roi_align_op.cu 16.0 KB
Newer Older
J
jerrywgz 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

F
FDInSky 已提交
15
#include <vector>
16
#include "paddle/fluid/memory/memory.h"
J
jerrywgz 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
#include "paddle/fluid/operators/roi_align_op.h"
#include "paddle/fluid/platform/cuda_primitives.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;

static constexpr int kNumCUDAThreads = 512;
static constexpr int kNumMaxinumNumBlocks = 4096;

static inline int NumBlocks(const int N) {
  return std::min((N + kNumCUDAThreads - 1) / kNumCUDAThreads,
                  kNumMaxinumNumBlocks);
}

template <class T>
J
jerrywgz 已提交
35 36
__device__ T BilinearInterpolate(const T* input_data, const int height,
                                 const int width, T y, T x) {
J
jerrywgz 已提交
37 38 39
  if (y < -1.0 || y > height || x < -1.0 || x > width) {
    return 0;
  }
J
jerrywgz 已提交
40 41
  y = y <= 0 ? 0 : y;
  x = x <= 0 ? 0 : x;
J
jerrywgz 已提交
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
  int y_low = static_cast<int>(y);
  int x_low = static_cast<int>(x);
  int y_high;
  int x_high;
  if (y_low >= height - 1) {
    y_high = y_low = height - 1;
    y = static_cast<T>(y_low);
  } else {
    y_high = y_low + 1;
  }
  if (x_low >= width - 1) {
    x_high = x_low = width - 1;
    x = static_cast<T>(x_low);
  } else {
    x_high = x_low + 1;
  }
  T ly = y - y_low, lx = x - x_low;
  T hy = 1. - ly, hx = 1. - lx;

  T v1 = input_data[y_low * width + x_low];
  T v2 = input_data[y_low * width + x_high];
  T v3 = input_data[y_high * width + x_low];
  T v4 = input_data[y_high * width + x_high];
  T w1 = hy * hx, w2 = hy * lx, w3 = ly * hx, w4 = ly * lx;

  T val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4);
  return val;
}

template <class T>
J
jerrywgz 已提交
72 73 74 75
__device__ void BilinearInterpolateGradient(const int height, const int width,
                                            T y, T x, T* w1, T* w2, T* w3,
                                            T* w4, int* x_low, int* x_high,
                                            int* y_low, int* y_high) {
J
jerrywgz 已提交
76 77 78 79
  if (y < -1.0 || y > height || x < -1.0 || x > width) {
    return;
  }

J
jerrywgz 已提交
80 81
  y = y <= 0 ? 0 : y;
  x = x <= 0 ? 0 : x;
82 83 84 85 86
  *y_low = static_cast<int>(y);
  *x_low = static_cast<int>(x);
  if (*y_low >= height - 1) {
    *y_high = *y_low = height - 1;
    y = static_cast<T>(*y_low);
J
jerrywgz 已提交
87
  } else {
88
    *y_high = *y_low + 1;
J
jerrywgz 已提交
89
  }
90 91 92
  if (*x_low >= width - 1) {
    *x_high = *x_low = width - 1;
    x = static_cast<T>(*x_low);
J
jerrywgz 已提交
93
  } else {
94
    *x_high = *x_low + 1;
J
jerrywgz 已提交
95
  }
96
  T ly = y - *y_low, lx = x - *x_low;
J
jerrywgz 已提交
97
  T hy = 1. - ly, hx = 1. - lx;
98
  *w1 = hy * hx, *w2 = hy * lx, *w3 = ly * hx, *w4 = ly * lx;
J
jerrywgz 已提交
99 100 101 102 103 104 105 106 107

  return;
}

template <class T>
__global__ void GPUROIAlignForward(
    const int nthreads, const T* input_data, const T* input_rois,
    const float spatial_scale, const int channels, const int height,
    const int width, const int pooled_height, const int pooled_width,
108 109
    const int sampling_ratio, int* roi_batch_id_data, T* output_data,
    const bool continuous_coordinate) {
110
  CUDA_KERNEL_LOOP(i, nthreads) {
J
jerrywgz 已提交
111 112 113 114 115 116 117 118
    int pw = i % pooled_width;
    int ph = (i / pooled_width) % pooled_height;
    int c = (i / pooled_width / pooled_height) % channels;
    int n = i / pooled_width / pooled_height / channels;

    const T* offset_input_rois = input_rois + n * kROISize;
    int roi_batch_ind = roi_batch_id_data[n];

