test_compare_op.py 19.7 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import op_test
Y
Yu Yang 已提交
16 17
import unittest
import numpy
18 19
import numpy as np
import paddle
20
import paddle.fluid as fluid
W
wawltor 已提交
21
import paddle.fluid.core as core
22
from paddle.fluid import Program, program_guard
Y
Yu Yang 已提交
23 24 25


def create_test_class(op_type, typename, callback):
26

Y
Yu Yang 已提交
27
    class Cls(op_test.OpTest):
28

Y
Yu Yang 已提交
29 30 31 32
        def setUp(self):
            a = numpy.random.random(size=(10, 7)).astype(typename)
            b = numpy.random.random(size=(10, 7)).astype(typename)
            c = callback(a, b)
H
hong 已提交
33
            self.python_api = eval("paddle." + op_type)
Y
Yu Yang 已提交
34 35 36 37 38
            self.inputs = {'X': a, 'Y': b}
            self.outputs = {'Out': c}
            self.op_type = op_type

        def test_output(self):
H
hong 已提交
39
            self.check_output(check_eager=False)
Y
Yu Yang 已提交
40

41
        def test_errors(self):
42
            paddle.enable_static()
43 44 45 46 47
            with program_guard(Program(), Program()):
                x = fluid.layers.data(name='x', shape=[2], dtype='int32')
                y = fluid.layers.data(name='y', shape=[2], dtype='int32')
                a = fluid.layers.data(name='a', shape=[2], dtype='int16')
                if self.op_type == "less_than":
48 49 50 51 52
                    self.assertRaises(TypeError,
                                      fluid.layers.less_than,
                                      x=x,
                                      y=y,
                                      force_cpu=1)
53 54 55 56 57
                op = eval("fluid.layers.%s" % self.op_type)
                self.assertRaises(TypeError, op, x=x, y=y, cond=1)
                self.assertRaises(TypeError, op, x=x, y=a)
                self.assertRaises(TypeError, op, x=a, y=y)

Y
Yu Yang 已提交
58 59 60 61 62
    cls_name = "{0}_{1}".format(op_type, typename)
    Cls.__name__ = cls_name
    globals()[cls_name] = Cls


63
for _type_name in {'float32', 'float64', 'int32', 'int64', 'float16'}:
F
furnace 已提交
64 65
    if _type_name == 'float64' and core.is_compiled_with_rocm():
        _type_name = 'float32'
66 67
    if _type_name == 'float16' and (not core.is_compiled_with_cuda()):
        continue
F
furnace 已提交
68

Y
Yu Yang 已提交
69
    create_test_class('less_than', _type_name, lambda _a, _b: _a < _b)
70
    create_test_class('less_equal', _type_name, lambda _a, _b: _a <= _b)
Q
qiaolongfei 已提交
71 72
    create_test_class('greater_than', _type_name, lambda _a, _b: _a > _b)
    create_test_class('greater_equal', _type_name, lambda _a, _b: _a >= _b)
Y
Yu Yang 已提交
73
    create_test_class('equal', _type_name, lambda _a, _b: _a == _b)
Q
qiaolongfei 已提交
74
    create_test_class('not_equal', _type_name, lambda _a, _b: _a != _b)
Y
Yu Yang 已提交
75

76

W
wawltor 已提交
77
def create_paddle_case(op_type, callback):
78

W
wawltor 已提交
79
    class PaddleCls(unittest.TestCase):
80

W
wawltor 已提交
81 82
        def setUp(self):
            self.op_type = op_type
83 84
            self.input_x = np.array([1, 2, 3, 4]).astype(np.int64)
            self.input_y = np.array([1, 3, 2, 4]).astype(np.int64)
W
wawltor 已提交
85
            self.real_result = callback(self.input_x, self.input_y)
86 87 88
            self.place = fluid.CPUPlace()
            if core.is_compiled_with_cuda():
                self.place = paddle.CUDAPlace(0)
W
wawltor 已提交
89 90

        def test_api(self):
91
            paddle.enable_static()
W
wawltor 已提交
92
            with program_guard(Program(), Program()):
93 94
                x = fluid.data(name='x', shape=[4], dtype='int64')
                y = fluid.data(name='y', shape=[4], dtype='int64')
W
wawltor 已提交
95 96
                op = eval("paddle.%s" % (self.op_type))
                out = op(x, y)
97
                exe = fluid.Executor(self.place)
98 99 100 101
                res, = exe.run(feed={
                    "x": self.input_x,
                    "y": self.input_y
                },
W
wawltor 已提交
102 103 104
                               fetch_list=[out])
            self.assertEqual((res == self.real_result).all(), True)

