jit_kernel_test.cc 11.9 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/math/jit_kernel.h"
T
tensor-tang 已提交
16
#include <sys/time.h>
T
tensor-tang 已提交
17
#include <cstring>  // for memcpy
T
tensor-tang 已提交
18 19 20 21 22 23
#include <string>
#include <vector>
#include "gflags/gflags.h"
#include "glog/logging.h"
#include "gtest/gtest.h"

T
tensor-tang 已提交
24 25 26 27 28 29 30 31
#ifdef PADDLE_WITH_MKLML
#include "paddle/fluid/platform/dynload/mklml.h"
#endif

#ifdef __AVX__
#include <immintrin.h>
#endif

T
tensor-tang 已提交
32 33
constexpr int repeat = 20000;

T
tensor-tang 已提交
34 35 36 37 38 39 40
inline double GetCurrentUS() {
  struct timeval time;
  gettimeofday(&time, NULL);
  return 1e+6 * time.tv_sec + time.tv_usec;
}

template <typename T>
T
tensor-tang 已提交
41 42
void RandomVec(const int n, T* a, const T lower = static_cast<T>(-20.f),
               const T upper = static_cast<T>(20.f)) {
T
tensor-tang 已提交
43 44 45 46 47 48 49 50
  static unsigned int seed = 100;
  std::mt19937 rng(seed++);
  std::uniform_real_distribution<double> uniform_dist(0, 1);
  for (int i = 0; i < n; ++i) {
    a[i] = static_cast<T>(uniform_dist(rng) * (upper - lower) + lower);
  }
}

T
tensor-tang 已提交
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
void vexp_ref(const int n, const float* x, float* y) {
  for (int i = 0; i < n; ++i) {
    y[i] = std::exp(x[i]);
  }
}

#ifdef PADDLE_WITH_MKLML
void vexp_mkl(const int n, const float* x, float* y) {
  paddle::platform::dynload::vsExp(n, x, y);
}
#endif

TEST(JitKernel, vexp) {
  namespace jit = paddle::operators::math::jitkernel;
  for (int d : {7, 8, 15, 16, 30, 128}) {
    std::vector<float> x(d);
    std::vector<float> zref(d), ztgt(d);
    RandomVec<float>(d, x.data(), -2.f, 2.f);
    const auto& ker =
        jit::KernelPool::Instance().template Get<jit::VExpKernel<float>>(d);
    const float* x_data = x.data();
    float* ztgt_data = ztgt.data();
    float* zref_data = zref.data();
    auto trefs = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
      vexp_ref(d, x_data, zref_data);
    }
    auto trefe = GetCurrentUS();

#ifdef PADDLE_WITH_MKLML
    auto tmkls = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
      vexp_mkl(d, x_data, zref_data);
    }
    auto tmkle = GetCurrentUS();
#endif

    auto ttgts = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
      ker->Compute(d, x_data, ztgt_data);
    }
    auto ttgte = GetCurrentUS();

    VLOG(3) << "Vec size " << d << ": refer takes: " << (trefe - trefs) / repeat
#ifdef PADDLE_WITH_MKLML
            << " us, mkl takes: " << (tmkle - tmkls) / repeat << " us, "
#else
            << " us, "
#endif
            << "tgt takes: " << (ttgte - ttgts) / repeat;
    for (int i = 0; i < d; ++i) {
      EXPECT_NEAR(ztgt_data[i], zref_data[i], 1e-3);
    }
  }
}

T
tensor-tang 已提交
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
void vscal_ref(const int n, const float a, const float* x, float* y) {
  for (int i = 0; i < n; ++i) {
    y[i] = a * x[i];
  }
}
void vscal_inp_ref(const int n, const float a, float* x) {
  for (int i = 0; i < n; ++i) {
    x[i] = a * x[i];
  }
}
#if defined __AVX__ || defined __AVX2__
void vscal_intri8(const int n, const float a, const float* x, float* y) {
  __m256 tmp;
  __m256 scalar = _mm256_set1_ps(a);
  tmp = _mm256_loadu_ps(x);
  tmp = _mm256_mul_ps(tmp, scalar);
  _mm256_storeu_ps(y, tmp);
}
void vscal_inp_intri8(const int n, const float a, float* x) {
  __m256 tmp;
  __m256 scalar = _mm256_set1_ps(a);
  tmp = _mm256_loadu_ps(x);
  tmp = _mm256_mul_ps(tmp, scalar);
  _mm256_storeu_ps(x, tmp);
}
#endif