119 120 121 122 123
    T roi_offset = continuous_coordinate ? static_cast<T>(0.5) : 0;
    T roi_xmin = offset_input_rois[0] * spatial_scale - roi_offset;
    T roi_ymin = offset_input_rois[1] * spatial_scale - roi_offset;
    T roi_xmax = offset_input_rois[2] * spatial_scale - roi_offset;
    T roi_ymax = offset_input_rois[3] * spatial_scale - roi_offset;
J
jerrywgz 已提交
124

125 126
    T roi_width = roi_xmax - roi_xmin;
    T roi_height = roi_ymax - roi_ymin;
127 128
    roi_width = max(roi_width, static_cast<T>(1.));
    roi_height = max(roi_height, static_cast<T>(1.));
129

J
jerrywgz 已提交
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
    T bin_size_h = static_cast<T>(roi_height) / static_cast<T>(pooled_height);
    T bin_size_w = static_cast<T>(roi_width) / static_cast<T>(pooled_width);

    const T* offset_input_data =
        input_data + (roi_batch_ind * channels + c) * height * width;

    int roi_bin_grid_h = (sampling_ratio > 0)
                             ? sampling_ratio
                             : ceil(roi_height / pooled_height);
    int roi_bin_grid_w =
        (sampling_ratio > 0) ? sampling_ratio : ceil(roi_width / pooled_width);
    const T count = roi_bin_grid_h * roi_bin_grid_w;
    T output_val = 0;
    for (int iy = 0; iy < roi_bin_grid_h; iy++) {
      const T y = roi_ymin + ph * bin_size_h +
                  static_cast<T>(iy + .5f) * bin_size_h /
                      static_cast<T>(roi_bin_grid_h);
      for (int ix = 0; ix < roi_bin_grid_w; ix++) {
        const T x = roi_xmin + pw * bin_size_w +
                    static_cast<T>(ix + .5f) * bin_size_w /
                        static_cast<T>(roi_bin_grid_w);
J
jerrywgz 已提交
151
        T val = BilinearInterpolate(offset_input_data, height, width, y, x);
J
jerrywgz 已提交
152 153 154 155 156 157 158 159 160
        output_val += val;
      }
    }
    output_val /= count;
    output_data[i] = output_val;
  }
}

template <typename T>
161 162 163 164 165 166
__global__ void GPUROIAlignBackward(
    const int nthreads, const T* input_rois, const T* out_grad,
    const int num_rois, const float spatial_scale, const int channels,
    const int height, const int width, const int pooled_height,
    const int pooled_width, const int sampling_ratio, int* roi_batch_id_data,
    T* input_grad, const bool continuous_coordinate) {
167
  CUDA_KERNEL_LOOP(i, nthreads) {
J
jerrywgz 已提交
168 169
    int pw = i % pooled_width;
    int ph = (i / pooled_width) % pooled_height;
170
    int c = (i / pooled_width / pooled_height) % channels;
J
jerrywgz 已提交
171 172 173 174
    int n = i / pooled_width / pooled_height / channels;
    const T* offset_input_rois = input_rois + n * kROISize;
    int roi_batch_ind = roi_batch_id_data[n];

175 176 177 178 179 180 181 182
    T roi_offset = continuous_coordinate ? T(0.5) : 0;
    T roi_xmin = offset_input_rois[0] * spatial_scale - roi_offset;
    T roi_ymin = offset_input_rois[1] * spatial_scale - roi_offset;
    T roi_xmax = offset_input_rois[2] * spatial_scale - roi_offset;
    T roi_ymax = offset_input_rois[3] * spatial_scale - roi_offset;

    T roi_width = roi_xmax - roi_xmin;
    T roi_height = roi_ymax - roi_ymin;
183 184 185
    roi_width = max(roi_width, static_cast<T>(1.));
    roi_height = max(roi_height, static_cast<T>(1.));