105 106 107 108 109 110 111 112 113
        def test_api_float(self):
            if self.op_type == "equal":
                paddle.enable_static()
                with program_guard(Program(), Program()):
                    x = fluid.data(name='x', shape=[4], dtype='int64')
                    y = fluid.data(name='y', shape=[1], dtype='int64')
                    op = eval("paddle.%s" % (self.op_type))
                    out = op(x, y)
                    exe = fluid.Executor(self.place)
114 115 116 117
                    res, = exe.run(feed={
                        "x": self.input_x,
                        "y": 1.0
                    },
118 119 120 121
                                   fetch_list=[out])
                self.real_result = np.array([1, 0, 0, 0]).astype(np.int64)
                self.assertEqual((res == self.real_result).all(), True)

122 123 124 125 126 127 128 129 130
        def test_dynamic_api(self):
            paddle.disable_static()
            x = paddle.to_tensor(self.input_x)
            y = paddle.to_tensor(self.input_y)
            op = eval("paddle.%s" % (self.op_type))
            out = op(x, y)
            self.assertEqual((out.numpy() == self.real_result).all(), True)
            paddle.enable_static()

131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
        def test_dynamic_api_int(self):
            if self.op_type == "equal":
                paddle.disable_static()
                x = paddle.to_tensor(self.input_x)
                op = eval("paddle.%s" % (self.op_type))
                out = op(x, 1)
                self.real_result = np.array([1, 0, 0, 0]).astype(np.int64)
                self.assertEqual((out.numpy() == self.real_result).all(), True)
                paddle.enable_static()

        def test_dynamic_api_float(self):
            if self.op_type == "equal":
                paddle.disable_static()
                x = paddle.to_tensor(self.input_x)
                op = eval("paddle.%s" % (self.op_type))
                out = op(x, 1.0)
                self.real_result = np.array([1, 0, 0, 0]).astype(np.int64)
                self.assertEqual((out.numpy() == self.real_result).all(), True)
                paddle.enable_static()

151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
        def test_dynamic_api_inf_1(self):
            if self.op_type == "equal":
                paddle.disable_static()
                x1 = np.array([1, float('inf'), float('inf')]).astype(np.int64)
                x = paddle.to_tensor(x1)
                y1 = np.array([1, float('-inf'), float('inf')]).astype(np.int64)
                y = paddle.to_tensor(y1)
                op = eval("paddle.%s" % (self.op_type))
                out = op(x, y)
                self.real_result = (x1 == y1).astype(np.int64)
                self.assertEqual(
                    (out.numpy().astype(np.int64) == self.real_result).all(),
                    True)
                paddle.enable_static()

        def test_dynamic_api_inf_2(self):
            if self.op_type == "equal":
                paddle.disable_static()
                x1 = np.array([1, float('inf'),
                               float('inf')]).astype(np.float32)
                x = paddle.to_tensor(x1)
                y1 = np.array([1, float('-inf'),
                               float('inf')]).astype(np.float32)
                y = paddle.to_tensor(y1)
                op = eval("paddle.%s" % (self.op_type))
                out = op(x, y)
                self.real_result = (x1 == y1).astype(np.int64)
                self.assertEqual(
                    (out.numpy().astype(np.int64) == self.real_result).all(),
                    True)
                paddle.enable_static()

