param_attr.py 11.5 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
F
fengjiayi 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
F
fengjiayi 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
F
update  
fengjiayi 已提交
14

15 16
from __future__ import print_function

17
import six
18
import warnings
19
import sys
20

21 22
from .initializer import Initializer, Xavier, Constant
from .regularizer import WeightDecayRegularizer
23
from paddle.fluid.data_feeder import check_type
Y
Yu Yang 已提交
24

25 26 27 28
__all__ = [
    'ParamAttr',
    'WeightNormParamAttr',
]
Y
Yu Yang 已提交
29

Y
Yu Yang 已提交
30 31

class ParamAttr(object):
C
chengduoZH 已提交
32
    """
Z
Zeng Jinle 已提交
33 34 35
    Create a object to represent the attribute of parameter. The attributes are:
    name, initializer, learning rate, regularizer, trainable, gradient clip,
    and model average.
36 37 38
    
    Note:
        ``gradient_clip`` of ``ParamAttr`` HAS BEEN DEPRECATED since 2.0. 
39
        It is recommended to set ``grad_clip`` in ``optimizer`` to clip gradient. 
40 41
        There are three clipping strategies: :ref:`api_fluid_clip_GradientClipByGlobalNorm` , 
        :ref:`api_fluid_clip_GradientClipByNorm` , :ref:`api_fluid_clip_GradientClipByValue` .
Z
Zeng Jinle 已提交
42 43 44 45 46 47 48 49 50 51

    Parameters:
        name (str, optional): The parameter's name. Default None, meaning that the name
                would be created automatically.
        initializer (Initializer, optional): The method to initial this parameter. Default
                None, meaning that the weight parameter is initialized by Xavier initializer,
                and the bias parameter is initialized by 0.
        learning_rate (float): The parameter's learning rate. The learning rate when
                optimize is the global learning rates times the parameter's learning rate times
                the factor of learning rate scheduler. Default 1.0.
52 53 54 55 56
        regularizer (WeightDecayRegularizer, optional): Regularization strategy. There are two method: 
                :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If 
                regularizer is also set in ``optimizer`` (such as :ref:`api_fluid_optimizer_SGDOptimizer` ), 
                that regularizer setting in optimizer will be ignored. Default None, meaning there is 
                no regularization.
Z
Zeng Jinle 已提交
57 58 59
        trainable (bool): Whether this parameter is trainable. Default True.
        do_model_average (bool): Whether this parameter should do model average
                when model average is enabled. Default False.
C
chengduoZH 已提交
60 61 62 63

    Examples:
        .. code-block:: python

Z
Zeng Jinle 已提交
64 65
            import paddle.fluid as fluid

C
chengduoZH 已提交
66 67
            w_param_attrs = fluid.ParamAttr(name="fc_weight",
                                            learning_rate=0.5,
T
Tink_Y 已提交
68
                                            regularizer=fluid.regularizer.L2Decay(1.0),
C
chengduoZH 已提交
69
                                            trainable=True)
Z
Zeng Jinle 已提交
70
            print(w_param_attrs.name) # "fc_weight"
71
            x = fluid.data(name='X', shape=[None, 1], dtype='float32')
C
chengduoZH 已提交
72 73 74
            y_predict = fluid.layers.fc(input=x, size=10, param_attr=w_param_attrs)
    """

Y
Yu Yang 已提交
75 76 77 78 79
    def __init__(self,
                 name=None,
                 initializer=None,
                 learning_rate=1.0,
                 regularizer=None,
Y
Yu Yang 已提交
80
                 trainable=True,
81
                 do_model_average=True):
82 83 84 85 86 87 88 89 90

        if sys.version_info.major == 2:
            check_type(name, "name", (str, type(None), unicode), "ParamAttr")
        else:
            check_type(name, "name", (str, type(None)), "ParamAttr")
        check_type(learning_rate, "learning_rate", (float, int), "ParamAttr")
        check_type(trainable, "trainable", (bool), "ParamAttr")
        check_type(do_model_average, "do_model_average", (bool), "ParamAttr")

Y
Yu Yang 已提交
91
        self.name = name
92
        if self.name == "":
H
hong 已提交
93 94
            raise ValueError("name of ParamAttr can not be empty str")

Y
Yu Yang 已提交
95 96 97 98
        self.initializer = initializer
        self.learning_rate = learning_rate
        self.regularizer = regularizer
        self.trainable = trainable
99
        self.do_model_average = do_model_average
Y
Yu Yang 已提交
100

Y
yuyang18 已提交
101
    def _set_default_initializer(self, initializer):
C
chengduoZH 已提交
102 103 104
        """
        Set the default initializer, the initializer should be Constant,
        Uniform, Normal, Xavier, MSRA.
C
chengduoZH 已提交
105 106 107 108 109 110

        Args:
            initializer(Initializer): the initializer to set.

