jit_kernel_test.cc 5.0 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/math/jit_kernel.h"
T
tensor-tang 已提交
16
#include <sys/time.h>
T
tensor-tang 已提交
17 18 19 20 21 22
#include <string>
#include <vector>
#include "gflags/gflags.h"
#include "glog/logging.h"
#include "gtest/gtest.h"

T
tensor-tang 已提交
23 24 25 26 27 28 29 30
#ifdef PADDLE_WITH_MKLML
#include "paddle/fluid/platform/dynload/mklml.h"
#endif

#ifdef __AVX__
#include <immintrin.h>
#endif

T
tensor-tang 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
inline double GetCurrentUS() {
  struct timeval time;
  gettimeofday(&time, NULL);
  return 1e+6 * time.tv_sec + time.tv_usec;
}

template <typename T>
void RandomVec(const int n, T* a) {
  static unsigned int seed = 100;
  std::mt19937 rng(seed++);
  std::uniform_real_distribution<double> uniform_dist(0, 1);
  const T lower = static_cast<T>(-20.f);
  const T upper = static_cast<T>(20.f);
  for (int i = 0; i < n; ++i) {
    a[i] = static_cast<T>(uniform_dist(rng) * (upper - lower) + lower);
  }
}

T
tensor-tang 已提交
49
constexpr int repeat = 20000;
T
tensor-tang 已提交
50

T
tensor-tang 已提交
51 52 53 54 55 56
void vmul_ref(const int n, const float* x, const float* y, float* z) {
  for (int i = 0; i < n; ++i) {
    z[i] = x[i] * y[i];
  }
}

T
tensor-tang 已提交
57
#if defined __AVX__ || defined __AVX2__
T
tensor-tang 已提交
58
void vmul_intri8(const int n, const float* x, const float* y, float* z) {
T
tensor-tang 已提交
59 60 61 62 63 64 65
  __m256 tmpx, tmpy;
  tmpx = _mm256_loadu_ps(x);
  tmpy = _mm256_loadu_ps(y);
  tmpx = _mm256_mul_ps(tmpx, tmpy);
  _mm256_storeu_ps(z, tmpx);
}
#endif
T
tensor-tang 已提交
66

T
tensor-tang 已提交
67 68 69
#ifdef PADDLE_WITH_MKLML
void vmul_mkl(const int n, const float* x, const float* y, float* z) {
  paddle::platform::dynload::vsMul(n, x, y, z);
T
tensor-tang 已提交
70
}
T
tensor-tang 已提交
71
#endif
T
tensor-tang 已提交
72

T
tensor-tang 已提交
73 74
TEST(JitKernel, vmul) {
  namespace jit = paddle::operators::math::jitkernel;
T
tensor-tang 已提交
75
  for (int d : {7, 8, 15, 16, 30, 256, 512}) {
T
tensor-tang 已提交
76 77 78 79 80 81 82 83 84 85 86
    std::vector<float> x(d), y(d);
    std::vector<float> zref(d), ztgt(d);
    RandomVec<float>(d, x.data());
    RandomVec<float>(d, y.data());
    const auto& ker =
        jit::KernelPool::Instance().template Get<jit::VMulKernel<float>>(d);

    const float* x_data = x.data();
    const float* y_data = y.data();
    float* ztgt_data = ztgt.data();
    float* zref_data = zref.data();
T
tensor-tang 已提交
87

T
tensor-tang 已提交
88
    auto trefs = GetCurrentUS();
T
tensor-tang 已提交
89
    for (int i = 0; i < repeat; ++i) {
T
tensor-tang 已提交
90
      vmul_ref(d, x_data, y_data, zref_data);
T
tensor-tang 已提交
91
    }
T
tensor-tang 已提交
92
    auto trefe = GetCurrentUS();
T
tensor-tang 已提交
93

T
tensor-tang 已提交
94 95
#ifdef PADDLE_WITH_MKLML
    auto tmkls = GetCurrentUS();
T
tensor-tang 已提交
96
    for (int i = 0; i < repeat; ++i) {
T
tensor-tang 已提交
97
      vmul_mkl(d, x_data, y_data, zref_data);
T
tensor-tang 已提交
98
    }
T
tensor-tang 已提交
99 100
    auto tmkle = GetCurrentUS();
#endif
T
tensor-tang 已提交
101

