test_communicator_geo.py 5.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import os
16
import subprocess
17
import sys
18
import time
19
import unittest
20

21
import numpy
22

23
import paddle
24
import paddle.distributed.fleet as fleet
25 26
import paddle.distributed.fleet.base.role_maker as role_maker
import paddle.fluid as fluid
R
Roc 已提交
27
from paddle.distributed.utils.launch_utils import find_free_ports
T
tangwei12 已提交
28

P
pangyoki 已提交
29 30
paddle.enable_static()

31

32
class TestCommunicatorGeoEnd2End(unittest.TestCase):
33
    def net(self):
G
GGBond8488 已提交
34 35 36 37
        x = paddle.static.data(name='x', shape=[-1, 13], dtype='float32')
        x1 = paddle.static.data(
            name='x1', shape=[-1, 1], dtype='int64', lod_level=1
        )
38 39 40 41 42 43

        emb = fluid.layers.embedding(
            input=x1,
            size=[10000, 10],
            param_attr=fluid.ParamAttr(
                name="embedding",
44 45 46 47
                initializer=fluid.initializer.Constant(value=0.01),
            ),
            is_sparse=True,
        )
48 49 50

        pool = fluid.layers.sequence_pool(input=emb, pool_type="sum")
        z = fluid.layers.concat(input=[x, pool], axis=1)
C
Charles-hit 已提交
51
        y_predict = paddle.static.nn.fc(x=z, size=1)
G
GGBond8488 已提交
52
        y = paddle.static.data(name='y', shape=[-1, 1], dtype='float32')
53
        cost = paddle.nn.functional.square_error_cost(input=y_predict, label=y)
54
        avg_cost = paddle.mean(cost)
55
        return avg_cost, x, x1, y
56

57 58 59 60
    def fake_reader(self):
        def reader():
            for i in range(10000):
                x = numpy.random.random((1, 13)).astype('float32')
61
                z = numpy.random.randint(0, 9999, (1, 1)).astype('int64')
62
                y = numpy.random.randint(0, 2, (1, 1)).astype('int64')
63
                yield x, z, y
64

65
        return reader
66

67 68
    def run_pserver(self, role, strategy):
        fleet.init(role)
69
        avg_cost, x, z, y = self.net()
70
        optimizer = fluid.optimizer.SGD(0.01)
71 72
        optimizer = fleet.distributed_optimizer(optimizer, strategy)
        optimizer.minimize(avg_cost)
73

74 75 76 77 78 79 80 81
        fleet.init_server()
        fleet.run_server()

    def run_trainer(self, role, strategy):
        place = fluid.core.CPUPlace()
        exe = fluid.Executor(place)

        fleet.init(role)
82
        avg_cost, x, z, y = self.net()
83
        optimizer = fluid.optimizer.SGD(0.01)
84 85 86
        optimizer = fleet.distributed_optimizer(optimizer, strategy)
        optimizer.minimize(avg_cost)

87
        exe.run(fluid.default_startup_program())
T
tangwei12 已提交
88
        fleet.init_worker()
89 90

        train_reader = paddle.batch(self.fake_reader(), batch_size=24)
91
        feeder = fluid.DataFeeder(place=place, feed_list=[x, z, y])
92 93

        for batch_id, data in enumerate(train_reader()):
94 95 96 97 98
            exe.run(
                fluid.default_main_program(),
                feed=feeder.feed(data),
                fetch_list=[],
            )
99

100
        fleet.stop_worker()
101

102 103 104
    def run_ut(self):
        training_role = os.getenv("TRAINING_ROLE", "TRAINER")

105 106 107 108
        os.environ["PADDLE_PSERVER_NUMS"] = "1"
        os.environ["PADDLE_TRAINERS_NUM"] = "1"
        os.environ["PADDLE_TRAINER_ID"] = "0"
        os.environ["PADDLE_TRAINERS_NUM"] = "1"
T
tangwei12 已提交
109
        os.environ["POD_IP"] = "127.0.0.1"
110

111 112
        role = role_maker.PaddleCloudRoleMaker()

113
        strategy = paddle.distributed.fleet.DistributedStrategy()
114 115
        strategy.a_sync = True
        strategy.a_sync_configs = {"k_steps": 100}
C
Chengmo 已提交
116
        strategy.a_sync_configs = {"launch_barrier": False}
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140

        if training_role == "TRAINER":
            self.run_trainer(role, strategy)
        else:
            self.run_pserver(role, strategy)

    def test_communicator(self):
        run_server_cmd = """

import sys
import os

import time
import threading
import subprocess
import unittest
import numpy

import paddle
import paddle.fluid as fluid

from paddle.fluid.communicator import Communicator
import paddle.fluid.incubate.fleet.base.role_maker as role_maker
from paddle.fluid.incubate.fleet.parameter_server.mode import DistributedMode
141
import paddle.distributed.fleet as fleet
142 143 144

from test_communicator_geo import TestCommunicatorGeoEnd2End

P
pangyoki 已提交
145
paddle.enable_static()
146 147 148 149 150 151 152 153 154 155 156 157 158 159

class RunServer(TestCommunicatorGeoEnd2End):
    def runTest(self):
        pass

os.environ["TRAINING_ROLE"] = "PSERVER"

half_run_server = RunServer()
half_run_server.run_ut()
"""

        server_file = "run_server_for_communicator_geo.py"
        with open(server_file, "w") as wb:
            wb.write(run_server_cmd)
T
tangwei12 已提交
160 161 162

        port = find_free_ports(1).pop()

163
        os.environ["TRAINING_ROLE"] = "PSERVER"
T
tangwei12 已提交
164 165
        os.environ["PADDLE_PORT"] = str(port)
        os.environ["PADDLE_PSERVERS_IP_PORT_LIST"] = "127.0.0.1:{}".format(port)
166 167 168 169

        _python = sys.executable

        ps_cmd = "{} {}".format(_python, server_file)
T
tangwei12 已提交
170

171 172 173 174 175
        ps_proc = subprocess.Popen(
            ps_cmd.strip().split(" "),
            stdout=subprocess.PIPE,
            stderr=subprocess.PIPE,
        )
176

T
tangwei12 已提交
177
        time.sleep(5)
178

179
        os.environ["TRAINING_ROLE"] = "TRAINER"
180

181 182
        self.run_ut()
        ps_proc.kill()
T
tangwei12 已提交
183
        ps_proc.wait()
T
tangwei12 已提交
184
        outs, errs = ps_proc.communicate()
185

186 187
        if os.path.exists(server_file):
            os.remove(server_file)
188

189 190 191

if __name__ == '__main__':
    unittest.main()