roi_align_op.cu 15.7 KB
Newer Older
J
jerrywgz 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

F
FDInSky 已提交
15
#include <vector>
16
#include "paddle/fluid/memory/memory.h"
J
jerrywgz 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
#include "paddle/fluid/operators/roi_align_op.h"
#include "paddle/fluid/platform/cuda_primitives.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;

static constexpr int kNumCUDAThreads = 512;
static constexpr int kNumMaxinumNumBlocks = 4096;

static inline int NumBlocks(const int N) {
  return std::min((N + kNumCUDAThreads - 1) / kNumCUDAThreads,
                  kNumMaxinumNumBlocks);
}

template <class T>
J
jerrywgz 已提交
35 36
__device__ T BilinearInterpolate(const T* input_data, const int height,
                                 const int width, T y, T x) {
J
jerrywgz 已提交
37 38 39
  if (y < -1.0 || y > height || x < -1.0 || x > width) {
    return 0;
  }
J
jerrywgz 已提交
40 41
  y = y <= 0 ? 0 : y;
  x = x <= 0 ? 0 : x;
J
jerrywgz 已提交
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
  int y_low = static_cast<int>(y);
  int x_low = static_cast<int>(x);
  int y_high;
  int x_high;
  if (y_low >= height - 1) {
    y_high = y_low = height - 1;
    y = static_cast<T>(y_low);
  } else {
    y_high = y_low + 1;
  }
  if (x_low >= width - 1) {
    x_high = x_low = width - 1;
    x = static_cast<T>(x_low);
  } else {
    x_high = x_low + 1;
  }
  T ly = y - y_low, lx = x - x_low;
  T hy = 1. - ly, hx = 1. - lx;

  T v1 = input_data[y_low * width + x_low];
  T v2 = input_data[y_low * width + x_high];
  T v3 = input_data[y_high * width + x_low];
  T v4 = input_data[y_high * width + x_high];
  T w1 = hy * hx, w2 = hy * lx, w3 = ly * hx, w4 = ly * lx;

  T val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4);
  return val;
}

template <class T>
J
jerrywgz 已提交
72 73 74 75
__device__ void BilinearInterpolateGradient(const int height, const int width,
                                            T y, T x, T* w1, T* w2, T* w3,
                                            T* w4, int* x_low, int* x_high,
                                            int* y_low, int* y_high) {
J
jerrywgz 已提交
76 77 78 79
  if (y < -1.0 || y > height || x < -1.0 || x > width) {
    return;
  }

J
jerrywgz 已提交
80 81
  y = y <= 0 ? 0 : y;
  x = x <= 0 ? 0 : x;
82 83 84 85 86
  *y_low = static_cast<int>(y);
  *x_low = static_cast<int>(x);
  if (*y_low >= height - 1) {
    *y_high = *y_low = height - 1;
    y = static_cast<T>(*y_low);
J
jerrywgz 已提交
87
  } else {
88
    *y_high = *y_low + 1;
J
jerrywgz 已提交
89
  }
90 91 92
  if (*x_low >= width - 1) {
    *x_high = *x_low = width - 1;
    x = static_cast<T>(*x_low);
J
jerrywgz 已提交
93
  } else {
94
    *x_high = *x_low + 1;
J
jerrywgz 已提交
95
  }
96
  T ly = y - *y_low, lx = x - *x_low;
J
jerrywgz 已提交
97
  T hy = 1. - ly, hx = 1. - lx;
98
  *w1 = hy * hx, *w2 = hy * lx, *w3 = ly * hx, *w4 = ly * lx;
J
jerrywgz 已提交
99 100 101 102 103 104 105 106 107

  return;
}

template <class T>
__global__ void GPUROIAlignForward(
    const int nthreads, const T* input_data, const T* input_rois,
    const float spatial_scale, const int channels, const int height,
    const int width, const int pooled_height, const int pooled_width,
108
    const int sampling_ratio, int* roi_batch_id_data, T* output_data) {
109
  CUDA_KERNEL_LOOP(i, nthreads) {
J
jerrywgz 已提交
110 111 112 113 114 115 116 117 118 119 120 121 122
    int pw = i % pooled_width;
    int ph = (i / pooled_width) % pooled_height;
    int c = (i / pooled_width / pooled_height) % channels;
    int n = i / pooled_width / pooled_height / channels;

    const T* offset_input_rois = input_rois + n * kROISize;
    int roi_batch_ind = roi_batch_id_data[n];

