test_conv2d_op.py 31.7 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17 18
import unittest
import numpy as np
D
dzhwinter 已提交
19

20
import paddle
21
import paddle.fluid.core as core
L
liym27 已提交
22
import paddle.fluid as fluid
23 24
from op_test import OpTest
from paddle.fluid import Program, program_guard
25 26


L
liym27 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
def conv2d_forward_naive(input,
                         filter,
                         group,
                         conv_param,
                         padding_algorithm='EXPLICIT',
                         data_format='NCHW'):
    if padding_algorithm not in ["SAME", "VALID", "EXPLICIT"]:
        raise ValueError("Unknown Attr(padding_algorithm): '%s'. "
                         "It can only be 'SAME' or 'VALID'." %
                         str(padding_algorithm))

    if data_format not in ["NCHW", "NHWC"]:
        raise ValueError("Unknown Attr(data_format): '%s' ."
                         "It can only be 'NCHW' or 'NHWC'." % str(data_format))

    channel_last = (data_format == "NHWC")
    if channel_last:
        input = np.transpose(input, [0, 3, 1, 2])

C
chengduoZH 已提交
46
    in_n, in_c, in_h, in_w = input.shape
L
liym27 已提交
47 48 49
    f_n, f_c, f_h, f_w = filter.shape
    out_n = in_n
    out_c = f_n
C
chengduoZH 已提交
50 51
    assert f_c * group == in_c
    assert np.mod(out_c, group) == 0
M
minqiyang 已提交
52
    sub_out_c = out_c // group
L
liym27 已提交
53
    sub_f_n = f_n // group
C
chengduoZH 已提交
54

C
chengduoZH 已提交
55 56
    stride, pad, dilation = conv_param['stride'], conv_param['pad'], conv_param[
        'dilation']
L
liym27 已提交
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76

    # update pad and dilation
    def _get_padding_with_SAME(input_shape, pool_size, pool_stride):
        padding = []
        for input_size, filter_size, stride_size in zip(input_shape, pool_size,
                                                        pool_stride):
            out_size = int((input_size + stride_size - 1) / stride_size)
            pad_sum = np.max((
                (out_size - 1) * stride_size + filter_size - input_size, 0))
            pad_0 = int(pad_sum / 2)
            pad_1 = int(pad_sum - pad_0)
            padding.append(pad_0)
            padding.append(pad_1)
        return padding

    ksize = filter.shape[2:4]
    if padding_algorithm == "VALID":
        pad = [0, 0, 0, 0]
    elif padding_algorithm == "SAME":
        dilation = [1, 1]
77
        input_data_shape = input.shape[2:4]
L
liym27 已提交
78 79 80 81 82 83 84 85 86 87 88 89
        pad = _get_padding_with_SAME(input_data_shape, ksize, stride)

    pad_h_0, pad_h_1 = pad[0], pad[0]
    pad_w_0, pad_w_1 = pad[1], pad[1]
    if len(pad) == 4:
        pad_h_0, pad_h_1 = pad[0], pad[1]
        pad_w_0, pad_w_1 = pad[2], pad[3]
    out_h = 1 + (in_h + pad_h_0 + pad_h_1 - (dilation[0] *
                                             (f_h - 1) + 1)) // stride[0]
    out_w = 1 + (in_w + pad_w_0 + pad_w_1 - (dilation[1] *
                                             (f_w - 1) + 1)) // stride[1]
    out = np.zeros((out_n, out_c, out_h, out_w))
C
chengduoZH 已提交
90

武毅 已提交
91 92
    d_bolck_h = (dilation[0] * (f_h - 1) + 1)
    d_bolck_w = (dilation[1] * (f_w - 1) + 1)
C
chengduoZH 已提交
93

L
liym27 已提交
94 95
    input_pad = np.pad(input, ((0, 0), (0, 0), (pad_h_0, pad_h_1),
                               (pad_w_0, pad_w_1)),
C
chengduoZH 已提交
96 97
                       mode='constant',
                       constant_values=0)
C
chengduoZH 已提交
98

L
liym27 已提交
99
    filter_dilation = np.zeros((f_n, f_c, d_bolck_h, d_bolck_w))
C
chengduoZH 已提交
100 101 102
    filter_dilation[:, :, 0:d_bolck_h:dilation[0], 0:d_bolck_w:dilation[
        1]] = filter

C
chengduoZH 已提交
103 104 105
    for i in range(out_h):
        for j in range(out_w):
            for g in range(group):
C
chengduoZH 已提交
106 107
                input_pad_masked = \
                    input_pad[:, g * f_c:(g + 1) * f_c,
C
chengduoZH 已提交
108 109
                    i * stride[0]:i * stride[0] + d_bolck_h,
                    j * stride[1]:j * stride[1] + d_bolck_w]
C
chengduoZH 已提交
110