        def test_dynamic_api_inf_3(self):
            if self.op_type == "equal":
                paddle.disable_static()
                x1 = np.array([1, float('inf'),
                               float('-inf')]).astype(np.float32)
                x = paddle.to_tensor(x1)
                y1 = np.array([1, 2, 3]).astype(np.float32)
                y = paddle.to_tensor(y1)
                op = eval("paddle.%s" % (self.op_type))
                out = op(x, y)
                self.real_result = (x1 == y1).astype(np.int64)
                self.assertEqual(
                    (out.numpy().astype(np.int64) == self.real_result).all(),
                    True)
                paddle.enable_static()

        def test_dynamic_api_nan_1(self):
            if self.op_type == "equal":
                paddle.disable_static()
                x1 = np.array([1, float('nan'), float('nan')]).astype(np.int64)
                x = paddle.to_tensor(x1)
                y1 = np.array([1, float('-nan'), float('nan')]).astype(np.int64)
                y = paddle.to_tensor(y1)
                op = eval("paddle.%s" % (self.op_type))
                out = op(x, y)
                self.real_result = (x1 == y1).astype(np.int64)
                self.assertEqual(
                    (out.numpy().astype(np.int64) == self.real_result).all(),
                    True)
                paddle.enable_static()

        def test_dynamic_api_nan_2(self):
            if self.op_type == "equal":
                paddle.disable_static()
                x1 = np.array([1, float('nan'),
                               float('nan')]).astype(np.float32)
                x = paddle.to_tensor(x1)
                y1 = np.array([1, float('-nan'),
                               float('nan')]).astype(np.float32)
                y = paddle.to_tensor(y1)
                op = eval("paddle.%s" % (self.op_type))
                out = op(x, y)
                self.real_result = (x1 == y1).astype(np.int64)
                self.assertEqual(
                    (out.numpy().astype(np.int64) == self.real_result).all(),
                    True)
                paddle.enable_static()

        def test_dynamic_api_nan_3(self):
            if self.op_type == "equal":
                paddle.disable_static()
                x1 = np.array([1, float('-nan'),
                               float('nan')]).astype(np.float32)
                x = paddle.to_tensor(x1)
                y1 = np.array([1, 2, 1]).astype(np.float32)
                y = paddle.to_tensor(y1)
                op = eval("paddle.%s" % (self.op_type))
                out = op(x, y)
                self.real_result = (x1 == y1).astype(np.int64)
                self.assertEqual(
                    (out.numpy().astype(np.int64) == self.real_result).all(),
                    True)
                paddle.enable_static()

Z
Zhang Ting 已提交
247 248 249
        def test_not_equal(self):
            if self.op_type == "not_equal":
                paddle.disable_static()
250 251 252 253
                x = paddle.to_tensor(np.array([1.2e-8, 2, 2, 1]),
                                     dtype="float32")
                y = paddle.to_tensor(np.array([1.1e-8, 2, 2, 1]),
                                     dtype="float32")
Z
Zhang Ting 已提交
254 255 256 257 258 259
                op = eval("paddle.%s" % (self.op_type))
                out = op(x, y)
                self.real_result = np.array([0, 0, 0, 0]).astype(np.int64)
                self.assertEqual((out.numpy() == self.real_result).all(), True)
                paddle.enable_static()

260
        def test_assert(self):
261

262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
            def test_dynamic_api_string(self):
                if self.op_type == "equal":
                    paddle.disable_static()
                    x = paddle.to_tensor(self.input_x)
                    op = eval("paddle.%s" % (self.op_type))
                    out = op(x, "1.0")
                    paddle.enable_static()

            self.assertRaises(TypeError, test_dynamic_api_string)

        def test_dynamic_api_bool(self):
            if self.op_type == "equal":
                paddle.disable_static()
                x = paddle.to_tensor(self.input_x)
                op = eval("paddle.%s" % (self.op_type))
                out = op(x, True)
                self.real_result = np.array([1, 0, 0, 0]).astype(np.int64)
                self.assertEqual((out.numpy() == self.real_result).all(), True)
                paddle.enable_static()

