test_compare_op.py 21.3 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import op_test
Y
Yu Yang 已提交
16 17
import unittest
import numpy
18 19
import numpy as np
import paddle
20
import paddle.fluid as fluid
W
wawltor 已提交
21
import paddle.fluid.core as core
22
from paddle.fluid import Program, program_guard
Y
Yu Yang 已提交
23 24 25 26 27 28 29 30


def create_test_class(op_type, typename, callback):
    class Cls(op_test.OpTest):
        def setUp(self):
            a = numpy.random.random(size=(10, 7)).astype(typename)
            b = numpy.random.random(size=(10, 7)).astype(typename)
            c = callback(a, b)
H
hong 已提交
31
            self.python_api = eval("paddle." + op_type)
Y
Yu Yang 已提交
32 33 34 35 36
            self.inputs = {'X': a, 'Y': b}
            self.outputs = {'Out': c}
            self.op_type = op_type

        def test_output(self):
H
hong 已提交
37
            self.check_output(check_eager=False)
Y
Yu Yang 已提交
38

39
        def test_errors(self):
40
            paddle.enable_static()
41 42 43 44 45
            with program_guard(Program(), Program()):
                x = fluid.layers.data(name='x', shape=[2], dtype='int32')
                y = fluid.layers.data(name='y', shape=[2], dtype='int32')
                a = fluid.layers.data(name='a', shape=[2], dtype='int16')
                if self.op_type == "less_than":
46 47 48
                    self.assertRaises(
                        TypeError, fluid.layers.less_than, x=x, y=y, force_cpu=1
                    )
49
                op = eval("paddle.%s" % self.op_type)
50 51 52 53
                self.assertRaises(TypeError, op, x=x, y=y, cond=1)
                self.assertRaises(TypeError, op, x=x, y=a)
                self.assertRaises(TypeError, op, x=a, y=y)

Y
Yu Yang 已提交
54 55 56 57 58
    cls_name = "{0}_{1}".format(op_type, typename)
    Cls.__name__ = cls_name
    globals()[cls_name] = Cls


59
for _type_name in {'float32', 'float64', 'int32', 'int64', 'float16'}:
F
furnace 已提交
60 61
    if _type_name == 'float64' and core.is_compiled_with_rocm():
        _type_name = 'float32'
62 63
    if _type_name == 'float16' and (not core.is_compiled_with_cuda()):
        continue
F
furnace 已提交
64

Y
Yu Yang 已提交
65
    create_test_class('less_than', _type_name, lambda _a, _b: _a < _b)
66
    create_test_class('less_equal', _type_name, lambda _a, _b: _a <= _b)
Q
qiaolongfei 已提交
67 68
    create_test_class('greater_than', _type_name, lambda _a, _b: _a > _b)
    create_test_class('greater_equal', _type_name, lambda _a, _b: _a >= _b)
Y
Yu Yang 已提交
69
    create_test_class('equal', _type_name, lambda _a, _b: _a == _b)
Q
qiaolongfei 已提交
70
    create_test_class('not_equal', _type_name, lambda _a, _b: _a != _b)
Y
Yu Yang 已提交
71

72

W
wawltor 已提交
73 74 75 76
def create_paddle_case(op_type, callback):
    class PaddleCls(unittest.TestCase):
        def setUp(self):
            self.op_type = op_type
77 78
            self.input_x = np.array([1, 2, 3, 4]).astype(np.int64)
            self.input_y = np.array([1, 3, 2, 4]).astype(np.int64)
W
wawltor 已提交
79
            self.real_result = callback(self.input_x, self.input_y)
80 81 82
            self.place = fluid.CPUPlace()
            if core.is_compiled_with_cuda():
                self.place = paddle.CUDAPlace(0)
W
wawltor 已提交
83 84

        def test_api(self):
85
            paddle.enable_static()
W
wawltor 已提交
86
            with program_guard(Program(), Program()):
87 88
                x = fluid.data(name='x', shape=[4], dtype='int64')
                y = fluid.data(name='y', shape=[4], dtype='int64')
W
wawltor 已提交
89 90
                op = eval("paddle.%s" % (self.op_type))
                out = op(x, y)
91
                exe = fluid.Executor(self.place)
92 93 94 95
                (res,) = exe.run(
                    feed={"x": self.input_x, "y": self.input_y},
                    fetch_list=[out],
                )
W
wawltor 已提交
96 97
            self.assertEqual((res == self.real_result).all(), True)

