enable_static()

        def test_dynamic_api_float(self):
            if self.op_type == "equal":
                paddle.disable_static()
                x = paddle.to_tensor(self.input_x)
                op = eval("paddle.%s" % (self.op_type))
                out = op(x, 1.0)
                self.real_result = np.array([1, 0, 0, 0]).astype(np.int64)
                self.assertEqual((out.numpy() == self.real_result).all(), True)
                paddle.enable_static()

139 140 141 142 143 144 145 146 147 148 149 150
        def test_dynamic_api_inf_1(self):
            if self.op_type == "equal":
                paddle.disable_static()
                x1 = np.array([1, float('inf'), float('inf')]).astype(np.int64)
                x = paddle.to_tensor(x1)
                y1 = np.array([1, float('-inf'), float('inf')]).astype(np.int64)
                y = paddle.to_tensor(y1)
                op = eval("paddle.%s" % (self.op_type))
                out = op(x, y)
                self.real_result = (x1 == y1).astype(np.int64)
                self.assertEqual(
                    (out.numpy().astype(np.int64) == self.real_result).all(),
151 152
                    True,
                )
153 154 155 156 157
                paddle.enable_static()

        def test_dynamic_api_inf_2(self):
            if self.op_type == "equal":
                paddle.disable_static()
158 159 160
                x1 = np.array([1, float('inf'), float('inf')]).astype(
                    np.float32
                )
161
                x = paddle.to_tensor(x1)
162 163 164
                y1 = np.array([1, float('-inf'), float('inf')]).astype(
                    np.float32
                )
165 166 167 168 169 170
                y = paddle.to_tensor(y1)
                op = eval("paddle.%s" % (self.op_type))
                out = op(x, y)
                self.real_result = (x1 == y1).astype(np.int64)
                self.assertEqual(
                    (out.numpy().astype(np.int64) == self.real_result).all(),
171 172
                    True,
                )
173 174 175 176 177
                paddle.enable_static()

        def test_dynamic_api_inf_3(self):
            if self.op_type == "equal":
                paddle.disable_static()
178 179 180
                x1 = np.array([1, float('inf'), float('-inf')]).astype(
                    np.float32
                )
181 182 183 184 185 186 187 188
                x = paddle.to_tensor(x1)
                y1 = np.array([1, 2, 3]).astype(np.float32)
                y = paddle.to_tensor(y1)
                op = eval("paddle.%s" % (self.op_type))
                out = op(x, y)
                self.real_result = (x1 == y1).astype(np.int64)
                self.assertEqual(
                    (out.numpy().astype(np.int64) == self.real_result).all(),
189 190
                    True,
                )
191 192 193 194 195 196 197 198 199 200 201 202 203 204
                paddle.enable_static()

        def test_dynamic_api_nan_1(self):
            if self.op_type == "equal":
                paddle.disable_static()
                x1 = np.array([1, float('nan'), float('nan')]).astype(np.int64)
                x = paddle.to_tensor(x1)
                y1 = np.array([1, float('-nan'), float('nan')]).astype(np.int64)
                y = paddle.to_tensor(y1)
                op = eval("paddle.%s" % (self.op_type))
                out = op(x, y)
                self.real_result = (x1 == y1).astype(np.int64)
                self.assertEqual(
                    (out.numpy().astype(np.int64) == self.real_result).all(),
205 206
                    True,
                )
207 208 209 210 211
                paddle.enable_static()

        def test_dynamic_api_nan_2(self):
            if self.op_type == "equal":
                paddle.disable_static()
212 213 214
                x1 = np.array([1, float('nan'), float('nan')]).astype(
                    np.float32
                )
215
                x = paddle.to_tensor(x1)
216 217 218
                y1 = np.array([1, float('-nan'), float('nan')]).astype(
                    np.float32
                )
219 220 221 222 223 224
                y = paddle.to_tensor(y1)
                op = eval("paddle.%s" % (self.op_type))
                out = op(x, y)
                self.real_result = (x1 == y1).astype(np.int64)
                self.assertEqual(
                    (out.numpy().astype(np.int64) == self.real_result).all(),
225 226
                    True,
                )
227 228 229 230 231
                paddle.enable_static()