282
        def test_broadcast_api_1(self):
283
            paddle.enable_static()
284
            with program_guard(Program(), Program()):
285 286 287
                x = paddle.static.data(name='x',
                                       shape=[1, 2, 1, 3],
                                       dtype='int32')
288
                y = paddle.static.data(name='y', shape=[1, 2, 3], dtype='int32')
289 290
                op = eval("paddle.%s" % (self.op_type))
                out = op(x, y)
291
                exe = paddle.static.Executor(self.place)
292 293 294
                input_x = np.arange(1, 7).reshape((1, 2, 1, 3)).astype(np.int32)
                input_y = np.arange(0, 6).reshape((1, 2, 3)).astype(np.int32)
                real_result = callback(input_x, input_y)
295 296 297 298
                res, = exe.run(feed={
                    "x": input_x,
                    "y": input_y
                },
299 300 301
                               fetch_list=[out])
            self.assertEqual((res == real_result).all(), True)

302 303 304 305
        def test_broadcast_api_2(self):
            paddle.enable_static()
            with program_guard(Program(), Program()):
                x = paddle.static.data(name='x', shape=[1, 2, 3], dtype='int32')
306 307 308
                y = paddle.static.data(name='y',
                                       shape=[1, 2, 1, 3],
                                       dtype='int32')
309 310 311 312 313 314
                op = eval("paddle.%s" % (self.op_type))
                out = op(x, y)
                exe = paddle.static.Executor(self.place)
                input_x = np.arange(0, 6).reshape((1, 2, 3)).astype(np.int32)
                input_y = np.arange(1, 7).reshape((1, 2, 1, 3)).astype(np.int32)
                real_result = callback(input_x, input_y)
315 316 317 318
                res, = exe.run(feed={
                    "x": input_x,
                    "y": input_y
                },
319 320 321
                               fetch_list=[out])
            self.assertEqual((res == real_result).all(), True)

322 323 324 325 326 327 328 329 330 331 332
        def test_broadcast_api_3(self):
            paddle.enable_static()
            with program_guard(Program(), Program()):
                x = paddle.static.data(name='x', shape=[5], dtype='int32')
                y = paddle.static.data(name='y', shape=[3, 1], dtype='int32')
                op = eval("paddle.%s" % (self.op_type))
                out = op(x, y)
                exe = paddle.static.Executor(self.place)
                input_x = np.arange(0, 5).reshape((5)).astype(np.int32)
                input_y = np.array([5, 3, 2]).reshape((3, 1)).astype(np.int32)
                real_result = callback(input_x, input_y)
333 334 335 336
                res, = exe.run(feed={
                    "x": input_x,
                    "y": input_y
                },
337 338 339
                               fetch_list=[out])
            self.assertEqual((res == real_result).all(), True)

340 341 342 343 344 345 346 347
        def test_bool_api_4(self):
            paddle.enable_static()
            with program_guard(Program(), Program()):
                x = paddle.static.data(name='x', shape=[3, 1], dtype='bool')
                y = paddle.static.data(name='y', shape=[3, 1], dtype='bool')
                op = eval("paddle.%s" % (self.op_type))
                out = op(x, y)
                exe = paddle.static.Executor(self.place)
348 349
                input_x = np.array([True, False, True]).astype(np.bool_)
                input_y = np.array([True, True, False]).astype(np.bool_)
350
                real_result = callback(input_x, input_y)
351 352 353 354
                res, = exe.run(feed={
                    "x": input_x,
                    "y": input_y
                },
355 356 357 358 359 360 361 362 363 364 365
                               fetch_list=[out])
            self.assertEqual((res == real_result).all(), True)

        def test_bool_broadcast_api_4(self):
            paddle.enable_static()
            with program_guard(Program(), Program()):
                x = paddle.static.data(name='x', shape=[3, 1], dtype='bool')
                y = paddle.static.data(name='y', shape=[1], dtype='bool')
                op = eval("paddle.%s" % (self.op_type))
                out = op(x, y)
                exe = paddle.static.Executor(self.place)
366 367
                input_x = np.array([True, False, True]).astype(np.bool_)
                input_y = np.array([True]).astype(np.bool_)
368
                real_result = callback(input_x, input_y)
369 370 371 372
                res, = exe.run(feed={
                    "x": input_x,
                    "y": input_y
                },
373 374 375
                               fetch_list=[out])
            self.assertEqual((res == real_result).all(), True)

