reducer.h 7.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include <algorithm>
#include <iostream>
19
#include <map>
20
#include <memory>
21
#include <queue>
22 23
#include <string>
#include <unordered_map>
24
#include <unordered_set>
25 26 27 28
#include <utility>
#include <vector>
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/imperative/layer.h"
29
#include "paddle/fluid/imperative/op_base.h"
30 31
#include "paddle/fluid/imperative/variable_wrapper.h"
#include "paddle/fluid/memory/memory.h"
32
#include "paddle/fluid/string/string_helper.h"
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93

#if defined(PADDLE_WITH_NCCL)
#include "paddle/fluid/imperative/all_reduce.h"
#include "paddle/fluid/operators/math/concat_and_split.h"
#include "paddle/fluid/operators/strided_memcpy.h"
#include "paddle/fluid/platform/cuda_resource_pool.h"
#endif

namespace paddle {
namespace imperative {

#if defined(PADDLE_WITH_NCCL)
template <typename T>
void ConcatTensorsForAllReduce(
    const platform::CUDADeviceContext& context,
    const std::vector<framework::Tensor>& dense_tensors_,
    framework::Variable* p_dense_contents) {
  operators::math::ConcatFunctor<platform::CUDADeviceContext, T>
      concat_functor_;
  concat_functor_(context, dense_tensors_, 0,
                  p_dense_contents->GetMutable<framework::LoDTensor>());
}

template <typename T>
void SplitTensorsForAllReduce(const platform::CUDADeviceContext& context,
                              framework::Variable* p_dense_contents,
                              std::vector<framework::Tensor>* p_dense_tensors) {
  auto* in = p_dense_contents->GetMutable<framework::LoDTensor>();
  std::vector<framework::Tensor*> outs;
  std::vector<const framework::Tensor*> shape_refer;

  outs.reserve(p_dense_tensors->size());
  shape_refer.reserve(p_dense_tensors->size());

  for (auto& tensor : *p_dense_tensors) {
    outs.emplace_back(&tensor);
    shape_refer.emplace_back(&tensor);
  }
  // Sometimes direct copies will be faster
  if (p_dense_tensors->size() < 10) {
    operators::StridedMemcpyWithAxis0<T>(context, *in, shape_refer, &outs);
  } else {
    operators::math::SplitFunctor<platform::CUDADeviceContext, T>
        split_functor_;
    split_functor_(context, *in, shape_refer, 0, &outs);
  }
}

class Group {
 public:
  // Here, we use dense_contents_ & sparse_contents_ to
  // achieve the tensor fuse. When is_sparse_ is true, sparse_contents_ work,
  // conversely, dense_contents_ works. It is mutex relationship.
  framework::Variable dense_contents_;
  framework::Variable* sparse_contents_ = nullptr;
  bool is_sparse_ = false;

  // for concat kernel
  std::vector<framework::Tensor> dense_tensors_;

  std::vector<size_t> length_;
94 95

  int64_t all_length_{0};
96 97 98 99 100 101 102 103 104 105 106
  // Global indices of participating variables in the group
  std::vector<size_t> variable_indices_;

  // Number of params that haven't been ready. When it is 0, it means
  // the group is ready.
  size_t pending_ = -1;

  // external message of group
  framework::proto::VarType::Type dtype_;

  // context is used to select the stream for concat
107
  void ConcatTensors(const platform::CUDADeviceContext& context);
108 109

  // context is used to select the stream for split
110 111 112
  void SplitTensors(const platform::CUDADeviceContext& context);

  friend std::ostream& operator<<(std::ostream&, const Group&);
113 114
};

115
struct VariableLocator {
116 117 118 119 120 121 122 123 124 125 126
  // record the index in groups_
  size_t group_index;
  size_t inside_group_index;
};

class Reducer {
 public:
  explicit Reducer(
      const std::vector<std::shared_ptr<imperative::VarBase>>& vars,
      const std::vector<std::vector<size_t>>& group_indices,
      const std::vector<bool>& is_sparse_gradient,
127
      std::shared_ptr<imperative::ParallelContext> parallel_ctx,
128
      const std::vector<size_t>& group_size_limits, bool find_unused_vars);
129 130 131 132 133

  virtual ~Reducer() {}

  void InitializeGroups(const std::vector<std::vector<size_t>>& group_indices);