L
liym27 已提交
111 112
                f_sub = filter_dilation[g * sub_f_n:(g + 1) * sub_f_n, :, :, :]
                # sub_f_n == sub_out_c
C
chengduoZH 已提交
113
                for k in range(sub_out_c):
L
liym27 已提交
114
                    # Multiplication of Corresponding Elements, then sum all
C
chengduoZH 已提交
115 116 117
                    out[:, g * sub_out_c + k, i, j] = \
                        np.sum(input_pad_masked * f_sub[k, :, :, :],
                               axis=(1, 2, 3))
C
chengduoZH 已提交
118

L
liym27 已提交
119 120 121
    if channel_last:
        out = np.transpose(out, [0, 2, 3, 1])

122
    return out, in_n, out_h, out_w, out_c
C
chengduoZH 已提交
123 124


L
liym27 已提交
125 126 127 128 129 130
def create_test_cudnn_class(parent):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestCUDNNCase(parent):
        def init_kernel_type(self):
            self.use_cudnn = True
131 132
            self.dtype = np.float32 if core.is_compiled_with_rocm(
            ) else np.float64
L
liym27 已提交
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156

    cls_name = "{0}_{1}".format(parent.__name__, "CUDNN")
    TestCUDNNCase.__name__ = cls_name
    globals()[cls_name] = TestCUDNNCase


def create_test_cudnn_fp16_class(parent, grad_check=True):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestConv2DCUDNNFp16(parent):
        def init_kernel_type(self):
            self.use_cudnn = True
            self.dtype = np.float16

        def test_check_output(self):
            if core.is_compiled_with_cuda():
                place = core.CUDAPlace(0)
                if core.is_float16_supported(place):
                    self.check_output_with_place(place, atol=2e-2)

        def test_check_grad_no_filter(self):
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place) and grad_check:
                self.check_grad_with_place(
157
                    place, ['Input'], 'Output', no_grad_set=set(['Filter']))
L
liym27 已提交
158 159 160 161 162

        def test_check_grad_no_input(self):
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place) and grad_check:
                self.check_grad_with_place(
163
                    place, ['Filter'], 'Output', no_grad_set=set(['Input']))
L
liym27 已提交
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189

    cls_name = "{0}_{1}".format(parent.__name__, "CUDNNFp16")
    TestConv2DCUDNNFp16.__name__ = cls_name
    globals()[cls_name] = TestConv2DCUDNNFp16


def create_test_channel_last_class(parent):
    class TestChannelLastCase(parent):
        def init_data_format(self):
            self.data_format = "NHWC"

        def init_test_case_2(self):
            N, C, H, W = self.input_size
            self.input_size = [N, H, W, C]

    cls_name = "{0}_{1}".format(parent.__name__, "ChannelLast")
    TestChannelLastCase.__name__ = cls_name
    globals()[cls_name] = TestChannelLastCase


def create_test_cudnn_channel_last_class(parent):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestCudnnChannelLastCase(parent):
        def init_kernel_type(self):
            self.use_cudnn = True
190 191
            self.dtype = np.float32 if core.is_compiled_with_rocm(
            ) else np.float64
L
liym27 已提交
192 193 194 195 196 197 198 199 200 201 202 203 204

        def init_data_format(self):
            self.data_format = "NHWC"

        def init_test_case_2(self):
            N, C, H, W = self.input_size
            self.input_size = [N, H, W, C]

    cls_name = "{0}_{1}".format(parent.__name__, "CudnnChannelLast")
    TestCudnnChannelLastCase.__name__ = cls_name
    globals()[cls_name] = TestCudnnChannelLastCase


205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
def create_test_cudnn_channel_last_fp16_class(parent, grad_check=True):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestCudnnChannelLastFp16(parent):
        def init_kernel_type(self):
            self.use_cudnn = True
            self.dtype = np.float16

        def test_check_output(self):
            if core.is_compiled_with_cuda():
                place = core.CUDAPlace(0)
                if core.is_float16_supported(place):
                    self.check_output_with_place(place, atol=2e-2)

        def test_check_grad_no_filter(self):
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place) and grad_check:
                self.check_grad_with_place(
223
                    place, ['Input'], 'Output', no_grad_set=set(['Filter']))
224 225 226 227 228

        def test_check_grad_no_input(self):
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place) and grad_check:
                self.check_grad_with_place(
229
                    place, ['Filter'], 'Output', no_grad_set=set(['Input']))
230 231 232 233 234 235 236 237 238 239 240 241 242

        def init_data_format(self):
            self.data_format = "NHWC"

        def init_test_case_2(self):
            N, C, H, W = self.input_size
            self.input_size = [N, H, W, C]

    cls_name = "{0}_{1}".format(parent.__name__, "CudnnChannelLastFp16")
    TestCudnnChannelLastFp16.__name__ = cls_name
    globals()[cls_name] = TestCudnnChannelLastFp16