W
wawltor 已提交
376
        def test_attr_name(self):
377
            paddle.enable_static()
W
wawltor 已提交
378 379 380 381 382 383 384 385 386 387 388 389
            with program_guard(Program(), Program()):
                x = fluid.layers.data(name='x', shape=[4], dtype='int32')
                y = fluid.layers.data(name='y', shape=[4], dtype='int32')
                op = eval("paddle.%s" % (self.op_type))
                out = op(x=x, y=y, name="name_%s" % (self.op_type))
            self.assertEqual("name_%s" % (self.op_type) in out.name, True)

    cls_name = "TestCase_{}".format(op_type)
    PaddleCls.__name__ = cls_name
    globals()[cls_name] = PaddleCls


390
create_paddle_case('less_than', lambda _a, _b: _a < _b)
W
wawltor 已提交
391 392 393 394 395 396 397
create_paddle_case('less_equal', lambda _a, _b: _a <= _b)
create_paddle_case('greater_than', lambda _a, _b: _a > _b)
create_paddle_case('greater_equal', lambda _a, _b: _a >= _b)
create_paddle_case('equal', lambda _a, _b: _a == _b)
create_paddle_case('not_equal', lambda _a, _b: _a != _b)


398
class TestCompareOpError(unittest.TestCase):
399

400
    def test_errors(self):
401
        paddle.enable_static()
402 403 404
        with program_guard(Program(), Program()):
            # The input x and y of compare_op must be Variable.
            x = fluid.layers.data(name='x', shape=[1], dtype="float32")
405 406
            y = fluid.create_lod_tensor(numpy.array([[-1]]), [[1]],
                                        fluid.CPUPlace())
407 408 409
            self.assertRaises(TypeError, fluid.layers.greater_equal, x, y)


410
class API_TestElementwise_Equal(unittest.TestCase):
411

412
    def test_api(self):
413
        paddle.enable_static()
414 415 416
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            label = fluid.layers.assign(np.array([3, 3], dtype="int32"))
            limit = fluid.layers.assign(np.array([3, 2], dtype="int32"))
W
wawltor 已提交
417
            out = paddle.equal(x=label, y=limit)
418 419 420 421 422 423 424 425
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            res, = exe.run(fetch_list=[out])
        self.assertEqual((res == np.array([True, False])).all(), True)

        with fluid.program_guard(fluid.Program(), fluid.Program()):
            label = fluid.layers.assign(np.array([3, 3], dtype="int32"))
            limit = fluid.layers.assign(np.array([3, 3], dtype="int32"))
W
wawltor 已提交
426
            out = paddle.equal(x=label, y=limit)
427 428 429 430 431 432
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            res, = exe.run(fetch_list=[out])
        self.assertEqual((res == np.array([True, True])).all(), True)


433
class TestCompareOpPlace(unittest.TestCase):
434

435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
    def test_place_1(self):
        paddle.enable_static()
        place = paddle.CPUPlace()
        if core.is_compiled_with_cuda():
            place = paddle.CUDAPlace(0)
        label = fluid.layers.assign(np.array([3, 3], dtype="int32"))
        limit = fluid.layers.assign(np.array([3, 2], dtype="int32"))
        out = fluid.layers.less_than(label, limit, force_cpu=True)
        exe = fluid.Executor(place)
        res, = exe.run(fetch_list=[out])
        self.assertEqual((res == np.array([False, False])).all(), True)

    def test_place_2(self):
        place = paddle.CPUPlace()
        data_place = place
        if core.is_compiled_with_cuda():
            place = paddle.CUDAPlace(0)
            data_place = paddle.CUDAPinnedPlace()
        paddle.disable_static(place)
        data = np.array([9], dtype="int64")
        data_tensor = paddle.to_tensor(data, place=data_place)
        result = data_tensor == 0
        self.assertEqual((result.numpy() == np.array([False])).all(), True)


Y
Yu Yang 已提交
460
if __name__ == '__main__':
H
hong 已提交
461
    paddle.enable_static()
Y
Yu Yang 已提交
462
    unittest.main()