J
jerrywgz 已提交
186 187 188
    T bin_size_h = static_cast<T>(roi_height) / static_cast<T>(pooled_height);
    T bin_size_w = static_cast<T>(roi_width) / static_cast<T>(pooled_width);

189
    T* offset_input_grad =
J
jerrywgz 已提交
190 191 192 193 194 195 196 197 198 199 200 201 202 203
        input_grad + (roi_batch_ind * channels + c) * height * width;

    const T* offset_out_grad =
        out_grad + (n * channels + c) * pooled_height * pooled_width;
    const T out_grad_this_bin = offset_out_grad[ph * pooled_width + pw];

    int roi_bin_grid_h = (sampling_ratio > 0)
                             ? sampling_ratio
                             : ceil(roi_height / pooled_height);
    int roi_bin_grid_w =
        (sampling_ratio > 0) ? sampling_ratio : ceil(roi_width / pooled_width);

    const T count = roi_bin_grid_h * roi_bin_grid_w;
    for (int iy = 0; iy < roi_bin_grid_h; iy++) {
204
      const T y = roi_ymin + ph * bin_size_h +
J
jerrywgz 已提交
205 206 207
                  static_cast<T>(iy + .5f) * bin_size_h /
                      static_cast<T>(roi_bin_grid_h);
      for (int ix = 0; ix < roi_bin_grid_w; ix++) {
208
        const T x = roi_xmin + pw * bin_size_w +
J
jerrywgz 已提交
209 210
                    static_cast<T>(ix + .5f) * bin_size_w /
                        static_cast<T>(roi_bin_grid_w);
211 212
        T w1 = 0, w2 = 0, w3 = 0, w4 = 0;
        int x_low = -1, x_high = -1, y_low = -1, y_high = -1;
J
jerrywgz 已提交
213 214
        BilinearInterpolateGradient(height, width, y, x, &w1, &w2, &w3, &w4,
                                    &x_low, &x_high, &y_low, &y_high);
J
jerrywgz 已提交
215 216 217 218 219 220 221 222 223 224 225 226
        T diff1 = out_grad_this_bin * w1 / count;
        T diff2 = out_grad_this_bin * w2 / count;
        T diff3 = out_grad_this_bin * w3 / count;
        T diff4 = out_grad_this_bin * w4 / count;
        if (x_low >= 0 && x_high >= 0 && y_low >= 0 && y_high >= 0) {
          platform::CudaAtomicAdd(offset_input_grad + y_low * width + x_low,
                                  diff1);
          platform::CudaAtomicAdd(offset_input_grad + y_low * width + x_high,
                                  diff2);
          platform::CudaAtomicAdd(offset_input_grad + y_high * width + x_low,
                                  diff3);
          platform::CudaAtomicAdd(offset_input_grad + y_high * width + x_high,
227
                                  diff4);
J
jerrywgz 已提交
228 229 230 231 232 233 234 235 236 237
        }
      }
    }
  }
}

template <typename Place, typename T>
class GPUROIAlignOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
238
    auto* in = ctx.Input<Tensor>("X");
J
jerrywgz 已提交
239 240 241 242 243 244 245
    auto* rois = ctx.Input<LoDTensor>("ROIs");
    auto* out = ctx.Output<Tensor>("Out");

    auto pooled_height = ctx.Attr<int>("pooled_height");
    auto pooled_width = ctx.Attr<int>("pooled_width");
    auto spatial_scale = ctx.Attr<float>("spatial_scale");
    auto sampling_ratio = ctx.Attr<int>("sampling_ratio");
246
    auto aligned = ctx.Attr<bool>("aligned");
J
jerrywgz 已提交
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263

    auto in_dims = in->dims();
    int batch_size = in_dims[0];
    int channels = in_dims[1];
    int height = in_dims[2];
    int width = in_dims[3];

    int rois_num = rois->dims()[0];

    if (rois_num == 0) return;

    int output_size = out->numel();
    int blocks = NumBlocks(output_size);
    int threads = kNumCUDAThreads;