#ifdef PADDLE_WITH_MKLML
void vscal_inp_mkl(const int n, const float a, float* x) {
  paddle::platform::dynload::cblas_sscal(n, a, x, 1);
}
#endif

TEST(JitKernel, vscal) {
  namespace jit = paddle::operators::math::jitkernel;
  for (int d : {7, 8, 15, 16, 30, 256, 512}) {
    std::vector<float> x(d), y(d);
    std::vector<float> zref(d), ztgt(d);
    RandomVec<float>(d, x.data());
    std::memcpy(y.data(), x.data(), sizeof(float) * d);
    float a = 2.f;
    const auto& ker =
        jit::KernelPool::Instance().template Get<jit::VScalKernel<float>>(d);
    const float* x_data = x.data();
    float* y_data = y.data();
    float* ztgt_data = ztgt.data();
    float* zref_data = zref.data();
    auto trefs = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
      vscal_ref(d, a, x_data, zref_data);
    }
    auto trefe = GetCurrentUS();
    auto trefs1 = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
      vscal_inp_ref(d, a, y_data);
    }
    auto trefe1 = GetCurrentUS();

#ifdef PADDLE_WITH_MKLML
    auto tmkls = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
      vscal_inp_mkl(d, a, y_data);
    }
    auto tmkle = GetCurrentUS();
#endif

#if defined __AVX__ || defined __AVX2__
    if (d == 8) {
      auto si0 = GetCurrentUS();
      for (int i = 0; i < repeat; ++i) {
        vscal_intri8(d, a, x_data, zref_data);
      }
      auto si1 = GetCurrentUS();
      auto si2 = GetCurrentUS();
      for (int i = 0; i < repeat; ++i) {
        vscal_inp_intri8(d, a, y_data);
      }
      auto si3 = GetCurrentUS();
      VLOG(3) << "Vec size 8 intr takes: " << (si1 - si0) / repeat
              << " us, inplace: " << (si3 - si2) / repeat;
    }
#endif

    auto ttgts = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
      ker->Compute(d, a, x_data, ztgt_data);
    }
    auto ttgte = GetCurrentUS();
    auto ttgts1 = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
      ker->Compute(d, a, y_data);
    }
    auto ttgte1 = GetCurrentUS();
    VLOG(3) << "Vec size " << d << ": refer takes: " << (trefe - trefs) / repeat
            << " us, inplace takes: " << (trefe1 - trefs1) / repeat
#ifdef PADDLE_WITH_MKLML
            << " us, mkl inplace takes: " << (tmkle - tmkls) / repeat << " us, "
#else
            << " us, "
#endif
            << "tgt takes: " << (ttgte - ttgts) / repeat
            << "us, tgt inplace takes: " << (ttgte1 - ttgts1) / repeat;
    for (int i = 0; i < d; ++i) {
      EXPECT_NEAR(ztgt_data[i], zref_data[i], 1e-3);
    }
  }
}
T
tensor-tang 已提交
214

T
tensor-tang 已提交
215 216 217 218 219 220
void vmul_ref(const int n, const float* x, const float* y, float* z) {
  for (int i = 0; i < n; ++i) {
    z[i] = x[i] * y[i];
  }
}

T
tensor-tang 已提交
221
#if defined __AVX__ || defined __AVX2__
T
tensor-tang 已提交
222
void vmul_intri8(const int n, const float* x, const float* y, float* z) {
T
tensor-tang 已提交
223 224 225 226 227 228 229
  __m256 tmpx, tmpy;
  tmpx = _mm256_loadu_ps(x);
  tmpy = _mm256_loadu_ps(y);
  tmpx = _mm256_mul_ps(tmpx, tmpy);
  _mm256_storeu_ps(z, tmpx);
}
#endif
T
tensor-tang 已提交
230

T
tensor-tang 已提交
231 232 233
#ifdef PADDLE_WITH_MKLML
void vmul_mkl(const int n, const float* x, const float* y, float* z) {
  paddle::platform::dynload::vsMul(n, x, y, z);
T
tensor-tang 已提交
234
}
T
tensor-tang 已提交
235
#endif
T
tensor-tang 已提交
236