L
liym27 已提交
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
def create_test_padding_SAME_class(parent):
    class TestPaddingSMAECase(parent):
        def init_paddings(self):
            self.pad = [0, 0]
            self.padding_algorithm = "SAME"

    cls_name = "{0}_{1}".format(parent.__name__, "PaddingSAMEOp")
    TestPaddingSMAECase.__name__ = cls_name
    globals()[cls_name] = TestPaddingSMAECase


def create_test_padding_VALID_class(parent):
    class TestPaddingVALIDCase(parent):
        def init_paddings(self):
            self.pad = [1, 1]
            self.padding_algorithm = "VALID"

    cls_name = "{0}_{1}".format(parent.__name__, "PaddingVALIDOp")
    TestPaddingVALIDCase.__name__ = cls_name
    globals()[cls_name] = TestPaddingVALIDCase


def create_test_cudnn_padding_SAME_class(parent):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestCUDNNPaddingSMAECase(parent):
        def init_kernel_type(self):
            self.use_cudnn = True
271 272
            self.dtype = np.float32 if core.is_compiled_with_rocm(
            ) else np.float64
L
liym27 已提交
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288

        def init_paddings(self):
            self.pad = [1, 1]
            self.padding_algorithm = "SAME"

    cls_name = "{0}_{1}".format(parent.__name__, "CudnnPaddingSAMEOp")
    TestCUDNNPaddingSMAECase.__name__ = cls_name
    globals()[cls_name] = TestCUDNNPaddingSMAECase


def create_test_cudnn_padding_VALID_class(parent):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestCUDNNPaddingVALIDCase(parent):
        def init_kernel_type(self):
            self.use_cudnn = True
289 290
            self.dtype = np.float32 if core.is_compiled_with_rocm(
            ) else np.float64
L
liym27 已提交
291 292 293 294 295 296 297 298 299 300

        def init_paddings(self):
            self.pad = [1, 1]
            self.padding_algorithm = "VALID"

    cls_name = "{0}_{1}".format(parent.__name__, "CudnnPaddingVALIDOp")
    TestCUDNNPaddingVALIDCase.__name__ = cls_name
    globals()[cls_name] = TestCUDNNPaddingVALIDCase


C
cnn 已提交
301
class TestConv2DOp(OpTest):
302
    def setUp(self):
K
Kexin Zhao 已提交
303
        self.op_type = "conv2d"
304
        self.use_cudnn = False
305
        self.exhaustive_search = False
306
        self.use_cuda = False
307
        self.use_mkldnn = False
308
        self.fuse_relu_before_depthwise_conv = False
309
        self.data_format = "AnyLayout"
310
        self.dtype = np.float64
K
Kexin Zhao 已提交
311
        self.init_kernel_type()
C
chengduoZH 已提交
312
        self.init_group()
C
chengduoZH 已提交
313
        self.init_dilation()
C
chengduoZH 已提交
314
        self.init_test_case()
C
chengduoZH 已提交
315

C
chengduoZH 已提交
316 317 318 319 320
        conv2d_param = {
            'stride': self.stride,
            'pad': self.pad,
            'dilation': self.dilations
        }
321

K
Kexin Zhao 已提交
322
        input = np.random.random(self.input_size).astype(self.dtype)
G
guomingz 已提交
323
        if not self.has_cuda():
324 325 326 327 328 329 330 331
            self.fuse_relu_before_depthwise_conv = False
        if self.fuse_relu_before_depthwise_conv:
            input = input - 0.5
            input -= (input < 0) * 0.1
            input += (input >= 0) * 0.1
            input2 = np.maximum(input, 0.0)
        else:
            input2 = input
G
guomingz 已提交
332
        filter = np.random.uniform(-1, 1, self.filter_size).astype(self.dtype)
L
liym27 已提交
333

334
        output, _, _, _, _ = conv2d_forward_naive(input2, filter, self.groups,
335 336
                                                  conv2d_param)
        output = output.astype(self.dtype)
K
Kexin Zhao 已提交
337 338

        self.inputs = {
K
Kexin Zhao 已提交
339 340
            'Input': OpTest.np_dtype_to_fluid_dtype(input),
            'Filter': OpTest.np_dtype_to_fluid_dtype(filter)
K
Kexin Zhao 已提交
341
        }
H
hedaoyuan 已提交
342
        self.attrs = {
C
chengduoZH 已提交
343 344
            'strides': self.stride,
            'paddings': self.pad,
C
chengduoZH 已提交
345
            'groups': self.groups,
346
            'dilations': self.dilations,
347
            'use_cudnn': self.use_cudnn,
348
            'use_mkldnn': self.use_mkldnn,
349
            'data_format': self.data_format,
350 351
            'fuse_relu_before_depthwise_conv':
            self.fuse_relu_before_depthwise_conv,
352
            'exhaustive_search': self.exhaustive_search
H
hedaoyuan 已提交
353
        }
354 355
        self.outputs = {'Output': output}

G
guomingz 已提交
356
    def has_cuda(self):
357 358
        return core.is_compiled_with_cuda() and (self.use_cudnn or
                                                 self.use_cuda)
359