134 135
  void InitializeDenseGroups(const std::vector<size_t>& variable_indices_,
                             Group* p_group);
136

137
  void PrepareDeps(const std::unordered_set<GradOpNode*>& init_nodes);
138

139 140
  void PrepareForBackward(
      const std::vector<std::shared_ptr<imperative::VarBase>>& outputs);
141

142
  void AddDistHook(size_t var_index);
143

144 145 146 147 148
  // void MarkDenseVarReady(size_t var_index);

  // void MarkSparseVarReady(size_t var_index);

  void MarkVarReady(const size_t var_index, const bool is_used_var);
149 150 151 152 153 154 155

  void MarkGroupReady(size_t group_index);

  void FinalizeBackward();

  void ReleaseReducer();

156 157 158 159
  std::vector<std::vector<size_t>> RebuildGruops();

  void CreateGroupEvents(int group_num);

160 161
  inline bool NeedRebuildGroup() { return !has_rebuilt_group_; }

162 163 164 165 166
  // Reducer Singleton
  static std::shared_ptr<Reducer> SetInstance(
      const std::vector<std::shared_ptr<imperative::VarBase>>& vars,
      const std::vector<std::vector<size_t>>& group_indices,
      const std::vector<bool>& is_sparse_gradient,
167
      std::shared_ptr<imperative::ParallelContext> parallel_ctx,
168
      const std::vector<size_t>& group_size_limits, bool find_unused_vars) {
169 170
    if (NULL == s_instance_) {
      s_instance_.reset(new paddle::imperative::Reducer(
171
          vars, group_indices, is_sparse_gradient, parallel_ctx,
172
          group_size_limits, find_unused_vars));
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
    }
    return s_instance_;
  }

  static std::shared_ptr<Reducer> GetInstance() {
    PADDLE_ENFORCE_EQ(
        s_instance_ != NULL, true,
        platform::errors::InvalidArgument("Reducer is not initialized."));
    return s_instance_;
  }

 private:
  std::vector<std::shared_ptr<imperative::VarBase>> vars_;
  std::vector<std::vector<size_t>> group_indices_;
  static std::shared_ptr<Reducer> s_instance_;
  std::vector<Group> groups_;
  size_t next_group_ = 0;
  platform::Place place_;
  std::once_flag once_flag_;
  std::vector<bool> is_sparse_gradient_;
  std::shared_ptr<imperative::ParallelContext> parallel_ctx_;
194
  std::vector<VariableLocator> variable_locators_;
195

196
  // Following variables are to help sync stream
197 198
  std::vector<std::shared_ptr<platform::CudaEventObject>> group_events_;
  std::vector<std::shared_ptr<platform::CudaEventObject>> comm_events_;
199
  cudaStream_t compute_stream_;
200 201
  std::vector<cudaStream_t> comm_streams_;
  int nrings_ = 1;
202 203 204 205 206 207

  // Following variables are to help rebuild group
  bool has_rebuilt_group_{false};
  std::vector<std::shared_ptr<imperative::VarBase>> rebuild_vars_;
  std::vector<int64_t> rebuild_var_indices_;
  const std::vector<size_t> group_size_limits_;
208 209 210 211 212 213 214 215

  // Following variables are to help unused vars
  std::unordered_map<GradOpNode*, size_t> node_deps_;
  std::unordered_map<VariableWrapper*, size_t> var_index_map_;
  std::vector<size_t> unused_vars_;
  bool has_marked_unused_vars_{false};
  bool find_unused_vars_{false};
  bool all_group_ready_{false};
216 217 218 219 220
};

std::vector<std::vector<size_t>> AssignGroupBySize(
    const std::vector<std::shared_ptr<imperative::VarBase>>& tensors,
    const std::vector<bool>& is_sparse_gradient,
221 222
    const std::vector<size_t>& group_size_limits,
    const std::vector<int64_t>& tensor_indices = {});
223 224 225 226
#endif

}  // namespace imperative
}  // namespace paddle