        Returns:
            None
C
chengduoZH 已提交
111
        """
Y
Yu Yang 已提交
112 113 114 115 116 117 118 119 120 121
        if initializer is None:
            if self.initializer is None:
                raise ValueError("ParamAttr.initializer is not set")
            return

        if self.initializer is not None:
            return

        self.initializer = initializer

Y
yuyang18 已提交
122
    def _set_default_param_initializer(self):
C
chengduoZH 已提交
123 124
        """
        Set the default initializer for the parameter with Xavier.
C
chengduoZH 已提交
125 126 127 128 129 130

        Args:
            None.

        Returns:
            None.
C
chengduoZH 已提交
131
        """
Y
yuyang18 已提交
132
        self._set_default_initializer(Xavier())
Y
Yu Yang 已提交
133

Y
yuyang18 已提交
134
    def _set_default_bias_initializer(self):
C
chengduoZH 已提交
135 136
        """
        Set the default initializer for the bias with Constant(0.0).
C
chengduoZH 已提交
137 138 139 140 141 142

        Args:
            None.

        Returns:
            None.
C
chengduoZH 已提交
143
        """
Y
yuyang18 已提交
144
        self._set_default_initializer(Constant(0.0))
Y
Yu Yang 已提交
145 146

    @staticmethod
Y
yuyang18 已提交
147
    def _to_attr(arg):
C
chengduoZH 已提交
148 149 150 151 152 153 154 155 156 157 158 159 160 161
        """
        Create ParamAttr[s].

        Args:
            arg: Arguments to initialize ParamAttr[s]. arg's type can be
                str, Initializer, float, WeightDecayRegularizer, BaseGradientClipAttr,
                bool, ParamAttr, or a list of above type.

        Returns:
            ParamAttr[s]: ParamAttr[s] initialized with arg.

        Raises:
            arg can not initialize a ParamAttr.
        """
Y
Yu Yang 已提交
162 163
        if arg is None:
            return ParamAttr()
164
        elif isinstance(arg, list) or isinstance(arg, tuple):
Y
yuyang18 已提交
165
            return [ParamAttr._to_attr(a) for a in arg]
Y
Yu Yang 已提交
166 167
        elif isinstance(arg, ParamAttr):
            return arg
168
        elif isinstance(arg, six.string_types):
Y
Yu Yang 已提交
169 170 171 172 173 174
            return ParamAttr(name=arg)
        elif isinstance(arg, Initializer):
            return ParamAttr(initializer=arg)
        elif isinstance(arg, WeightDecayRegularizer):
            return ParamAttr(regularizer=arg)
        elif isinstance(arg, bool):
Y
yuyang18 已提交
175
            return ParamAttr._to_attr(None) if arg else False
Y
Yu Yang 已提交
176 177 178
        else:
            raise TypeError("{0} cast to ParamAttr".format(type(arg)))

Y
yuyang18 已提交
179
    def _to_kwargs(self, with_initializer=False):
C
chengduoZH 已提交
180 181 182 183 184 185 186 187 188
        """
        Returns the attributes of this parameter.

        Args:
            with_initializer(bool): Whether to add initializer attr.

        Returns:
            Parameter attributes(map): The attributes of this parameter.
        """
Y
Yu Yang 已提交
189 190
        kwargs = {
            'name': self.name,
G
guosheng 已提交
191 192 193
            'optimize_attr': {
                'learning_rate': self.learning_rate
            },
Y
Yu Yang 已提交
194
            'regularizer': self.regularizer,
Y
Yu Yang 已提交
195
            'trainable': self.trainable,
196
            'do_model_average': self.do_model_average
Y
Yu Yang 已提交
197 198 199 200
        }
        if with_initializer:
            kwargs['initializer'] = self.initializer
        return kwargs
G
guosheng 已提交
201 202 203 204


class WeightNormParamAttr(ParamAttr):
    """
S
swtkiwi 已提交
205 206
	:api_attr: Static Graph

207 208 209
    Note:
        Please use 'paddle.nn.utils.weight_norm' in dygraph mode.