H
hedaoyuan 已提交
360
    def test_check_output(self):
G
guomingz 已提交
361
        place = core.CUDAPlace(0) if self.has_cuda() else core.CPUPlace()
362 363 364
        # TODO(wangzhongpu): support mkldnn op in dygraph mode
        self.check_output_with_place(
            place, atol=1e-5, check_dygraph=(self.use_mkldnn == False))
H
hedaoyuan 已提交
365

H
hedaoyuan 已提交
366
    def test_check_grad(self):
367 368
        if self.dtype == np.float16 or (hasattr(self, "no_need_check_grad") and
                                        self.no_need_check_grad == True):
K
Kexin Zhao 已提交
369
            return
G
guomingz 已提交
370
        place = core.CUDAPlace(0) if self.has_cuda() else core.CPUPlace()
371
        # TODO(wangzhongpu): support mkldnn op in dygraph mode
372
        self.check_grad_with_place(
373 374 375 376
            place, {'Input', 'Filter'},
            'Output',
            max_relative_error=0.02,
            check_dygraph=(self.use_mkldnn == False))
H
hedaoyuan 已提交
377

378
    def test_check_grad_no_filter(self):
379 380
        if self.dtype == np.float16 or (hasattr(self, "no_need_check_grad") and
                                        self.no_need_check_grad == True):
K
Kexin Zhao 已提交
381
            return
G
guomingz 已提交
382
        place = core.CUDAPlace(0) if self.has_cuda() else core.CPUPlace()
383
        # TODO(wangzhongpu): support mkldnn op in dygraph mode
384 385 386 387
        self.check_grad_with_place(
            place, ['Input'],
            'Output',
            max_relative_error=0.02,
388 389
            no_grad_set=set(['Filter']),
            check_dygraph=(self.use_mkldnn == False))
390 391

    def test_check_grad_no_input(self):
392 393
        if self.dtype == np.float16 or (hasattr(self, "no_need_check_grad") and
                                        self.no_need_check_grad == True):
K
Kexin Zhao 已提交
394
            return
G
guomingz 已提交
395
        place = core.CUDAPlace(0) if self.has_cuda() else core.CPUPlace()
396
        # TODO(wangzhongpu): support mkldnn op in dygraph mode
397 398 399
        self.check_grad_with_place(
            place, ['Filter'],
            'Output',
400 401
            no_grad_set=set(['Input']),
            check_dygraph=(self.use_mkldnn == False))
402

C
chengduoZH 已提交
403 404 405 406 407
    def init_test_case(self):
        self.pad = [0, 0]
        self.stride = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
M
minqiyang 已提交
408
        f_c = self.input_size[1] // self.groups
C
chengduoZH 已提交
409 410
        self.filter_size = [6, f_c, 3, 3]

L
liym27 已提交
411 412 413
    def init_test_case_2(self):
        pass

C
chengduoZH 已提交
414 415 416
    def init_dilation(self):
        self.dilations = [1, 1]

C
chengduoZH 已提交
417
    def init_group(self):
H
hedaoyuan 已提交
418 419
        self.groups = 1

K
Kexin Zhao 已提交
420 421
    def init_kernel_type(self):
        pass
武毅 已提交
422

H
hedaoyuan 已提交
423

C
cnn 已提交
424
class TestWithPad(TestConv2DOp):
C
chengduoZH 已提交
425 426 427 428 429
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
M
minqiyang 已提交
430
        f_c = self.input_size[1] // self.groups
C
chengduoZH 已提交
431 432 433
        self.filter_size = [6, f_c, 3, 3]


C
cnn 已提交
434
class TestWithStride(TestConv2DOp):
C
chengduoZH 已提交
435 436 437 438 439
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [2, 2]
        self.input_size = [2, 3, 6, 6]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
M
minqiyang 已提交
440
        f_c = self.input_size[1] // self.groups
C
chengduoZH 已提交
441 442 443
        self.filter_size = [6, f_c, 3, 3]


C
cnn 已提交
444
class TestWithGroup(TestConv2DOp):
Z
zhupengyang 已提交
445 446 447 448 449 450 451 452
    def init_test_case(self):
        self.pad = [0, 0]
        self.stride = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        self.group = 3
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
        self.filter_size = [18, f_c, 3, 3]
H
hedaoyuan 已提交
453

