jit_kernel_test.cc 4.8 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/math/jit_kernel.h"
T
tensor-tang 已提交
16
#include <sys/time.h>
T
tensor-tang 已提交
17 18 19 20 21 22
#include <string>
#include <vector>
#include "gflags/gflags.h"
#include "glog/logging.h"
#include "gtest/gtest.h"

T
tensor-tang 已提交
23 24 25 26 27 28 29 30
#ifdef PADDLE_WITH_MKLML
#include "paddle/fluid/platform/dynload/mklml.h"
#endif

#ifdef __AVX__
#include <immintrin.h>
#endif

T
tensor-tang 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
inline double GetCurrentUS() {
  struct timeval time;
  gettimeofday(&time, NULL);
  return 1e+6 * time.tv_sec + time.tv_usec;
}

template <typename T>
void RandomVec(const int n, T* a) {
  static unsigned int seed = 100;
  std::mt19937 rng(seed++);
  std::uniform_real_distribution<double> uniform_dist(0, 1);
  const T lower = static_cast<T>(-20.f);
  const T upper = static_cast<T>(20.f);
  for (int i = 0; i < n; ++i) {
    a[i] = static_cast<T>(uniform_dist(rng) * (upper - lower) + lower);
  }
}

T
tensor-tang 已提交
49
constexpr int repeat = 20000;
T
tensor-tang 已提交
50

T
tensor-tang 已提交
51 52 53 54 55 56 57 58 59
#if defined __AVX__ || defined __AVX2__
void vmul_intri(const int n, const float* x, const float* y, float* z) {
  __m256 tmpx, tmpy;
  tmpx = _mm256_loadu_ps(x);
  tmpy = _mm256_loadu_ps(y);
  tmpx = _mm256_mul_ps(tmpx, tmpy);
  _mm256_storeu_ps(z, tmpx);
}
#endif
T
tensor-tang 已提交
60

T
tensor-tang 已提交
61 62 63 64 65
void vmul_ref(const int n, const float* x, const float* y, float* z) {
  for (int i = 0; i < n; ++i) {
    z[i] = x[i] * y[i];
  }
}
T
tensor-tang 已提交
66

T
tensor-tang 已提交
67 68
TEST(JitKernel, vmul) {
  namespace jit = paddle::operators::math::jitkernel;
T
tensor-tang 已提交
69 70 71 72 73 74 75 76 77 78 79 80
  for (int d : {7, 8, 15, 16, 30, 256}) {
    std::vector<float> x(d), y(d);
    std::vector<float> zref(d), ztgt(d);
    RandomVec<float>(d, x.data());
    RandomVec<float>(d, y.data());
    const auto& ker =
        jit::KernelPool::Instance().template Get<jit::VMulKernel<float>>(d);

    const float* x_data = x.data();
    const float* y_data = y.data();
    float* ztgt_data = ztgt.data();
    float* zref_data = zref.data();
T
tensor-tang 已提交
81 82 83 84 85 86 87 88

#ifdef PADDLE_WITH_MKLML
    auto s0 = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
      paddle::platform::dynload::vsMul(d, x_data, y_data, zref_data);
    }
#endif

T
tensor-tang 已提交
89 90 91 92 93 94
    auto st = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
      ker->Compute(d, x_data, y_data, ztgt_data);
    }
    auto mt = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
T
tensor-tang 已提交
95
      vmul_ref(d, x_data, y_data, zref_data);
T
tensor-tang 已提交
96 97 98
    }
    auto et = GetCurrentUS();

T
tensor-tang 已提交
99 100 101 102 103 104 105 106 107 108 109
#if defined __AVX__ || defined __AVX2__
    if (d == 8) {
      auto si0 = GetCurrentUS();
      for (int i = 0; i < repeat; ++i) {
        vmul_intri(d, x_data, y_data, zref_data);
      }
      auto si1 = GetCurrentUS();
      VLOG(3) << "Vec size 8 intr takes: " << (si1 - si0) / repeat;
    }
#endif

T
tensor-tang 已提交
110
    VLOG(3) << "Vec size " << d << ": refer takes: " << (et - mt) / repeat
T
tensor-tang 已提交
111 112 113 114 115 116
            << " us, tgt takes: " << (mt - st) / repeat
#ifdef PADDLE_WITH_MKLML
            << " us, mkl takes: " << (st - s0) / repeat << " us";
#else
            << " us";
#endif
T
tensor-tang 已提交
117 118 119 120 121 122
    for (int i = 0; i < d; ++i) {
      EXPECT_NEAR(ztgt_data[i], zref_data[i], 1e-3);
    }
  }
}

T
tensor-tang 已提交
123 124 125 126
TEST(JitKernel, pool) {
  namespace jit = paddle::operators::math::jitkernel;
  const int frame_size = 4;
  std::string act_gate = "sigmoid", act_cand = "tanh", act_cell = "tanh";
T
tensor-tang 已提交
127
  const auto& plstm1 =
T
tensor-tang 已提交
128 129 130 131
      jit::KernelPool::Instance()
          .template Get<jit::LSTMKernel<float>, int, const std::string&,
                        const std::string&, const std::string&>(
              frame_size, act_gate, act_cand, act_cell);
T
tensor-tang 已提交
132
  const auto& plstm2 =
T
tensor-tang 已提交
133 134 135 136
      jit::KernelPool::Instance()
          .template Get<jit::LSTMKernel<float>, int, const std::string&,
                        const std::string&, const std::string&>(
              frame_size, act_gate, act_cand, act_cell);
T
tensor-tang 已提交
137
  EXPECT_EQ(plstm1, plstm2);
T
tensor-tang 已提交
138

T
tensor-tang 已提交
139
  const auto& pvmul_f =
T
tensor-tang 已提交
140
      jit::KernelPool::Instance().template Get<jit::VMulKernel<float>>(4);
T
tensor-tang 已提交
141 142
  EXPECT_TRUE(std::dynamic_pointer_cast<jit::Kernel>(plstm2) !=
              std::dynamic_pointer_cast<jit::Kernel>(pvmul_f));
T
tensor-tang 已提交
143

T
tensor-tang 已提交
144
  const auto& pvmul_d =
T
tensor-tang 已提交
145
      jit::KernelPool::Instance().template Get<jit::VMulKernel<double>>(4);
T
tensor-tang 已提交
146 147 148 149 150 151 152
  EXPECT_TRUE(std::dynamic_pointer_cast<jit::Kernel>(pvmul_f) !=
              std::dynamic_pointer_cast<jit::Kernel>(pvmul_d));

  const auto& pvmul_from_key = jit::KernelPool::Instance().Get("vmulf4");
  EXPECT_TRUE(pvmul_f == pvmul_from_key);
  const auto& pvmul_from_key2 = jit::KernelPool::Instance().Get("vmulf5");
  EXPECT_TRUE(pvmul_from_key2 == nullptr);
T
tensor-tang 已提交
153
}