    T roi_xmin = offset_input_rois[0] * spatial_scale;
    T roi_ymin = offset_input_rois[1] * spatial_scale;
    T roi_xmax = offset_input_rois[2] * spatial_scale;
    T roi_ymax = offset_input_rois[3] * spatial_scale;

123 124
    T roi_width = max(roi_xmax - roi_xmin, static_cast<T>(1.));
    T roi_height = max(roi_ymax - roi_ymin, static_cast<T>(1.));
J
jerrywgz 已提交
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
    T bin_size_h = static_cast<T>(roi_height) / static_cast<T>(pooled_height);
    T bin_size_w = static_cast<T>(roi_width) / static_cast<T>(pooled_width);

    const T* offset_input_data =
        input_data + (roi_batch_ind * channels + c) * height * width;

    int roi_bin_grid_h = (sampling_ratio > 0)
                             ? sampling_ratio
                             : ceil(roi_height / pooled_height);
    int roi_bin_grid_w =
        (sampling_ratio > 0) ? sampling_ratio : ceil(roi_width / pooled_width);
    const T count = roi_bin_grid_h * roi_bin_grid_w;
    T output_val = 0;
    for (int iy = 0; iy < roi_bin_grid_h; iy++) {
      const T y = roi_ymin + ph * bin_size_h +
                  static_cast<T>(iy + .5f) * bin_size_h /
                      static_cast<T>(roi_bin_grid_h);
      for (int ix = 0; ix < roi_bin_grid_w; ix++) {
        const T x = roi_xmin + pw * bin_size_w +
                    static_cast<T>(ix + .5f) * bin_size_w /
                        static_cast<T>(roi_bin_grid_w);
J
jerrywgz 已提交
146
        T val = BilinearInterpolate(offset_input_data, height, width, y, x);
J
jerrywgz 已提交
147 148 149 150 151 152 153 154 155 156
        output_val += val;
      }
    }
    output_val /= count;
    output_data[i] = output_val;
  }
}

template <typename T>
__global__ void GPUROIAlignBackward(const int nthreads, const T* input_rois,
157
                                    const T* out_grad, const int num_rois,
J
jerrywgz 已提交
158 159 160 161 162 163
                                    const float spatial_scale,
                                    const int channels, const int height,
                                    const int width, const int pooled_height,
                                    const int pooled_width,
                                    const int sampling_ratio,
                                    int* roi_batch_id_data, T* input_grad) {
164
  CUDA_KERNEL_LOOP(i, nthreads) {
J
jerrywgz 已提交
165 166
    int pw = i % pooled_width;
    int ph = (i / pooled_width) % pooled_height;
167
    int c = (i / pooled_width / pooled_height) % channels;
J
jerrywgz 已提交
168 169 170 171 172 173 174 175 176
    int n = i / pooled_width / pooled_height / channels;
    const T* offset_input_rois = input_rois + n * kROISize;
    int roi_batch_ind = roi_batch_id_data[n];

    T roi_xmin = offset_input_rois[0] * spatial_scale;
    T roi_ymin = offset_input_rois[1] * spatial_scale;
    T roi_xmax = offset_input_rois[2] * spatial_scale;
    T roi_ymax = offset_input_rois[3] * spatial_scale;

177 178
    T roi_width = max(roi_xmax - roi_xmin, static_cast<T>(1.));
    T roi_height = max(roi_ymax - roi_ymin, static_cast<T>(1.));
J
jerrywgz 已提交
179 180 181
    T bin_size_h = static_cast<T>(roi_height) / static_cast<T>(pooled_height);
    T bin_size_w = static_cast<T>(roi_width) / static_cast<T>(pooled_width);