武毅 已提交
454

C
cnn 已提交
455
class TestWith1x1(TestConv2DOp):
C
chengduoZH 已提交
456 457 458 459 460
    def init_test_case(self):
        self.pad = [0, 0]
        self.stride = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
M
minqiyang 已提交
461
        f_c = self.input_size[1] // self.groups
Z
zhupengyang 已提交
462
        self.filter_size = [120, f_c, 1, 1]
C
chengduoZH 已提交
463 464 465 466 467

    def init_group(self):
        self.groups = 3


C
cnn 已提交
468
class TestWithDepthWise3x3(TestConv2DOp):
469 470 471 472 473 474
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [1, 1]
        self.input_size = [3, 4, 10, 10]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
Z
zhupengyang 已提交
475
        self.filter_size = [12, f_c, 3, 3]
476 477 478 479 480 481 482 483

    def init_dilation(self):
        self.dilations = [2, 2]

    def init_group(self):
        self.groups = 4


C
cnn 已提交
484
class TestWithDepthWise5x5(TestConv2DOp):
485 486 487 488 489 490 491 492 493 494 495 496
    def init_test_case(self):
        self.pad = [0, 0]
        self.stride = [1, 1]
        self.input_size = [2, 4, 10, 10]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
        self.filter_size = [8, f_c, 5, 5]

    def init_group(self):
        self.groups = 4


C
cnn 已提交
497
class TestWithDepthWise7x7(TestConv2DOp):
498 499 500 501 502 503 504 505 506 507 508 509
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [2, 2]
        self.input_size = [2, 8, 10, 10]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
        self.filter_size = [16, f_c, 7, 7]

    def init_group(self):
        self.groups = 8


C
cnn 已提交
510
class TestWithDilation(TestConv2DOp):
C
chengduoZH 已提交
511 512 513 514 515
    def init_test_case(self):
        self.pad = [0, 0]
        self.stride = [1, 1]
        self.input_size = [2, 3, 10, 10]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
M
minqiyang 已提交
516
        f_c = self.input_size[1] // self.groups
Z
zhupengyang 已提交
517
        self.filter_size = [12, f_c, 3, 3]
C
chengduoZH 已提交
518

C
chengduoZH 已提交
519 520
    def init_dilation(self):
        self.dilations = [2, 2]
C
chengduoZH 已提交
521

C
chengduoZH 已提交
522
    def init_group(self):
C
chengduoZH 已提交
523
        self.groups = 3
武毅 已提交
524

C
chengduoZH 已提交
525

C
cnn 已提交
526
class TestWithInput1x1Filter1x1(TestConv2DOp):
527 528 529
    def init_test_case(self):
        self.pad = [0, 0]
        self.stride = [1, 1]
Z
zhupengyang 已提交
530
        self.input_size = [100, 3, 1, 1]  # NCHW
531
        assert np.mod(self.input_size[1], self.groups) == 0
M
minqiyang 已提交
532
        f_c = self.input_size[1] // self.groups
Z
zhupengyang 已提交
533
        self.filter_size = [120, f_c, 1, 1]
534 535 536 537 538

    def init_group(self):
        self.groups = 3


C
cnn 已提交
539
#----------------Conv2DCUDNN----------------
C
chengduoZH 已提交
540

C
cnn 已提交
541
create_test_cudnn_class(TestConv2DOp)
C
chengduo 已提交
542 543 544 545 546
create_test_cudnn_class(TestWithPad)
create_test_cudnn_class(TestWithStride)
create_test_cudnn_class(TestWithGroup)
create_test_cudnn_class(TestWith1x1)
create_test_cudnn_class(TestWithInput1x1Filter1x1)
K
Kexin Zhao 已提交
547

C
cnn 已提交
548
#----------------Conv2DCUDNN fp16----------------
C
chengduo 已提交
549

C
cnn 已提交
550
create_test_cudnn_fp16_class(TestConv2DOp, grad_check=False)
C
chengduo 已提交
551 552 553 554 555
create_test_cudnn_fp16_class(TestWithPad, grad_check=False)
create_test_cudnn_fp16_class(TestWithStride, grad_check=False)
create_test_cudnn_fp16_class(TestWithGroup, grad_check=False)
create_test_cudnn_fp16_class(TestWith1x1, grad_check=False)
create_test_cudnn_fp16_class(TestWithInput1x1Filter1x1, grad_check=False)
C
chengduo 已提交
556

557

C
cnn 已提交
558
class TestCUDNNExhaustiveSearch(TestConv2DOp):
559 560 561
    def init_kernel_type(self):
        self.use_cudnn = True
        self.exhaustive_search = True
562
        self.dtype = np.float32 if core.is_compiled_with_rocm() else np.float64
563 564


C
cnn 已提交
565
class TestConv2DOpError(unittest.TestCase):
566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586
    def test_errors(self):
        with program_guard(Program(), Program()):

            def test_Variable():
                # the input of conv2d must be Variable.
                x1 = fluid.create_lod_tensor(
                    np.array([-1, 3, 5, 5]), [[1, 1, 1, 1]], fluid.CPUPlace())
                fluid.layers.conv2d(x1, 1, 1)

            self.assertRaises(TypeError, test_Variable)

            def test_dtype():
                # the input dtype of conv2d must be float16 or float32 or float64
                # float16 only can be set on GPU place
                x2 = fluid.layers.data(
                    name='x2', shape=[3, 4, 5, 6], dtype="int32")
                fluid.layers.conv2d(x2, 1, 1)

            self.assertRaises(TypeError, test_dtype)