        def test_dynamic_api_nan_3(self):
            if self.op_type == "equal":
                paddle.disable_static()
232 233 234
                x1 = np.array([1, float('-nan'), float('nan')]).astype(
                    np.float32
                )
235 236 237 238 239 240 241 242
                x = paddle.to_tensor(x1)
                y1 = np.array([1, 2, 1]).astype(np.float32)
                y = paddle.to_tensor(y1)
                op = eval("paddle.%s" % (self.op_type))
                out = op(x, y)
                self.real_result = (x1 == y1).astype(np.int64)
                self.assertEqual(
                    (out.numpy().astype(np.int64) == self.real_result).all(),
243 244
                    True,
                )
245 246
                paddle.enable_static()

Z
Zhang Ting 已提交
247 248 249
        def test_not_equal(self):
            if self.op_type == "not_equal":
                paddle.disable_static()
250 251 252 253 254 255
                x = paddle.to_tensor(
                    np.array([1.2e-8, 2, 2, 1]), dtype="float32"
                )
                y = paddle.to_tensor(
                    np.array([1.1e-8, 2, 2, 1]), dtype="float32"
                )
Z
Zhang Ting 已提交
256 257 258 259 260 261
                op = eval("paddle.%s" % (self.op_type))
                out = op(x, y)
                self.real_result = np.array([0, 0, 0, 0]).astype(np.int64)
                self.assertEqual((out.numpy() == self.real_result).all(), True)
                paddle.enable_static()

262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
        def test_assert(self):
            def test_dynamic_api_string(self):
                if self.op_type == "equal":
                    paddle.disable_static()
                    x = paddle.to_tensor(self.input_x)
                    op = eval("paddle.%s" % (self.op_type))
                    out = op(x, "1.0")
                    paddle.enable_static()

            self.assertRaises(TypeError, test_dynamic_api_string)

        def test_dynamic_api_bool(self):
            if self.op_type == "equal":
                paddle.disable_static()
                x = paddle.to_tensor(self.input_x)
                op = eval("paddle.%s" % (self.op_type))
                out = op(x, True)
                self.real_result = np.array([1, 0, 0, 0]).astype(np.int64)
                self.assertEqual((out.numpy() == self.real_result).all(), True)
                paddle.enable_static()

283
        def test_broadcast_api_1(self):
284
            paddle.enable_static()
285
            with program_guard(Program(), Program()):
286 287 288
                x = paddle.static.data(
                    name='x', shape=[1, 2, 1, 3], dtype='int32'
                )
289
                y = paddle.static.data(name='y', shape=[1, 2, 3], dtype='int32')
290 291
                op = eval("paddle.%s" % (self.op_type))
                out = op(x, y)
292
                exe = paddle.static.Executor(self.place)
293 294 295
                input_x = np.arange(1, 7).reshape((1, 2, 1, 3)).astype(np.int32)
                input_y = np.arange(0, 6).reshape((1, 2, 3)).astype(np.int32)
                real_result = callback(input_x, input_y)
296 297 298
                (res,) = exe.run(
                    feed={"x": input_x, "y": input_y}, fetch_list=[out]
                )
299 300
            self.assertEqual((res == real_result).all(), True)

301 302 303 304
        def test_broadcast_api_2(self):
            paddle.enable_static()
            with program_guard(Program(), Program()):
                x = paddle.static.data(name='x', shape=[1, 2, 3], dtype='int32')
305 306 307
                y = paddle.static.data(
                    name='y', shape=[1, 2, 1, 3], dtype='int32'
                )
308 309 310 311 312 313
                op = eval("paddle.%s" % (self.op_type))
                out = op(x, y)
                exe = paddle.static.Executor(self.place)
                input_x = np.arange(0, 6).reshape((1, 2, 3)).astype(np.int32)
                input_y = np.arange(1, 7).reshape((1, 2, 1, 3)).astype(np.int32)
                real_result = callback(input_x, input_y)
314 315 316
                (res,) = exe.run(
                    feed={"x": input_x, "y": input_y}, fetch_list=[out]
                )
317 318
            self.assertEqual((res == real_result).all(), True)

