reducer.h 6.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include <algorithm>
#include <iostream>
#include <memory>
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/imperative/layer.h"
#include "paddle/fluid/imperative/variable_wrapper.h"
#include "paddle/fluid/memory/memory.h"

#if defined(PADDLE_WITH_NCCL)
#include "paddle/fluid/imperative/all_reduce.h"
#include "paddle/fluid/operators/math/concat_and_split.h"
#include "paddle/fluid/operators/strided_memcpy.h"
#include "paddle/fluid/platform/cuda_resource_pool.h"
#endif

namespace paddle {
namespace imperative {

#if defined(PADDLE_WITH_NCCL)
template <typename T>
void ConcatTensorsForAllReduce(
    const platform::CUDADeviceContext& context,
    const std::vector<framework::Tensor>& dense_tensors_,
    framework::Variable* p_dense_contents) {
  operators::math::ConcatFunctor<platform::CUDADeviceContext, T>
      concat_functor_;
  concat_functor_(context, dense_tensors_, 0,
                  p_dense_contents->GetMutable<framework::LoDTensor>());
}

template <typename T>
void SplitTensorsForAllReduce(const platform::CUDADeviceContext& context,
                              framework::Variable* p_dense_contents,
                              std::vector<framework::Tensor>* p_dense_tensors) {
  auto* in = p_dense_contents->GetMutable<framework::LoDTensor>();
  std::vector<framework::Tensor*> outs;
  std::vector<const framework::Tensor*> shape_refer;

  outs.reserve(p_dense_tensors->size());
  shape_refer.reserve(p_dense_tensors->size());

  for (auto& tensor : *p_dense_tensors) {
    outs.emplace_back(&tensor);
    shape_refer.emplace_back(&tensor);
  }
  // Sometimes direct copies will be faster
  if (p_dense_tensors->size() < 10) {
    operators::StridedMemcpyWithAxis0<T>(context, *in, shape_refer, &outs);
  } else {
    operators::math::SplitFunctor<platform::CUDADeviceContext, T>
        split_functor_;
    split_functor_(context, *in, shape_refer, 0, &outs);
  }
}

class Group {
 public:
  // Here, we use dense_contents_ & sparse_contents_ to
  // achieve the tensor fuse. When is_sparse_ is true, sparse_contents_ work,
  // conversely, dense_contents_ works. It is mutex relationship.
  framework::Variable dense_contents_;
  framework::Variable* sparse_contents_ = nullptr;
  bool is_sparse_ = false;

  // for concat kernel
  std::vector<framework::Tensor> dense_tensors_;

  std::vector<size_t> length_;
89 90

  int64_t all_length_{0};
91 92 93 94 95 96 97 98 99 100 101
  // Global indices of participating variables in the group
  std::vector<size_t> variable_indices_;

  // Number of params that haven't been ready. When it is 0, it means
  // the group is ready.
  size_t pending_ = -1;

  // external message of group
  framework::proto::VarType::Type dtype_;

  // context is used to select the stream for concat
102
  void ConcatTensors(const platform::CUDADeviceContext& context);
103 104

  // context is used to select the stream for split
105 106 107
  void SplitTensors(const platform::CUDADeviceContext& context);

  friend std::ostream& operator<<(std::ostream&, const Group&);
108 109
};

110
struct VariableLocator {
111 112 113 114 115 116 117 118 119 120 121
  // record the index in groups_
  size_t group_index;
  size_t inside_group_index;
};

class Reducer {
 public:
  explicit Reducer(
      const std::vector<std::shared_ptr<imperative::VarBase>>& vars,
      const std::vector<std::vector<size_t>>& group_indices,
      const std::vector<bool>& is_sparse_gradient,
122 123
      std::shared_ptr<imperative::ParallelContext> parallel_ctx,
      const std::vector<size_t>& group_size_limits);
124 125 126 127 128

  virtual ~Reducer() {}

  void InitializeGroups(const std::vector<std::vector<size_t>>& group_indices);

129 130
  void InitializeDenseGroups(const std::vector<size_t>& variable_indices_,
                             Group* p_group);
131 132 133

  void PrepareForBackward();

134
  void AddDistHook(VariableWrapper* var_warpper, size_t var_index);
135

136
  void MarkVariableReady(size_t var_index, VariableWrapper* var_warpper);
137 138 139 140 141 142 143

  void MarkGroupReady(size_t group_index);

  void FinalizeBackward();

  void ReleaseReducer();

144 145 146 147
  std::vector<std::vector<size_t>> RebuildGruops();

  void CreateGroupEvents(int group_num);

148 149 150 151 152
  // Reducer Singleton
  static std::shared_ptr<Reducer> SetInstance(
      const std::vector<std::shared_ptr<imperative::VarBase>>& vars,
      const std::vector<std::vector<size_t>>& group_indices,
      const std::vector<bool>& is_sparse_gradient,
153 154
      std::shared_ptr<imperative::ParallelContext> parallel_ctx,
      const std::vector<size_t>& group_size_limits) {
155 156
    if (NULL == s_instance_) {
      s_instance_.reset(new paddle::imperative::Reducer(
157 158
          vars, group_indices, is_sparse_gradient, parallel_ctx,
          group_size_limits));
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
    }
    return s_instance_;
  }

  static std::shared_ptr<Reducer> GetInstance() {
    PADDLE_ENFORCE_EQ(
        s_instance_ != NULL, true,
        platform::errors::InvalidArgument("Reducer is not initialized."));
    return s_instance_;
  }

 private:
  std::vector<std::shared_ptr<imperative::VarBase>> vars_;
  std::vector<std::vector<size_t>> group_indices_;
  static std::shared_ptr<Reducer> s_instance_;
  std::vector<Group> groups_;
  size_t next_group_ = 0;
  platform::Place place_;
  std::once_flag once_flag_;
  std::vector<bool> is_sparse_gradient_;
  std::shared_ptr<imperative::ParallelContext> parallel_ctx_;
180
  std::vector<VariableLocator> variable_locators_;
181

182
  // Following variables are to help sync stream
183 184 185 186
  std::vector<std::shared_ptr<platform::CudaEventObject>> events_;
  std::shared_ptr<platform::CudaEventObject> comm_enent_;
  cudaStream_t compute_stream_;
  cudaStream_t comm_stream_;
187 188 189 190 191 192

  // Following variables are to help rebuild group
  bool has_rebuilt_group_{false};
  std::vector<std::shared_ptr<imperative::VarBase>> rebuild_vars_;
  std::vector<int64_t> rebuild_var_indices_;
  const std::vector<size_t> group_size_limits_;
193 194 195 196 197
};

std::vector<std::vector<size_t>> AssignGroupBySize(
    const std::vector<std::shared_ptr<imperative::VarBase>>& tensors,
    const std::vector<bool>& is_sparse_gradient,
198 199
    const std::vector<size_t>& group_size_limits,
    const std::vector<int64_t>& tensor_indices = {});
200 201 202 203
#endif

}  // namespace imperative
}  // namespace paddle