182
    T* offset_input_grad =
J
jerrywgz 已提交
183 184 185 186 187 188 189 190 191 192 193 194 195 196
        input_grad + (roi_batch_ind * channels + c) * height * width;

    const T* offset_out_grad =
        out_grad + (n * channels + c) * pooled_height * pooled_width;
    const T out_grad_this_bin = offset_out_grad[ph * pooled_width + pw];

    int roi_bin_grid_h = (sampling_ratio > 0)
                             ? sampling_ratio
                             : ceil(roi_height / pooled_height);
    int roi_bin_grid_w =
        (sampling_ratio > 0) ? sampling_ratio : ceil(roi_width / pooled_width);

    const T count = roi_bin_grid_h * roi_bin_grid_w;
    for (int iy = 0; iy < roi_bin_grid_h; iy++) {
197
      const T y = roi_ymin + ph * bin_size_h +
J
jerrywgz 已提交
198 199 200
                  static_cast<T>(iy + .5f) * bin_size_h /
                      static_cast<T>(roi_bin_grid_h);
      for (int ix = 0; ix < roi_bin_grid_w; ix++) {
201
        const T x = roi_xmin + pw * bin_size_w +
J
jerrywgz 已提交
202 203
                    static_cast<T>(ix + .5f) * bin_size_w /
                        static_cast<T>(roi_bin_grid_w);
204 205
        T w1 = 0, w2 = 0, w3 = 0, w4 = 0;
        int x_low = -1, x_high = -1, y_low = -1, y_high = -1;
J
jerrywgz 已提交
206 207
        BilinearInterpolateGradient(height, width, y, x, &w1, &w2, &w3, &w4,
                                    &x_low, &x_high, &y_low, &y_high);
J
jerrywgz 已提交
208 209 210 211 212 213 214 215 216 217 218 219
        T diff1 = out_grad_this_bin * w1 / count;
        T diff2 = out_grad_this_bin * w2 / count;
        T diff3 = out_grad_this_bin * w3 / count;
        T diff4 = out_grad_this_bin * w4 / count;
        if (x_low >= 0 && x_high >= 0 && y_low >= 0 && y_high >= 0) {
          platform::CudaAtomicAdd(offset_input_grad + y_low * width + x_low,
                                  diff1);
          platform::CudaAtomicAdd(offset_input_grad + y_low * width + x_high,
                                  diff2);
          platform::CudaAtomicAdd(offset_input_grad + y_high * width + x_low,
                                  diff3);
          platform::CudaAtomicAdd(offset_input_grad + y_high * width + x_high,
220
                                  diff4);
J
jerrywgz 已提交
221 222 223 224 225 226 227 228 229 230
        }
      }
    }
  }
}

template <typename Place, typename T>
class GPUROIAlignOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
231
    auto* in = ctx.Input<Tensor>("X");
J
jerrywgz 已提交
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
    auto* rois = ctx.Input<LoDTensor>("ROIs");
    auto* out = ctx.Output<Tensor>("Out");

    auto pooled_height = ctx.Attr<int>("pooled_height");
    auto pooled_width = ctx.Attr<int>("pooled_width");
    auto spatial_scale = ctx.Attr<float>("spatial_scale");
    auto sampling_ratio = ctx.Attr<int>("sampling_ratio");

    auto in_dims = in->dims();
    int batch_size = in_dims[0];
    int channels = in_dims[1];
    int height = in_dims[2];
    int width = in_dims[3];

    int rois_num = rois->dims()[0];

    if (rois_num == 0) return;

    int output_size = out->numel();
    int blocks = NumBlocks(output_size);
    int threads = kNumCUDAThreads;