98 99 100 101 102 103 104 105 106
        def test_api_float(self):
            if self.op_type == "equal":
                paddle.enable_static()
                with program_guard(Program(), Program()):
                    x = fluid.data(name='x', shape=[4], dtype='int64')
                    y = fluid.data(name='y', shape=[1], dtype='int64')
                    op = eval("paddle.%s" % (self.op_type))
                    out = op(x, y)
                    exe = fluid.Executor(self.place)
107 108 109
                    (res,) = exe.run(
                        feed={"x": self.input_x, "y": 1.0}, fetch_list=[out]
                    )
110 111 112
                self.real_result = np.array([1, 0, 0, 0]).astype(np.int64)
                self.assertEqual((res == self.real_result).all(), True)

113 114 115 116 117 118 119 120 121
        def test_dynamic_api(self):
            paddle.disable_static()
            x = paddle.to_tensor(self.input_x)
            y = paddle.to_tensor(self.input_y)
            op = eval("paddle.%s" % (self.op_type))
            out = op(x, y)
            self.assertEqual((out.numpy() == self.real_result).all(), True)
            paddle.enable_static()

122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
        def test_dynamic_api_int(self):
            if self.op_type == "equal":
                paddle.disable_static()
                x = paddle.to_tensor(self.input_x)
                op = eval("paddle.%s" % (self.op_type))
                out = op(x, 1)
                self.real_result = np.array([1, 0, 0, 0]).astype(np.int64)
                self.assertEqual((out.numpy() == self.real_result).all(), True)
                paddle.enable_static()

        def test_dynamic_api_float(self):
            if self.op_type == "equal":
                paddle.disable_static()
                x = paddle.to_tensor(self.input_x)
                op = eval("paddle.%s" % (self.op_type))
                out = op(x, 1.0)
                self.real_result = np.array([1, 0, 0, 0]).astype(np.int64)
                self.assertEqual((out.numpy() == self.real_result).all(), True)
                paddle.enable_static()

142 143 144 145 146 147 148 149 150 151 152 153
        def test_dynamic_api_inf_1(self):
            if self.op_type == "equal":
                paddle.disable_static()
                x1 = np.array([1, float('inf'), float('inf')]).astype(np.int64)
                x = paddle.to_tensor(x1)
                y1 = np.array([1, float('-inf'), float('inf')]).astype(np.int64)
                y = paddle.to_tensor(y1)
                op = eval("paddle.%s" % (self.op_type))
                out = op(x, y)
                self.real_result = (x1 == y1).astype(np.int64)
                self.assertEqual(
                    (out.numpy().astype(np.int64) == self.real_result).all(),
154 155
                    True,
                )
156 157 158 159 160
                paddle.enable_static()

        def test_dynamic_api_inf_2(self):
            if self.op_type == "equal":
                paddle.disable_static()
161 162 163
                x1 = np.array([1, float('inf'), float('inf')]).astype(
                    np.float32
                )
164
                x = paddle.to_tensor(x1)
165 166 167
                y1 = np.array([1, float('-inf'), float('inf')]).astype(
                    np.float32
                )
168 169 170 171 172 173
                y = paddle.to_tensor(y1)
                op = eval("paddle.%s" % (self.op_type))
                out = op(x, y)
                self.real_result = (x1 == y1).astype(np.int64)
                self.assertEqual(
                    (out.numpy().astype(np.int64) == self.real_result).all(),
174 175
                    True,
                )
176 177 178 179 180
                paddle.enable_static()

        def test_dynamic_api_inf_3(self):
            if self.op_type == "equal":
                paddle.disable_static()
181 182 183
                x1 = np.array([1, float('inf'), float('-inf')]).astype(
                    np.float32
                )
184 185 186 187 188 189 190 191
                x = paddle.to_tensor(x1)
                y1 = np.array([1, 2, 3]).astype(np.float32)
                y = paddle.to_tensor(y1)
                op = eval("paddle.%s" % (self.op_type))
                out = op(x, y)
                self.real_result = (x1 == y1).astype(np.int64)
                self.assertEqual(
                    (out.numpy().astype(np.int64) == self.real_result).all(),
192 193
                    True,
                )
194 195 196 197 198 199 200 201 202 203 204 205 206 207
                paddle.enable_static()

        def test_dynamic_api_nan_1(self):
            if self.op_type == "equal":
                paddle.disable_static()
                x1 = np.array([1, float('nan'), float('nan')]).astype(np.int64)
                x = paddle.to_tensor(x1)
                y1 = np.array([1, float('-nan'), float('nan')]).astype(np.int64)
                y = paddle.to_tensor(y1)
                op = eval("paddle.%s" % (self.op_type))
                out = op(x, y)
                self.real_result = (x1 == y1).astype(np.int64)
                self.assertEqual(
                    (out.numpy().astype(np.int64) == self.real_result).all(),
208 209
                    True,
                )
210 211 212 213 214
                paddle.enable_static()