    Tensor roi_batch_id_list;
    roi_batch_id_list.Resize({rois_num});
264 265
    auto cplace = platform::CPUPlace();
    int* roi_batch_id_data = roi_batch_id_list.mutable_data<int>(cplace);
F
FDInSky 已提交
266
    auto& dev_ctx = ctx.cuda_device_context();
267
    auto gplace = BOOST_GET_CONST(platform::CUDAPlace, ctx.GetPlace());
268 269 270
    if (ctx.HasInput("RoisNum")) {
      auto* rois_num_t = ctx.Input<Tensor>("RoisNum");
      int rois_batch_size = rois_num_t->numel();
F
FDInSky 已提交
271
      PADDLE_ENFORCE_EQ(
272
          rois_batch_size, batch_size,
F
FDInSky 已提交
273 274 275 276 277 278
          platform::errors::InvalidArgument(
              "The rois_batch_size and imgs "
              "batch_size must be the same. But received rois_batch_size = %d, "
              "batch_size = %d",
              rois_batch_size, batch_size));

279 280 281 282 283 284
      std::vector<int> rois_num_list(rois_batch_size);
      memory::Copy(cplace, rois_num_list.data(), gplace,
                   rois_num_t->data<int>(), sizeof(int) * rois_batch_size, 0);
      int start = 0;
      for (int n = 0; n < rois_batch_size; ++n) {
        for (int i = start; i < start + rois_num_list[n]; ++i) {
F
FDInSky 已提交
285 286
          roi_batch_id_data[i] = n;
        }
287
        start += rois_num_list[n];
F
FDInSky 已提交
288 289 290 291 292
      }
    } else {
      auto lod = rois->lod();
      PADDLE_ENFORCE_EQ(
          lod.empty(), false,
293 294
          platform::errors::InvalidArgument("Input(ROIs) in ROIAlignOp does "
                                            "not contain LoD information."));
F
FDInSky 已提交
295 296 297 298 299
      auto rois_lod = lod.back();
      int rois_batch_size = rois_lod.size() - 1;
      PADDLE_ENFORCE_EQ(
          rois_batch_size, batch_size,
          platform::errors::InvalidArgument(
300 301 302
              "The batch size of rois and batch size "
              "of images must be the same. But received rois batch size = %d, "
              "and images batch size = %d",
F
FDInSky 已提交
303 304
              rois_batch_size, batch_size));
      int rois_num_with_lod = rois_lod[rois_batch_size];
305 306 307 308 309 310 311 312
      PADDLE_ENFORCE_EQ(
          rois_num, rois_num_with_lod,
          platform::errors::InvalidArgument(
              "The actual number of rois and the number of rois "
              "provided from Input(RoIsLoD) in RoIAlign must be the same."
              " But received actual number of rois is %d, and the number "
              "of rois from RoIsLoD is %d",
              rois_num, rois_num_with_lod));
F
FDInSky 已提交
313 314 315 316
      for (int n = 0; n < rois_batch_size; ++n) {
        for (size_t i = rois_lod[n]; i < rois_lod[n + 1]; ++i) {
          roi_batch_id_data[i] = n;
        }
J
jerrywgz 已提交
317 318
      }
    }
319
    int bytes = roi_batch_id_list.numel() * sizeof(int);
320
    auto roi_ptr = memory::Alloc(dev_ctx, bytes);
321 322 323 324
    int* roi_id_data = reinterpret_cast<int*>(roi_ptr->ptr());
    memory::Copy(gplace, roi_id_data, cplace, roi_batch_id_data, bytes,
                 dev_ctx.stream());
    GPUROIAlignForward<T><<<blocks, threads, 0, dev_ctx.stream()>>>(
J
jerrywgz 已提交
325
        output_size, in->data<T>(), rois->data<T>(), spatial_scale, channels,
326
        height, width, pooled_height, pooled_width, sampling_ratio, roi_id_data,
327
        out->mutable_data<T>(ctx.GetPlace()), aligned);
J
jerrywgz 已提交
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
  }
};

template <typename Place, typename T>
class GPUROIAlignGradOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* in = ctx.Input<Tensor>("X");
    auto* rois = ctx.Input<LoDTensor>("ROIs");

    auto* out_grad = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto* in_grad = ctx.Output<Tensor>(framework::GradVarName("X"));

    auto pooled_height = ctx.Attr<int>("pooled_height");
    auto pooled_width = ctx.Attr<int>("pooled_width");
    auto spatial_scale = ctx.Attr<float>("spatial_scale");
    auto sampling_ratio = ctx.Attr<int>("sampling_ratio");
345
    auto aligned = ctx.Attr<bool>("aligned");
J
jerrywgz 已提交
346 347 348 349 350 351

    int rois_num = rois->dims()[0];
    int channels = in->dims()[1];
    int height = in->dims()[2];
    int width = in->dims()[3];