    Tensor roi_batch_id_list;
    roi_batch_id_list.Resize({rois_num});
256 257
    auto cplace = platform::CPUPlace();
    int* roi_batch_id_data = roi_batch_id_list.mutable_data<int>(cplace);
F
FDInSky 已提交
258
    auto& dev_ctx = ctx.cuda_device_context();
259
    auto gplace = BOOST_GET_CONST(platform::CUDAPlace, ctx.GetPlace());
260 261 262
    if (ctx.HasInput("RoisNum")) {
      auto* rois_num_t = ctx.Input<Tensor>("RoisNum");
      int rois_batch_size = rois_num_t->numel();
F
FDInSky 已提交
263
      PADDLE_ENFORCE_EQ(
264
          rois_batch_size, batch_size,
F
FDInSky 已提交
265 266 267 268 269 270
          platform::errors::InvalidArgument(
              "The rois_batch_size and imgs "
              "batch_size must be the same. But received rois_batch_size = %d, "
              "batch_size = %d",
              rois_batch_size, batch_size));

271 272 273 274 275 276
      std::vector<int> rois_num_list(rois_batch_size);
      memory::Copy(cplace, rois_num_list.data(), gplace,
                   rois_num_t->data<int>(), sizeof(int) * rois_batch_size, 0);
      int start = 0;
      for (int n = 0; n < rois_batch_size; ++n) {
        for (int i = start; i < start + rois_num_list[n]; ++i) {
F
FDInSky 已提交
277 278
          roi_batch_id_data[i] = n;
        }
279
        start += rois_num_list[n];
F
FDInSky 已提交
280 281 282 283 284
      }
    } else {
      auto lod = rois->lod();
      PADDLE_ENFORCE_EQ(
          lod.empty(), false,
285 286
          platform::errors::InvalidArgument("Input(ROIs) in ROIAlignOp does "
                                            "not contain LoD information."));
F
FDInSky 已提交
287 288 289 290 291
      auto rois_lod = lod.back();
      int rois_batch_size = rois_lod.size() - 1;
      PADDLE_ENFORCE_EQ(
          rois_batch_size, batch_size,
          platform::errors::InvalidArgument(
292 293 294
              "The batch size of rois and batch size "
              "of images must be the same. But received rois batch size = %d, "
              "and images batch size = %d",
F
FDInSky 已提交
295 296
              rois_batch_size, batch_size));
      int rois_num_with_lod = rois_lod[rois_batch_size];
297 298 299 300 301 302 303 304
      PADDLE_ENFORCE_EQ(
          rois_num, rois_num_with_lod,
          platform::errors::InvalidArgument(
              "The actual number of rois and the number of rois "
              "provided from Input(RoIsLoD) in RoIAlign must be the same."
              " But received actual number of rois is %d, and the number "
              "of rois from RoIsLoD is %d",
              rois_num, rois_num_with_lod));
F
FDInSky 已提交
305 306 307 308
      for (int n = 0; n < rois_batch_size; ++n) {
        for (size_t i = rois_lod[n]; i < rois_lod[n + 1]; ++i) {
          roi_batch_id_data[i] = n;
        }
J
jerrywgz 已提交
309 310
      }
    }
311
    int bytes = roi_batch_id_list.numel() * sizeof(int);
312
    auto roi_ptr = memory::Alloc(dev_ctx, bytes);
313 314 315 316
    int* roi_id_data = reinterpret_cast<int*>(roi_ptr->ptr());
    memory::Copy(gplace, roi_id_data, cplace, roi_batch_id_data, bytes,
                 dev_ctx.stream());
    GPUROIAlignForward<T><<<blocks, threads, 0, dev_ctx.stream()>>>(
J
jerrywgz 已提交
317
        output_size, in->data<T>(), rois->data<T>(), spatial_scale, channels,
318
        height, width, pooled_height, pooled_width, sampling_ratio, roi_id_data,
J
jerrywgz 已提交
319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
        out->mutable_data<T>(ctx.GetPlace()));
  }
};

template <typename Place, typename T>
class GPUROIAlignGradOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* in = ctx.Input<Tensor>("X");
    auto* rois = ctx.Input<LoDTensor>("ROIs");

    auto* out_grad = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto* in_grad = ctx.Output<Tensor>(framework::GradVarName("X"));

    auto pooled_height = ctx.Attr<int>("pooled_height");
    auto pooled_width = ctx.Attr<int>("pooled_width");
    auto spatial_scale = ctx.Attr<float>("spatial_scale");
    auto sampling_ratio = ctx.Attr<int>("sampling_ratio");

    int rois_num = rois->dims()[0];
    int channels = in->dims()[1];
    int height = in->dims()[2];
    int width = in->dims()[3];