319 320 321 322 323 324 325 326 327 328 329
        def test_broadcast_api_3(self):
            paddle.enable_static()
            with program_guard(Program(), Program()):
                x = paddle.static.data(name='x', shape=[5], dtype='int32')
                y = paddle.static.data(name='y', shape=[3, 1], dtype='int32')
                op = eval("paddle.%s" % (self.op_type))
                out = op(x, y)
                exe = paddle.static.Executor(self.place)
                input_x = np.arange(0, 5).reshape((5)).astype(np.int32)
                input_y = np.array([5, 3, 2]).reshape((3, 1)).astype(np.int32)
                real_result = callback(input_x, input_y)
330 331 332
                (res,) = exe.run(
                    feed={"x": input_x, "y": input_y}, fetch_list=[out]
                )
333 334
            self.assertEqual((res == real_result).all(), True)

335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
        def test_zero_dim_api_1(self):
            paddle.enable_static()
            with program_guard(Program(), Program()):
                x = paddle.randint(-3, 3, shape=[], dtype='int32')
                y = paddle.randint(-3, 3, shape=[], dtype='int32')
                op = eval("paddle.%s" % (self.op_type))
                out = op(x, y)
                exe = paddle.static.Executor(self.place)
                (
                    x_np,
                    y_np,
                    res,
                ) = exe.run(fetch_list=[x, y, out])
                real_result = callback(x_np, y_np)
            self.assertEqual((res == real_result).all(), True)

        def test_zero_dim_api_2(self):
            paddle.enable_static()
            with program_guard(Program(), Program()):
                x = paddle.randint(-3, 3, shape=[2, 3, 4], dtype='int32')
                y = paddle.randint(-3, 3, shape=[], dtype='int32')
                op = eval("paddle.%s" % (self.op_type))
                out = op(x, y)
                exe = paddle.static.Executor(self.place)
                (
                    x_np,
                    y_np,
                    res,
                ) = exe.run(fetch_list=[x, y, out])
                real_result = callback(x_np, y_np)
            self.assertEqual((res == real_result).all(), True)

        def test_zero_dim_api_3(self):
            paddle.enable_static()
            with program_guard(Program(), Program()):
                x = paddle.randint(-3, 3, shape=[], dtype='int32')
                y = paddle.randint(-3, 3, shape=[2, 3, 4], dtype='int32')
                op = eval("paddle.%s" % (self.op_type))
                out = op(x, y)
                exe = paddle.static.Executor(self.place)
                (
                    x_np,
                    y_np,
                    res,
                ) = exe.run(fetch_list=[x, y, out])
                real_result = callback(x_np, y_np)
            self.assertEqual((res == real_result).all(), True)

383 384 385 386 387 388 389 390
        def test_bool_api_4(self):
            paddle.enable_static()
            with program_guard(Program(), Program()):
                x = paddle.static.data(name='x', shape=[3, 1], dtype='bool')
                y = paddle.static.data(name='y', shape=[3, 1], dtype='bool')
                op = eval("paddle.%s" % (self.op_type))
                out = op(x, y)
                exe = paddle.static.Executor(self.place)
391 392
                input_x = np.array([True, False, True]).astype(np.bool_)
                input_y = np.array([True, True, False]).astype(np.bool_)
393
                real_result = callback(input_x, input_y)
394 395 396
                (res,) = exe.run(
                    feed={"x": input_x, "y": input_y}, fetch_list=[out]
                )
397 398 399 400 401 402 403 404 405 406
            self.assertEqual((res == real_result).all(), True)

        def test_bool_broadcast_api_4(self):
            paddle.enable_static()
            with program_guard(Program(), Program()):
                x = paddle.static.data(name='x', shape=[3, 1], dtype='bool')
                y = paddle.static.data(name='y', shape=[1], dtype='bool')
                op = eval("paddle.%s" % (self.op_type))
                out = op(x, y)
                exe = paddle.static.Executor(self.place)
407 408
                input_x = np.array([True, False, True]).astype(np.bool_)
                input_y = np.array([True]).astype(np.bool_)
409
                real_result = callback(input_x, input_y)
410 411 412
                (res,) = exe.run(
                    feed={"x": input_x, "y": input_y}, fetch_list=[out]
                )
413 414
            self.assertEqual((res == real_result).all(), True)