        def test_dynamic_api_nan_2(self):
            if self.op_type == "equal":
                paddle.disable_static()
215 216 217
                x1 = np.array([1, float('nan'), float('nan')]).astype(
                    np.float32
                )
218
                x = paddle.to_tensor(x1)
219 220 221
                y1 = np.array([1, float('-nan'), float('nan')]).astype(
                    np.float32
                )
222 223 224 225 226 227
                y = paddle.to_tensor(y1)
                op = eval("paddle.%s" % (self.op_type))
                out = op(x, y)
                self.real_result = (x1 == y1).astype(np.int64)
                self.assertEqual(
                    (out.numpy().astype(np.int64) == self.real_result).all(),
228 229
                    True,
                )
230 231 232 233 234
                paddle.enable_static()

        def test_dynamic_api_nan_3(self):
            if self.op_type == "equal":
                paddle.disable_static()
235 236 237
                x1 = np.array([1, float('-nan'), float('nan')]).astype(
                    np.float32
                )
238 239 240 241 242 243 244 245
                x = paddle.to_tensor(x1)
                y1 = np.array([1, 2, 1]).astype(np.float32)
                y = paddle.to_tensor(y1)
                op = eval("paddle.%s" % (self.op_type))
                out = op(x, y)
                self.real_result = (x1 == y1).astype(np.int64)
                self.assertEqual(
                    (out.numpy().astype(np.int64) == self.real_result).all(),
246 247
                    True,
                )
248 249
                paddle.enable_static()

Z
Zhang Ting 已提交
250 251 252
        def test_not_equal(self):
            if self.op_type == "not_equal":
                paddle.disable_static()
253 254 255 256 257 258
                x = paddle.to_tensor(
                    np.array([1.2e-8, 2, 2, 1]), dtype="float32"
                )
                y = paddle.to_tensor(
                    np.array([1.1e-8, 2, 2, 1]), dtype="float32"
                )
Z
Zhang Ting 已提交
259 260 261 262 263 264
                op = eval("paddle.%s" % (self.op_type))
                out = op(x, y)
                self.real_result = np.array([0, 0, 0, 0]).astype(np.int64)
                self.assertEqual((out.numpy() == self.real_result).all(), True)
                paddle.enable_static()

265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
        def test_assert(self):
            def test_dynamic_api_string(self):
                if self.op_type == "equal":
                    paddle.disable_static()
                    x = paddle.to_tensor(self.input_x)
                    op = eval("paddle.%s" % (self.op_type))
                    out = op(x, "1.0")
                    paddle.enable_static()

            self.assertRaises(TypeError, test_dynamic_api_string)

        def test_dynamic_api_bool(self):
            if self.op_type == "equal":
                paddle.disable_static()
                x = paddle.to_tensor(self.input_x)
                op = eval("paddle.%s" % (self.op_type))
                out = op(x, True)
                self.real_result = np.array([1, 0, 0, 0]).astype(np.int64)
                self.assertEqual((out.numpy() == self.real_result).all(), True)
                paddle.enable_static()

286
        def test_broadcast_api_1(self):
287
            paddle.enable_static()
288
            with program_guard(Program(), Program()):
289 290 291
                x = paddle.static.data(
                    name='x', shape=[1, 2, 1, 3], dtype='int32'
                )
292
                y = paddle.static.data(name='y', shape=[1, 2, 3], dtype='int32')
293 294
                op = eval("paddle.%s" % (self.op_type))
                out = op(x, y)
295
                exe = paddle.static.Executor(self.place)
296 297 298
                input_x = np.arange(1, 7).reshape((1, 2, 1, 3)).astype(np.int32)
                input_y = np.arange(0, 6).reshape((1, 2, 3)).astype(np.int32)
                real_result = callback(input_x, input_y)
299 300 301
                (res,) = exe.run(
                    feed={"x": input_x, "y": input_y}, fetch_list=[out]
                )
302 303
            self.assertEqual((res == real_result).all(), True)