587 588
# Please Don't remove the following code.
# Currently, CI use cudnn V5.0 which not support dilation conv.
589
# class TestCUDNNWithDilation(TestWithDilation):
C
chengduoZH 已提交
590 591 592
#     def init_op_type(self):
#         self.op_type = "conv_cudnn"

L
liym27 已提交
593 594 595
# ---- test asymmetric padding ----


C
cnn 已提交
596
class TestConv2DOp_v2(OpTest):
L
liym27 已提交
597 598 599 600 601 602 603
    def setUp(self):
        self.op_type = "conv2d"
        self.use_cudnn = False
        self.exhaustive_search = False
        self.use_cuda = False
        self.use_mkldnn = False
        self.fuse_relu_before_depthwise_conv = False
604
        self.dtype = np.float64
L
liym27 已提交
605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658
        self.init_kernel_type()
        self.init_group()
        self.init_dilation()
        self.init_data_format()
        self.init_test_case()
        self.init_paddings()
        self.init_test_case_2()

        conv2d_param = {
            'stride': self.stride,
            'pad': self.pad,
            'dilation': self.dilations
        }

        input = np.random.random(self.input_size).astype(self.dtype)
        if not self.has_cuda():
            self.fuse_relu_before_depthwise_conv = False
        if self.fuse_relu_before_depthwise_conv:
            input = input - 0.5
            input -= (input < 0) * 0.1
            input += (input >= 0) * 0.1
            input2 = np.maximum(input, 0.0)
        else:
            input2 = input
        filter = np.random.uniform(-1, 1, self.filter_size).astype(self.dtype)
        output, _, _, _, _ = conv2d_forward_naive(
            input2, filter, self.groups, conv2d_param, self.padding_algorithm,
            self.data_format)
        output = output.astype(self.dtype)

        self.inputs = {
            'Input': OpTest.np_dtype_to_fluid_dtype(input),
            'Filter': OpTest.np_dtype_to_fluid_dtype(filter)
        }
        self.attrs = {
            'strides': self.stride,
            'paddings': self.pad,
            'padding_algorithm': self.padding_algorithm,
            'groups': self.groups,
            'dilations': self.dilations,
            'use_cudnn': self.use_cudnn,
            'use_mkldnn': self.use_mkldnn,
            'data_format': self.data_format,
            'fuse_relu_before_depthwise_conv':
            self.fuse_relu_before_depthwise_conv,
            'exhaustive_search': self.exhaustive_search
        }
        self.outputs = {'Output': output}

    def has_cuda(self):
        return core.is_compiled_with_cuda() and (self.use_cudnn or
                                                 self.use_cuda)

    def test_check_output(self):
659
        # TODO(wangzhongpu): support mkldnn op in dygraph mode
L
liym27 已提交
660
        place = core.CUDAPlace(0) if self.has_cuda() else core.CPUPlace()
661 662
        self.check_output_with_place(
            place, atol=1e-5, check_dygraph=(self.use_mkldnn == False))
L
liym27 已提交
663 664

    def test_check_grad(self):
665
        # TODO(wangzhongpu): support mkldnn op in dygraph mode
L
liym27 已提交
666 667 668 669
        if self.dtype == np.float16:
            return
        place = core.CUDAPlace(0) if self.has_cuda() else core.CPUPlace()
        self.check_grad_with_place(
670 671 672 673
            place, {'Input', 'Filter'},
            'Output',
            max_relative_error=0.02,
            check_dygraph=(self.use_mkldnn == False))
L
liym27 已提交
674 675

    def test_check_grad_no_filter(self):
676
        # TODO(wangzhongpu): support mkldnn op in dygraph mode
L
liym27 已提交
677 678 679 680 681 682 683
        if self.dtype == np.float16:
            return
        place = core.CUDAPlace(0) if self.has_cuda() else core.CPUPlace()
        self.check_grad_with_place(
            place, ['Input'],
            'Output',
            max_relative_error=0.02,
684 685
            no_grad_set=set(['Filter']),
            check_dygraph=(self.use_mkldnn == False))
L
liym27 已提交
686 687

    def test_check_grad_no_input(self):
688
        # TODO(wangzhongpu): support mkldnn op in dygraph mode
L
liym27 已提交
689 690 691 692 693 694
        if self.dtype == np.float16:
            return
        place = core.CUDAPlace(0) if self.has_cuda() else core.CPUPlace()
        self.check_grad_with_place(
            place, ['Filter'],
            'Output',
695 696
            no_grad_set=set(['Input']),
            check_dygraph=(self.use_mkldnn == False))
L
liym27 已提交
697 698 699

    def init_test_case(self):
        self.pad = [0, 0]
700
        self.stride = [1, 2]
L
liym27 已提交
701 702 703
        self.input_size = [2, 3, 5, 5]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
704
        self.filter_size = [6, f_c, 4, 3]
L
liym27 已提交
705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725

    def init_dilation(self):
        self.dilations = [1, 1]

    def init_group(self):
        self.groups = 1

    def init_kernel_type(self):
        pass

    def init_paddings(self):
        self.pad = [0, 0]
        self.padding_algorithm = "EXPLICIT"

    def init_data_format(self):
        self.data_format = "NCHW"

    def init_test_case_2(self):
        pass


C
cnn 已提交
726
class TestConv2DOp_AsyPadding(TestConv2DOp_v2):
L
liym27 已提交
727 728 729 730 731
    def init_paddings(self):
        self.pad = [0, 0, 1, 2]
        self.padding_algorithm = "EXPLICIT"