W
wawltor 已提交
415
        def test_attr_name(self):
416
            paddle.enable_static()
W
wawltor 已提交
417
            with program_guard(Program(), Program()):
G
GGBond8488 已提交
418 419
                x = paddle.static.data(name='x', shape=[-1, 4], dtype='int32')
                y = paddle.static.data(name='y', shape=[-1, 4], dtype='int32')
W
wawltor 已提交
420 421 422 423 424 425 426 427 428
                op = eval("paddle.%s" % (self.op_type))
                out = op(x=x, y=y, name="name_%s" % (self.op_type))
            self.assertEqual("name_%s" % (self.op_type) in out.name, True)

    cls_name = "TestCase_{}".format(op_type)
    PaddleCls.__name__ = cls_name
    globals()[cls_name] = PaddleCls


429
create_paddle_case('less_than', lambda _a, _b: _a < _b)
W
wawltor 已提交
430 431 432 433 434 435 436
create_paddle_case('less_equal', lambda _a, _b: _a <= _b)
create_paddle_case('greater_than', lambda _a, _b: _a > _b)
create_paddle_case('greater_equal', lambda _a, _b: _a >= _b)
create_paddle_case('equal', lambda _a, _b: _a == _b)
create_paddle_case('not_equal', lambda _a, _b: _a != _b)


437
class TestCompareOpError(unittest.TestCase):
438
    def test_errors(self):
439
        paddle.enable_static()
440 441
        with program_guard(Program(), Program()):
            # The input x and y of compare_op must be Variable.
G
GGBond8488 已提交
442
            x = paddle.static.data(name='x', shape=[-1, 1], dtype="float32")
443 444 445
            y = fluid.create_lod_tensor(
                numpy.array([[-1]]), [[1]], fluid.CPUPlace()
            )
446
            self.assertRaises(TypeError, paddle.greater_equal, x, y)
447 448


449 450
class API_TestElementwise_Equal(unittest.TestCase):
    def test_api(self):
451
        paddle.enable_static()
452 453 454
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            label = fluid.layers.assign(np.array([3, 3], dtype="int32"))
            limit = fluid.layers.assign(np.array([3, 2], dtype="int32"))
W
wawltor 已提交
455
            out = paddle.equal(x=label, y=limit)
456 457
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
458
            (res,) = exe.run(fetch_list=[out])
459 460 461 462 463
        self.assertEqual((res == np.array([True, False])).all(), True)

        with fluid.program_guard(fluid.Program(), fluid.Program()):
            label = fluid.layers.assign(np.array([3, 3], dtype="int32"))
            limit = fluid.layers.assign(np.array([3, 3], dtype="int32"))
W
wawltor 已提交
464
            out = paddle.equal(x=label, y=limit)
465 466
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
467
            (res,) = exe.run(fetch_list=[out])
468 469 470
        self.assertEqual((res == np.array([True, True])).all(), True)


471 472 473 474 475 476 477 478
class TestCompareOpPlace(unittest.TestCase):
    def test_place_1(self):
        paddle.enable_static()
        place = paddle.CPUPlace()
        if core.is_compiled_with_cuda():
            place = paddle.CUDAPlace(0)
        label = fluid.layers.assign(np.array([3, 3], dtype="int32"))
        limit = fluid.layers.assign(np.array([3, 2], dtype="int32"))
L
LiYuRio 已提交
479
        out = paddle.less_than(label, limit)
480
        exe = fluid.Executor(place)
481
        (res,) = exe.run(fetch_list=[out])
482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
        self.assertEqual((res == np.array([False, False])).all(), True)

    def test_place_2(self):
        place = paddle.CPUPlace()
        data_place = place
        if core.is_compiled_with_cuda():
            place = paddle.CUDAPlace(0)
            data_place = paddle.CUDAPinnedPlace()
        paddle.disable_static(place)
        data = np.array([9], dtype="int64")
        data_tensor = paddle.to_tensor(data, place=data_place)
        result = data_tensor == 0
        self.assertEqual((result.numpy() == np.array([False])).all(), True)


Y
Yu Yang 已提交
497
if __name__ == '__main__':
H
hong 已提交
498
    paddle.enable_static()
Y
Yu Yang 已提交
499
    unittest.main()