304 305 306 307
        def test_broadcast_api_2(self):
            paddle.enable_static()
            with program_guard(Program(), Program()):
                x = paddle.static.data(name='x', shape=[1, 2, 3], dtype='int32')
308 309 310
                y = paddle.static.data(
                    name='y', shape=[1, 2, 1, 3], dtype='int32'
                )
311 312 313 314 315 316
                op = eval("paddle.%s" % (self.op_type))
                out = op(x, y)
                exe = paddle.static.Executor(self.place)
                input_x = np.arange(0, 6).reshape((1, 2, 3)).astype(np.int32)
                input_y = np.arange(1, 7).reshape((1, 2, 1, 3)).astype(np.int32)
                real_result = callback(input_x, input_y)
317 318 319
                (res,) = exe.run(
                    feed={"x": input_x, "y": input_y}, fetch_list=[out]
                )
320 321
            self.assertEqual((res == real_result).all(), True)

322 323 324 325 326 327 328 329 330 331 332
        def test_broadcast_api_3(self):
            paddle.enable_static()
            with program_guard(Program(), Program()):
                x = paddle.static.data(name='x', shape=[5], dtype='int32')
                y = paddle.static.data(name='y', shape=[3, 1], dtype='int32')
                op = eval("paddle.%s" % (self.op_type))
                out = op(x, y)
                exe = paddle.static.Executor(self.place)
                input_x = np.arange(0, 5).reshape((5)).astype(np.int32)
                input_y = np.array([5, 3, 2]).reshape((3, 1)).astype(np.int32)
                real_result = callback(input_x, input_y)
333 334 335
                (res,) = exe.run(
                    feed={"x": input_x, "y": input_y}, fetch_list=[out]
                )
336 337
            self.assertEqual((res == real_result).all(), True)

338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
        def test_zero_dim_api_1(self):
            paddle.enable_static()
            with program_guard(Program(), Program()):
                x = paddle.randint(-3, 3, shape=[], dtype='int32')
                y = paddle.randint(-3, 3, shape=[], dtype='int32')
                op = eval("paddle.%s" % (self.op_type))
                out = op(x, y)
                exe = paddle.static.Executor(self.place)
                (
                    x_np,
                    y_np,
                    res,
                ) = exe.run(fetch_list=[x, y, out])
                real_result = callback(x_np, y_np)
            self.assertEqual((res == real_result).all(), True)

        def test_zero_dim_api_2(self):
            paddle.enable_static()
            with program_guard(Program(), Program()):
                x = paddle.randint(-3, 3, shape=[2, 3, 4], dtype='int32')
                y = paddle.randint(-3, 3, shape=[], dtype='int32')
                op = eval("paddle.%s" % (self.op_type))
                out = op(x, y)
                exe = paddle.static.Executor(self.place)
                (
                    x_np,
                    y_np,
                    res,
                ) = exe.run(fetch_list=[x, y, out])
                real_result = callback(x_np, y_np)
            self.assertEqual((res == real_result).all(), True)

        def test_zero_dim_api_3(self):
            paddle.enable_static()
            with program_guard(Program(), Program()):
                x = paddle.randint(-3, 3, shape=[], dtype='int32')
                y = paddle.randint(-3, 3, shape=[2, 3, 4], dtype='int32')
                op = eval("paddle.%s" % (self.op_type))
                out = op(x, y)
                exe = paddle.static.Executor(self.place)
                (
                    x_np,
                    y_np,
                    res,
                ) = exe.run(fetch_list=[x, y, out])
                real_result = callback(x_np, y_np)
            self.assertEqual((res == real_result).all(), True)

386 387 388 389 390 391 392 393
        def test_bool_api_4(self):
            paddle.enable_static()
            with program_guard(Program(), Program()):
                x = paddle.static.data(name='x', shape=[3, 1], dtype='bool')
                y = paddle.static.data(name='y', shape=[3, 1], dtype='bool')
                op = eval("paddle.%s" % (self.op_type))
                out = op(x, y)
                exe = paddle.static.Executor(self.place)
394 395
                input_x = np.array([True, False, True]).astype(np.bool_)
                input_y = np.array([True, True, False]).astype(np.bool_)
396
                real_result = callback(input_x, input_y)
397 398 399
                (res,) = exe.run(
                    feed={"x": input_x, "y": input_y}, fetch_list=[out]
                )
400 401 402 403 404 405 406 407 408 409
            self.assertEqual((res == real_result).all(), True)

        def test_bool_broadcast_api_4(self):
            paddle.enable_static()
            with program_guard(Program(), Program()):
                x = paddle.static.data(name='x', shape=[3, 1], dtype='bool')
                y = paddle.static.data(name='y', shape=[1], dtype='bool')
                op = eval("paddle.%s" % (self.op_type))
                out = op(x, y)
                exe = paddle.static.Executor(self.place)
410 411
                input_x = np.array([True, False, True]).astype(np.bool_)
                input_y = np.array([True]).astype(np.bool_)
412
                real_result = callback(input_x, input_y)
413 414 415
                (res,) = exe.run(
                    feed={"x": input_x, "y": input_y}, fetch_list=[out]
                )
416 417
            self.assertEqual((res == real_result).all(), True)