C
cnn 已提交
732
class TestWithPad_AsyPadding(TestConv2DOp_v2):
L
liym27 已提交
733 734 735 736 737 738 739 740 741 742 743 744
    def init_test_case(self):
        self.stride = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
        self.filter_size = [6, f_c, 3, 3]

    def init_paddings(self):
        self.pad = [2, 1, 3, 2]
        self.padding_algorithm = "EXPLICIT"


C
cnn 已提交
745
class TestWithStride_AsyPadding(TestConv2DOp_v2):
L
liym27 已提交
746 747 748 749 750 751 752 753 754 755 756 757
    def init_test_case(self):
        self.stride = [2, 2]
        self.input_size = [2, 3, 6, 6]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
        self.filter_size = [6, f_c, 3, 3]

    def init_paddings(self):
        self.pad = [2, 1, 3, 2]
        self.padding_algorithm = "EXPLICIT"


C
cnn 已提交
758
class TestWithGroup_AsyPadding(TestConv2DOp_v2):
Z
zhupengyang 已提交
759 760 761 762 763 764 765 766
    def init_test_case(self):
        self.pad = [0, 0]
        self.stride = [1, 2]
        self.input_size = [2, 3, 5, 5]  # NCHW
        self.group = 3
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
        self.filter_size = [24, f_c, 4, 3]
L
liym27 已提交
767 768


C
cnn 已提交
769
class TestWith1x1_AsyPadding(TestConv2DOp_v2):
L
liym27 已提交
770 771 772 773 774
    def init_test_case(self):
        self.stride = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
Z
zhupengyang 已提交
775
        self.filter_size = [120, f_c, 1, 1]
L
liym27 已提交
776 777 778 779 780 781 782 783 784

    def init_group(self):
        self.groups = 3

    def init_paddings(self):
        self.pad = [2, 2, 4, 0]
        self.padding_algorithm = "EXPLICIT"


C
cnn 已提交
785
class TestWithDepthWise3x3_AsyPadding(TestConv2DOp_v2):
L
liym27 已提交
786 787 788 789 790
    def init_test_case(self):
        self.stride = [1, 1]
        self.input_size = [3, 4, 10, 10]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
Z
zhupengyang 已提交
791
        self.filter_size = [16, f_c, 3, 3]
L
liym27 已提交
792 793 794 795 796 797 798 799 800 801 802 803

    def init_dilation(self):
        self.dilations = [2, 2]

    def init_group(self):
        self.groups = 4

    def init_paddings(self):
        self.pad = [1, 3, 2, 1]
        self.padding_algorithm = "EXPLICIT"


C
cnn 已提交
804
class TestWithDepthWise5x5_AsyPadding(TestConv2DOp_v2):
L
liym27 已提交
805 806 807 808 809 810 811 812 813 814 815 816 817 818 819
    def init_test_case(self):
        self.stride = [1, 1]
        self.input_size = [2, 4, 10, 10]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
        self.filter_size = [8, f_c, 5, 5]

    def init_group(self):
        self.groups = 4

    def init_paddings(self):
        self.pad = [0, 1, 1, 0]
        self.padding_algorithm = "EXPLICIT"


C
cnn 已提交
820
class TestWithDepthWise7x7_AsyPadding(TestConv2DOp_v2):
L
liym27 已提交
821 822 823 824 825 826 827 828 829 830 831 832 833 834 835
    def init_test_case(self):
        self.stride = [2, 2]
        self.input_size = [2, 8, 10, 10]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
        self.filter_size = [16, f_c, 7, 7]

    def init_group(self):
        self.groups = 8

    def init_paddings(self):
        self.pad = [1, 3, 4, 1]
        self.padding_algorithm = "EXPLICIT"


C
cnn 已提交
836
class TestWithDilation_AsyPadding(TestConv2DOp_v2):
L
liym27 已提交
837 838 839 840 841
    def init_test_case(self):
        self.stride = [1, 1]
        self.input_size = [2, 3, 10, 10]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
Z
zhupengyang 已提交
842
        self.filter_size = [24, f_c, 3, 3]
L
liym27 已提交
843 844 845 846 847 848 849 850 851 852 853 854

    def init_dilation(self):
        self.dilations = [2, 2]

    def init_group(self):
        self.groups = 3

    def init_paddings(self):
        self.pad = [0, 1, 3, 0]
        self.padding_algorithm = "EXPLICIT"