T
tensor-tang 已提交
102 103 104 105
#if defined __AVX__ || defined __AVX2__
    if (d == 8) {
      auto si0 = GetCurrentUS();
      for (int i = 0; i < repeat; ++i) {
T
tensor-tang 已提交
106
        vmul_intri8(d, x_data, y_data, zref_data);
T
tensor-tang 已提交
107 108 109 110 111 112
      }
      auto si1 = GetCurrentUS();
      VLOG(3) << "Vec size 8 intr takes: " << (si1 - si0) / repeat;
    }
#endif

T
tensor-tang 已提交
113 114 115 116 117 118 119
    auto ttgts = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
      ker->Compute(d, x_data, y_data, ztgt_data);
    }
    auto ttgte = GetCurrentUS();

    VLOG(3) << "Vec size " << d << ": refer takes: " << (trefe - trefs) / repeat
T
tensor-tang 已提交
120
#ifdef PADDLE_WITH_MKLML
T
tensor-tang 已提交
121
            << " us, mkl takes: " << (tmkle - tmkls) / repeat << " us, "
T
tensor-tang 已提交
122
#else
T
tensor-tang 已提交
123
            << " us, "
T
tensor-tang 已提交
124
#endif
T
tensor-tang 已提交
125
            << "tgt takes: " << (ttgte - ttgts) / repeat;
T
tensor-tang 已提交
126 127 128 129 130 131
    for (int i = 0; i < d; ++i) {
      EXPECT_NEAR(ztgt_data[i], zref_data[i], 1e-3);
    }
  }
}

T
tensor-tang 已提交
132 133 134 135
TEST(JitKernel, pool) {
  namespace jit = paddle::operators::math::jitkernel;
  const int frame_size = 4;
  std::string act_gate = "sigmoid", act_cand = "tanh", act_cell = "tanh";
T
tensor-tang 已提交
136
  const auto& plstm1 =
T
tensor-tang 已提交
137 138 139 140
      jit::KernelPool::Instance()
          .template Get<jit::LSTMKernel<float>, int, const std::string&,
                        const std::string&, const std::string&>(
              frame_size, act_gate, act_cand, act_cell);
T
tensor-tang 已提交
141
  const auto& plstm2 =
T
tensor-tang 已提交
142 143 144 145
      jit::KernelPool::Instance()
          .template Get<jit::LSTMKernel<float>, int, const std::string&,
                        const std::string&, const std::string&>(
              frame_size, act_gate, act_cand, act_cell);
T
tensor-tang 已提交
146
  EXPECT_EQ(plstm1, plstm2);
T
tensor-tang 已提交
147

T
tensor-tang 已提交
148
  const auto& pvmul_f =
T
tensor-tang 已提交
149
      jit::KernelPool::Instance().template Get<jit::VMulKernel<float>>(4);
T
tensor-tang 已提交
150 151
  EXPECT_TRUE(std::dynamic_pointer_cast<jit::Kernel>(plstm2) !=
              std::dynamic_pointer_cast<jit::Kernel>(pvmul_f));
T
tensor-tang 已提交
152

T
tensor-tang 已提交
153
  const auto& pvmul_d =
T
tensor-tang 已提交
154
      jit::KernelPool::Instance().template Get<jit::VMulKernel<double>>(4);
T
tensor-tang 已提交
155 156 157 158 159 160 161
  EXPECT_TRUE(std::dynamic_pointer_cast<jit::Kernel>(pvmul_f) !=
              std::dynamic_pointer_cast<jit::Kernel>(pvmul_d));

  const auto& pvmul_from_key = jit::KernelPool::Instance().Get("vmulf4");
  EXPECT_TRUE(pvmul_f == pvmul_from_key);
  const auto& pvmul_from_key2 = jit::KernelPool::Instance().Get("vmulf5");
  EXPECT_TRUE(pvmul_from_key2 == nullptr);
T
tensor-tang 已提交
162
}