210
    Parameter of weight Norm. Weight Norm is a reparameterization of the weight vectors
211
    in a neural network that decouples the magnitude of those weight vectors from
C
chengduoZH 已提交
212 213 214 215
    their direction. Weight Norm has been implemented as discussed in this
    paper: `Weight Normalization: A Simple Reparameterization to Accelerate
    Training of Deep Neural Networks
    <https://arxiv.org/pdf/1602.07868.pdf>`_.
216 217 218 219 220 221
      
    Note:
        ``gradient_clip`` of ``WeightNormParamAttr`` HAS BEEN DEPRECATED since 2.0. 
        It is recommended to use ``minimize(loss, grad_clip=clip)`` to clip gradient. 
        There are three clipping strategies: :ref:`api_fluid_clip_GradientClipByGlobalNorm` , 
        :ref:`api_fluid_clip_GradientClipByNorm` , :ref:`api_fluid_clip_GradientClipByValue` .
222
        
C
chengduoZH 已提交
223 224

    Args:
225
        dim(int, optional): Dimension over which to compute the norm. Dim is a non-negative
226
            number which is less than the rank of weight Tensor. For Example, dim can
T
tianshuo78520a 已提交
227
            be chosen from 0, 1, 2, 3 for convolution whose weight shape is [cout, cin, kh, kw]
228 229 230
            and rank is 4. Default None, meaning that all elements will be normalized.
        name(str, optional): The parameter's name. Default None, meaning that the name would
            be created automatically. Please refer to :ref:`api_guide_Name` for more details.
231 232
        initializer(Initializer, optional): The method to initialize this parameter, such as
            ``initializer = paddle.nn.initializer.Constant(1.0)``. Default None,
233 234
            meaning that the weight parameter is initialized by Xavier initializer, and
            the bias parameter is initialized by 0.
235
        learning_rate(float32, optional): The parameter's learning rate when
236
            optimizer is :math:`global\_lr * parameter\_lr * scheduler\_factor`.
X
Xin Pan 已提交
237
            Default 1.0.
238
        regularizer (WeightDecayRegularizer, optional): Regularization strategy. There are
J
JuncaiPeng 已提交
239 240
            two method: :ref:`api_paddle_fluid_regularizer_L1Decay` ,
            :ref:`api_paddle_fluid_regularizer_L2DecayRegularizer`.
241
            If regularizer isralso set in ``optimizer``
J
JuncaiPeng 已提交
242
            (such as :ref:`api_paddle_optimizer_SGDOptimizer` ), that regularizer setting in
243
            optimizer will be ignored. Default None, meaning there is no regularization.
244 245
        trainable(bool, optional): Whether this parameter is trainable. Default True.
        do_model_average(bool, optional): Whether this parameter should do model average.
X
Xin Pan 已提交
246
            Default False.
C
chengduoZH 已提交
247 248 249

    Examples:
        .. code-block:: python
250
            
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
            import paddle

            paddle.enable_static()

            data = paddle.static.data(name="data", shape=[3, 32, 32], dtype="float32")

            fc = paddle.static.nn.fc(input=data,
                                     size=1000,
                                     param_attr=paddle.static.WeightNormParamAttr(
                                                dim=None,
                                                name='weight_norm_param',
                                                initializer=paddle.nn.initializer.Constant(1.0),
                                                learning_rate=1.0,
                                                regularizer=paddle.regularizer.L2Decay(0.1),
                                                trainable=True,
                                                do_model_average=False))
C
chengduoZH 已提交
267

G
guosheng 已提交
268 269 270
    """
    # List to record the parameters reparameterized by weight normalization.
    # If these parameters are treated as Variable rather than Parameter,
271
    # it can be used to discriminate these parameters and help to serialize
G
guosheng 已提交
272 273 274
    # these paramters for inference.
    params_with_weight_norm = []

X
Xin Pan 已提交
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
    def __init__(self,
                 dim=None,
                 name=None,
                 initializer=None,
                 learning_rate=1.0,
                 regularizer=None,
                 trainable=True,
                 do_model_average=False):
        super(WeightNormParamAttr, self).__init__(
            name=name,
            initializer=initializer,
            learning_rate=learning_rate,
            regularizer=regularizer,
            trainable=trainable,
            do_model_average=do_model_average)
G
guosheng 已提交
290
        self.dim = dim