C
cnn 已提交
855
class TestWithInput1x1Filter1x1_AsyPadding(TestConv2DOp_v2):
L
liym27 已提交
856 857
    def init_test_case(self):
        self.stride = [1, 1]
Z
zhupengyang 已提交
858
        self.input_size = [40, 3, 1, 1]  # NCHW
L
liym27 已提交
859 860
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
Z
zhupengyang 已提交
861
        self.filter_size = [120, f_c, 1, 1]
L
liym27 已提交
862 863 864 865 866 867 868 869 870

    def init_group(self):
        self.groups = 3

    def init_paddings(self):
        self.pad = [0, 3, 4, 0]
        self.padding_algorithm = "EXPLICIT"


C
cnn 已提交
871
create_test_cudnn_class(TestConv2DOp_AsyPadding)
L
liym27 已提交
872 873 874 875 876 877 878
create_test_cudnn_class(TestWithPad_AsyPadding)
create_test_cudnn_class(TestWithStride_AsyPadding)
create_test_cudnn_class(TestWithGroup_AsyPadding)
create_test_cudnn_class(TestWith1x1_AsyPadding)
create_test_cudnn_class(TestWithInput1x1Filter1x1_AsyPadding)

#---------- test SAME VALID -----------
C
cnn 已提交
879
create_test_padding_SAME_class(TestConv2DOp_AsyPadding)
L
liym27 已提交
880 881 882 883 884
create_test_padding_SAME_class(TestWithPad_AsyPadding)
create_test_padding_SAME_class(TestWithStride_AsyPadding)
create_test_padding_SAME_class(TestWithGroup_AsyPadding)
create_test_padding_SAME_class(TestWithInput1x1Filter1x1_AsyPadding)

C
cnn 已提交
885
create_test_padding_VALID_class(TestConv2DOp_AsyPadding)
L
liym27 已提交
886 887 888 889 890
create_test_padding_VALID_class(TestWithPad_AsyPadding)
create_test_padding_VALID_class(TestWithStride_AsyPadding)
create_test_padding_VALID_class(TestWithGroup_AsyPadding)
create_test_padding_VALID_class(TestWithInput1x1Filter1x1_AsyPadding)

C
cnn 已提交
891
create_test_cudnn_padding_SAME_class(TestConv2DOp_AsyPadding)
L
liym27 已提交
892 893 894 895 896
create_test_cudnn_padding_SAME_class(TestWithPad_AsyPadding)
create_test_cudnn_padding_SAME_class(TestWithStride_AsyPadding)
create_test_cudnn_padding_SAME_class(TestWithGroup_AsyPadding)
create_test_cudnn_padding_SAME_class(TestWithInput1x1Filter1x1_AsyPadding)

C
cnn 已提交
897
create_test_cudnn_padding_VALID_class(TestConv2DOp_AsyPadding)
L
liym27 已提交
898 899 900 901 902 903
create_test_cudnn_padding_VALID_class(TestWithPad_AsyPadding)
create_test_cudnn_padding_VALID_class(TestWithStride_AsyPadding)
create_test_cudnn_padding_VALID_class(TestWithGroup_AsyPadding)
create_test_cudnn_padding_VALID_class(TestWithInput1x1Filter1x1_AsyPadding)

# ------------ test channel last ---------
C
cnn 已提交
904
create_test_channel_last_class(TestConv2DOp_AsyPadding)
L
liym27 已提交
905 906 907 908 909
create_test_channel_last_class(TestWithPad_AsyPadding)
create_test_channel_last_class(TestWithGroup_AsyPadding)
create_test_channel_last_class(TestWith1x1_AsyPadding)
create_test_channel_last_class(TestWithInput1x1Filter1x1_AsyPadding)

C
cnn 已提交
910
create_test_cudnn_channel_last_class(TestConv2DOp_AsyPadding)
L
liym27 已提交
911 912 913 914 915
create_test_cudnn_channel_last_class(TestWithPad_AsyPadding)
create_test_cudnn_channel_last_class(TestWithStride_AsyPadding)
create_test_cudnn_channel_last_class(TestWithGroup_AsyPadding)
create_test_cudnn_channel_last_class(TestWithDilation_AsyPadding)

916
create_test_cudnn_channel_last_fp16_class(
C
cnn 已提交
917
    TestConv2DOp_AsyPadding, grad_check=False)
918 919 920 921 922 923 924 925 926
create_test_cudnn_channel_last_fp16_class(
    TestWithPad_AsyPadding, grad_check=False)
create_test_cudnn_channel_last_fp16_class(
    TestWithStride_AsyPadding, grad_check=False)
create_test_cudnn_channel_last_fp16_class(
    TestWithGroup_AsyPadding, grad_check=False)
create_test_cudnn_channel_last_fp16_class(
    TestWithDilation_AsyPadding, grad_check=False)

927 928
if __name__ == '__main__':
    unittest.main()