W
wawltor 已提交
418
        def test_attr_name(self):
419
            paddle.enable_static()
W
wawltor 已提交
420 421 422 423 424 425 426 427 428 429 430 431
            with program_guard(Program(), Program()):
                x = fluid.layers.data(name='x', shape=[4], dtype='int32')
                y = fluid.layers.data(name='y', shape=[4], dtype='int32')
                op = eval("paddle.%s" % (self.op_type))
                out = op(x=x, y=y, name="name_%s" % (self.op_type))
            self.assertEqual("name_%s" % (self.op_type) in out.name, True)

    cls_name = "TestCase_{}".format(op_type)
    PaddleCls.__name__ = cls_name
    globals()[cls_name] = PaddleCls


432
create_paddle_case('less_than', lambda _a, _b: _a < _b)
W
wawltor 已提交
433 434 435 436 437 438 439
create_paddle_case('less_equal', lambda _a, _b: _a <= _b)
create_paddle_case('greater_than', lambda _a, _b: _a > _b)
create_paddle_case('greater_equal', lambda _a, _b: _a >= _b)
create_paddle_case('equal', lambda _a, _b: _a == _b)
create_paddle_case('not_equal', lambda _a, _b: _a != _b)


440
class TestCompareOpError(unittest.TestCase):
441
    def test_errors(self):
442
        paddle.enable_static()
443 444 445
        with program_guard(Program(), Program()):
            # The input x and y of compare_op must be Variable.
            x = fluid.layers.data(name='x', shape=[1], dtype="float32")
446 447 448
            y = fluid.create_lod_tensor(
                numpy.array([[-1]]), [[1]], fluid.CPUPlace()
            )
449
            self.assertRaises(TypeError, paddle.greater_equal, x, y)
450 451


452 453
class API_TestElementwise_Equal(unittest.TestCase):
    def test_api(self):
454
        paddle.enable_static()
455 456 457
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            label = fluid.layers.assign(np.array([3, 3], dtype="int32"))
            limit = fluid.layers.assign(np.array([3, 2], dtype="int32"))
W
wawltor 已提交
458
            out = paddle.equal(x=label, y=limit)
459 460
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
461
            (res,) = exe.run(fetch_list=[out])
462 463 464 465 466
        self.assertEqual((res == np.array([True, False])).all(), True)

        with fluid.program_guard(fluid.Program(), fluid.Program()):
            label = fluid.layers.assign(np.array([3, 3], dtype="int32"))
            limit = fluid.layers.assign(np.array([3, 3], dtype="int32"))
W
wawltor 已提交
467
            out = paddle.equal(x=label, y=limit)
468 469
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
470
            (res,) = exe.run(fetch_list=[out])
471 472 473
        self.assertEqual((res == np.array([True, True])).all(), True)


474 475 476 477 478 479 480 481 482 483
class TestCompareOpPlace(unittest.TestCase):
    def test_place_1(self):
        paddle.enable_static()
        place = paddle.CPUPlace()
        if core.is_compiled_with_cuda():
            place = paddle.CUDAPlace(0)
        label = fluid.layers.assign(np.array([3, 3], dtype="int32"))
        limit = fluid.layers.assign(np.array([3, 2], dtype="int32"))
        out = fluid.layers.less_than(label, limit, force_cpu=True)
        exe = fluid.Executor(place)
484
        (res,) = exe.run(fetch_list=[out])
485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
        self.assertEqual((res == np.array([False, False])).all(), True)

    def test_place_2(self):
        place = paddle.CPUPlace()
        data_place = place
        if core.is_compiled_with_cuda():
            place = paddle.CUDAPlace(0)
            data_place = paddle.CUDAPinnedPlace()
        paddle.disable_static(place)
        data = np.array([9], dtype="int64")
        data_tensor = paddle.to_tensor(data, place=data_place)
        result = data_tensor == 0
        self.assertEqual((result.numpy() == np.array([False])).all(), True)


Y
Yu Yang 已提交
500
if __name__ == '__main__':
H
hong 已提交
501
    paddle.enable_static()
Y
Yu Yang 已提交
502
    unittest.main()