T
tensor-tang 已提交
237 238
TEST(JitKernel, vmul) {
  namespace jit = paddle::operators::math::jitkernel;
T
tensor-tang 已提交
239
  for (int d : {7, 8, 15, 16, 30, 256, 512}) {
T
tensor-tang 已提交
240 241 242 243 244 245 246 247 248 249
    std::vector<float> x(d), y(d);
    std::vector<float> zref(d), ztgt(d);
    RandomVec<float>(d, x.data());
    RandomVec<float>(d, y.data());
    const auto& ker =
        jit::KernelPool::Instance().template Get<jit::VMulKernel<float>>(d);
    const float* x_data = x.data();
    const float* y_data = y.data();
    float* ztgt_data = ztgt.data();
    float* zref_data = zref.data();
T
tensor-tang 已提交
250
    auto trefs = GetCurrentUS();
T
tensor-tang 已提交
251
    for (int i = 0; i < repeat; ++i) {
T
tensor-tang 已提交
252
      vmul_ref(d, x_data, y_data, zref_data);
T
tensor-tang 已提交
253
    }
T
tensor-tang 已提交
254
    auto trefe = GetCurrentUS();
T
tensor-tang 已提交
255

T
tensor-tang 已提交
256 257
#ifdef PADDLE_WITH_MKLML
    auto tmkls = GetCurrentUS();
T
tensor-tang 已提交
258
    for (int i = 0; i < repeat; ++i) {
T
tensor-tang 已提交
259
      vmul_mkl(d, x_data, y_data, zref_data);
T
tensor-tang 已提交
260
    }
T
tensor-tang 已提交
261 262
    auto tmkle = GetCurrentUS();
#endif
T
tensor-tang 已提交
263

T
tensor-tang 已提交
264 265 266 267
#if defined __AVX__ || defined __AVX2__
    if (d == 8) {
      auto si0 = GetCurrentUS();
      for (int i = 0; i < repeat; ++i) {
T
tensor-tang 已提交
268
        vmul_intri8(d, x_data, y_data, zref_data);
T
tensor-tang 已提交
269 270
      }
      auto si1 = GetCurrentUS();
T
tensor-tang 已提交
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
      VLOG(3) << "Vec size 8 intr takes: " << (si1 - si0) / repeat;
    }
#endif

    auto ttgts = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
      ker->Compute(d, x_data, y_data, ztgt_data);
    }
    auto ttgte = GetCurrentUS();

    VLOG(3) << "Vec size " << d << ": refer takes: " << (trefe - trefs) / repeat
#ifdef PADDLE_WITH_MKLML
            << " us, mkl takes: " << (tmkle - tmkls) / repeat << " us, "
#else
            << " us, "
#endif
            << "tgt takes: " << (ttgte - ttgts) / repeat;
    for (int i = 0; i < d; ++i) {
      EXPECT_NEAR(ztgt_data[i], zref_data[i], 1e-3);
    }
  }
}

void vadd_ref(const int n, const float* x, const float* y, float* z) {
  for (int i = 0; i < n; ++i) {
    z[i] = x[i] + y[i];
  }
}

#if defined __AVX__ || defined __AVX2__
void vadd_intri8(const int n, const float* x, const float* y, float* z) {
  __m256 tmpx, tmpy;
  tmpx = _mm256_loadu_ps(x);
  tmpy = _mm256_loadu_ps(y);
  tmpx = _mm256_add_ps(tmpx, tmpy);
  _mm256_storeu_ps(z, tmpx);
}
#endif

#ifdef PADDLE_WITH_MKLML
void vadd_mkl(const int n, const float* x, const float* y, float* z) {
  paddle::platform::dynload::vsAdd(n, x, y, z);
}
#endif

TEST(JitKernel, vadd) {
  namespace jit = paddle::operators::math::jitkernel;
  for (int d : {7, 8, 15, 16, 30, 256, 512}) {
    std::vector<float> x(d), y(d);
    std::vector<float> zref(d), ztgt(d);
    RandomVec<float>(d, x.data());
    RandomVec<float>(d, y.data());
    const auto& ker =
        jit::KernelPool::Instance().template Get<jit::VAddKernel<float>>(d);
    const float* x_data = x.data();
    const float* y_data = y.data();
    float* ztgt_data = ztgt.data();
    float* zref_data = zref.data();
    auto trefs = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
      vadd_ref(d, x_data, y_data, zref_data);
    }
    auto trefe = GetCurrentUS();