J
jerrywgz 已提交
343 344 345 346 347
    if (!in_grad) {
      return;
    }
    Tensor roi_batch_id_list;
    roi_batch_id_list.Resize({rois_num});
348 349
    auto cplace = platform::CPUPlace();
    int* roi_batch_id_data = roi_batch_id_list.mutable_data<int>(cplace);
F
FDInSky 已提交
350 351

    auto& dev_ctx = ctx.cuda_device_context();
352
    auto gplace = BOOST_GET_CONST(platform::CUDAPlace, ctx.GetPlace());
353 354 355 356 357 358 359 360 361
    if (ctx.HasInput("RoisNum")) {
      auto* rois_num_t = ctx.Input<Tensor>("RoisNum");
      int rois_batch_size = rois_num_t->numel();
      std::vector<int> rois_num_list(rois_batch_size);
      memory::Copy(cplace, rois_num_list.data(), gplace,
                   rois_num_t->data<int>(), sizeof(int) * rois_batch_size, 0);
      int start = 0;
      for (int n = 0; n < rois_batch_size; ++n) {
        for (size_t i = start; i < start + rois_num_list[n]; ++i) {
F
FDInSky 已提交
362 363
          roi_batch_id_data[i] = n;
        }
364
        start += rois_num_list[n];
F
FDInSky 已提交
365 366 367 368 369 370 371 372
      }
    } else {
      auto rois_lod = rois->lod().back();
      int rois_batch_size = rois_lod.size() - 1;
      for (int n = 0; n < rois_batch_size; ++n) {
        for (size_t i = rois_lod[n]; i < rois_lod[n + 1]; ++i) {
          roi_batch_id_data[i] = n;
        }
J
jerrywgz 已提交
373 374
      }
    }
375 376
    auto roi_ptr =
        memory::Alloc(dev_ctx, roi_batch_id_list.numel() * sizeof(int));
377 378 379 380
    int* roi_id_data = reinterpret_cast<int*>(roi_ptr->ptr());
    int bytes = roi_batch_id_list.numel() * sizeof(int);
    memory::Copy(gplace, roi_id_data, cplace, roi_batch_id_data, bytes,
                 dev_ctx.stream());
J
jerrywgz 已提交
381 382
    in_grad->mutable_data<T>(ctx.GetPlace());
    math::SetConstant<Place, T> set_zero;
383
    set_zero(dev_ctx, in_grad, static_cast<T>(0));
J
jerrywgz 已提交
384 385 386 387 388 389

    int output_grad_size = out_grad->numel();
    int blocks = NumBlocks(output_grad_size);
    int threads = kNumCUDAThreads;

    if (output_grad_size > 0) {
390
      GPUROIAlignBackward<T><<<blocks, threads, 0, dev_ctx.stream()>>>(
J
jerrywgz 已提交
391 392
          output_grad_size, rois->data<T>(), out_grad->data<T>(), rois_num,
          spatial_scale, channels, height, width, pooled_height, pooled_width,
393
          sampling_ratio, roi_id_data,
J
jerrywgz 已提交
394 395
          in_grad->mutable_data<T>(ctx.GetPlace()));
    }
J
jerrywgz 已提交
396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(
    roi_align,
    ops::GPUROIAlignOpKernel<paddle::platform::CUDADeviceContext, float>,
    ops::GPUROIAlignOpKernel<paddle::platform::CUDADeviceContext, double>);
REGISTER_OP_CUDA_KERNEL(
    roi_align_grad,
    ops::GPUROIAlignGradOpKernel<paddle::platform::CUDADeviceContext, float>,
    ops::GPUROIAlignGradOpKernel<paddle::platform::CUDADeviceContext, double>);