J
jerrywgz 已提交
352 353 354 355 356
    if (!in_grad) {
      return;
    }
    Tensor roi_batch_id_list;
    roi_batch_id_list.Resize({rois_num});
357 358
    auto cplace = platform::CPUPlace();
    int* roi_batch_id_data = roi_batch_id_list.mutable_data<int>(cplace);
F
FDInSky 已提交
359 360

    auto& dev_ctx = ctx.cuda_device_context();
361
    auto gplace = BOOST_GET_CONST(platform::CUDAPlace, ctx.GetPlace());
362 363 364 365 366 367 368 369 370
    if (ctx.HasInput("RoisNum")) {
      auto* rois_num_t = ctx.Input<Tensor>("RoisNum");
      int rois_batch_size = rois_num_t->numel();
      std::vector<int> rois_num_list(rois_batch_size);
      memory::Copy(cplace, rois_num_list.data(), gplace,
                   rois_num_t->data<int>(), sizeof(int) * rois_batch_size, 0);
      int start = 0;
      for (int n = 0; n < rois_batch_size; ++n) {
        for (size_t i = start; i < start + rois_num_list[n]; ++i) {
F
FDInSky 已提交
371 372
          roi_batch_id_data[i] = n;
        }
373
        start += rois_num_list[n];
F
FDInSky 已提交
374 375 376 377 378 379 380 381
      }
    } else {
      auto rois_lod = rois->lod().back();
      int rois_batch_size = rois_lod.size() - 1;
      for (int n = 0; n < rois_batch_size; ++n) {
        for (size_t i = rois_lod[n]; i < rois_lod[n + 1]; ++i) {
          roi_batch_id_data[i] = n;
        }
J
jerrywgz 已提交
382 383
      }
    }
384 385
    auto roi_ptr =
        memory::Alloc(dev_ctx, roi_batch_id_list.numel() * sizeof(int));
386 387 388 389
    int* roi_id_data = reinterpret_cast<int*>(roi_ptr->ptr());
    int bytes = roi_batch_id_list.numel() * sizeof(int);
    memory::Copy(gplace, roi_id_data, cplace, roi_batch_id_data, bytes,
                 dev_ctx.stream());
J
jerrywgz 已提交
390 391
    in_grad->mutable_data<T>(ctx.GetPlace());
    math::SetConstant<Place, T> set_zero;
392
    set_zero(dev_ctx, in_grad, static_cast<T>(0));
J
jerrywgz 已提交
393 394 395 396 397 398

    int output_grad_size = out_grad->numel();
    int blocks = NumBlocks(output_grad_size);
    int threads = kNumCUDAThreads;

    if (output_grad_size > 0) {
399
      GPUROIAlignBackward<T><<<blocks, threads, 0, dev_ctx.stream()>>>(
J
jerrywgz 已提交
400 401
          output_grad_size, rois->data<T>(), out_grad->data<T>(), rois_num,
          spatial_scale, channels, height, width, pooled_height, pooled_width,
402 403
          sampling_ratio, roi_id_data, in_grad->mutable_data<T>(ctx.GetPlace()),
          aligned);
J
jerrywgz 已提交
404
    }
J
jerrywgz 已提交
405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(
    roi_align,
    ops::GPUROIAlignOpKernel<paddle::platform::CUDADeviceContext, float>,
    ops::GPUROIAlignOpKernel<paddle::platform::CUDADeviceContext, double>);
REGISTER_OP_CUDA_KERNEL(
    roi_align_grad,
    ops::GPUROIAlignGradOpKernel<paddle::platform::CUDADeviceContext, float>,
    ops::GPUROIAlignGradOpKernel<paddle::platform::CUDADeviceContext, double>);