#ifdef PADDLE_WITH_MKLML
    auto tmkls = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
      vadd_mkl(d, x_data, y_data, zref_data);
    }
    auto tmkle = GetCurrentUS();
#endif

#if defined __AVX__ || defined __AVX2__
    if (d == 8) {
      auto si0 = GetCurrentUS();
      for (int i = 0; i < repeat; ++i) {
        vadd_intri8(d, x_data, y_data, zref_data);
      }
      auto si1 = GetCurrentUS();
T
tensor-tang 已提交
350 351 352 353
      VLOG(3) << "Vec size 8 intr takes: " << (si1 - si0) / repeat;
    }
#endif

T
tensor-tang 已提交
354 355 356 357 358 359 360
    auto ttgts = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
      ker->Compute(d, x_data, y_data, ztgt_data);
    }
    auto ttgte = GetCurrentUS();

    VLOG(3) << "Vec size " << d << ": refer takes: " << (trefe - trefs) / repeat
T
tensor-tang 已提交
361
#ifdef PADDLE_WITH_MKLML
T
tensor-tang 已提交
362
            << " us, mkl takes: " << (tmkle - tmkls) / repeat << " us, "
T
tensor-tang 已提交
363
#else
T
tensor-tang 已提交
364
            << " us, "
T
tensor-tang 已提交
365
#endif
T
tensor-tang 已提交
366
            << "tgt takes: " << (ttgte - ttgts) / repeat;
T
tensor-tang 已提交
367 368 369 370 371 372
    for (int i = 0; i < d; ++i) {
      EXPECT_NEAR(ztgt_data[i], zref_data[i], 1e-3);
    }
  }
}

T
tensor-tang 已提交
373 374 375 376
TEST(JitKernel, pool) {
  namespace jit = paddle::operators::math::jitkernel;
  const int frame_size = 4;
  std::string act_gate = "sigmoid", act_cand = "tanh", act_cell = "tanh";
T
tensor-tang 已提交
377
  const auto& plstm1 =
T
tensor-tang 已提交
378 379 380 381
      jit::KernelPool::Instance()
          .template Get<jit::LSTMKernel<float>, int, const std::string&,
                        const std::string&, const std::string&>(
              frame_size, act_gate, act_cand, act_cell);
T
tensor-tang 已提交
382
  const auto& plstm2 =
T
tensor-tang 已提交
383 384 385 386
      jit::KernelPool::Instance()
          .template Get<jit::LSTMKernel<float>, int, const std::string&,
                        const std::string&, const std::string&>(
              frame_size, act_gate, act_cand, act_cell);
T
tensor-tang 已提交
387
  EXPECT_EQ(plstm1, plstm2);
T
tensor-tang 已提交
388

T
tensor-tang 已提交
389
  const auto& pvmul_f =
T
tensor-tang 已提交
390
      jit::KernelPool::Instance().template Get<jit::VMulKernel<float>>(4);
T
tensor-tang 已提交
391 392
  EXPECT_TRUE(std::dynamic_pointer_cast<const jit::Kernel>(plstm2) !=
              std::dynamic_pointer_cast<const jit::Kernel>(pvmul_f));
T
tensor-tang 已提交
393

T
tensor-tang 已提交
394
  const auto& pvmul_d =
T
tensor-tang 已提交
395
      jit::KernelPool::Instance().template Get<jit::VMulKernel<double>>(4);
T
tensor-tang 已提交
396 397
  EXPECT_TRUE(std::dynamic_pointer_cast<const jit::Kernel>(pvmul_f) !=
              std::dynamic_pointer_cast<const jit::Kernel>(pvmul_d));
T
tensor-tang 已提交
398 399

  const auto& pvmul_from_key = jit::KernelPool::Instance().Get("vmulf4");
T
tensor-tang 已提交
400
  EXPECT_EQ(pvmul_f, pvmul_from_key);
T
tensor-tang 已提交
401 402
  const auto& pvmul_from_key2 = jit::KernelPool::Instance().Get("vmulf5");
  EXPECT_TRUE(pvmul_from_key2 == nullptr);
T
tensor-tang 已提交
403
}