roi_align_op.cu 15.8 KB
Newer Older
J
jerrywgz 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

F
FDInSky 已提交
15
#include <vector>
16
#include "paddle/fluid/memory/memory.h"
J
jerrywgz 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
#include "paddle/fluid/operators/roi_align_op.h"
#include "paddle/fluid/platform/cuda_primitives.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;

static constexpr int kNumCUDAThreads = 512;
static constexpr int kNumMaxinumNumBlocks = 4096;

static inline int NumBlocks(const int N) {
  return std::min((N + kNumCUDAThreads - 1) / kNumCUDAThreads,
                  kNumMaxinumNumBlocks);
}

#define CUDA_1D_KERNEL_LOOP(i, n)                              \
  for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < (n); \
       i += blockDim.x * gridDim.x)

template <class T>
J
jerrywgz 已提交
39 40
__device__ T BilinearInterpolate(const T* input_data, const int height,
                                 const int width, T y, T x) {
J
jerrywgz 已提交
41 42 43
  if (y < -1.0 || y > height || x < -1.0 || x > width) {
    return 0;
  }
J
jerrywgz 已提交
44 45
  y = y <= 0 ? 0 : y;
  x = x <= 0 ? 0 : x;
J
jerrywgz 已提交
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
  int y_low = static_cast<int>(y);
  int x_low = static_cast<int>(x);
  int y_high;
  int x_high;
  if (y_low >= height - 1) {
    y_high = y_low = height - 1;
    y = static_cast<T>(y_low);
  } else {
    y_high = y_low + 1;
  }
  if (x_low >= width - 1) {
    x_high = x_low = width - 1;
    x = static_cast<T>(x_low);
  } else {
    x_high = x_low + 1;
  }
  T ly = y - y_low, lx = x - x_low;
  T hy = 1. - ly, hx = 1. - lx;

  T v1 = input_data[y_low * width + x_low];
  T v2 = input_data[y_low * width + x_high];
  T v3 = input_data[y_high * width + x_low];
  T v4 = input_data[y_high * width + x_high];
  T w1 = hy * hx, w2 = hy * lx, w3 = ly * hx, w4 = ly * lx;

  T val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4);
  return val;
}

template <class T>
J
jerrywgz 已提交
76 77 78 79
__device__ void BilinearInterpolateGradient(const int height, const int width,
                                            T y, T x, T* w1, T* w2, T* w3,
                                            T* w4, int* x_low, int* x_high,
                                            int* y_low, int* y_high) {
J
jerrywgz 已提交
80 81 82 83
  if (y < -1.0 || y > height || x < -1.0 || x > width) {
    return;
  }

J
jerrywgz 已提交
84 85
  y = y <= 0 ? 0 : y;
  x = x <= 0 ? 0 : x;
86 87 88 89 90
  *y_low = static_cast<int>(y);
  *x_low = static_cast<int>(x);
  if (*y_low >= height - 1) {
    *y_high = *y_low = height - 1;
    y = static_cast<T>(*y_low);
J
jerrywgz 已提交
91
  } else {
92
    *y_high = *y_low + 1;
J
jerrywgz 已提交
93
  }
94 95 96
  if (*x_low >= width - 1) {
    *x_high = *x_low = width - 1;
    x = static_cast<T>(*x_low);
J
jerrywgz 已提交
97
  } else {
98
    *x_high = *x_low + 1;
J
jerrywgz 已提交
99
  }
100
  T ly = y - *y_low, lx = x - *x_low;
J
jerrywgz 已提交
101
  T hy = 1. - ly, hx = 1. - lx;
102
  *w1 = hy * hx, *w2 = hy * lx, *w3 = ly * hx, *w4 = ly * lx;
J
jerrywgz 已提交
103 104 105 106 107 108 109 110 111

  return;
}

template <class T>
__global__ void GPUROIAlignForward(
    const int nthreads, const T* input_data, const T* input_rois,
    const float spatial_scale, const int channels, const int height,
    const int width, const int pooled_height, const int pooled_width,
112
    const int sampling_ratio, int* roi_batch_id_data, T* output_data) {
J
jerrywgz 已提交
113 114 115 116 117 118 119 120 121 122 123 124 125 126
  CUDA_1D_KERNEL_LOOP(i, nthreads) {
    int pw = i % pooled_width;
    int ph = (i / pooled_width) % pooled_height;
    int c = (i / pooled_width / pooled_height) % channels;
    int n = i / pooled_width / pooled_height / channels;

    const T* offset_input_rois = input_rois + n * kROISize;
    int roi_batch_ind = roi_batch_id_data[n];

    T roi_xmin = offset_input_rois[0] * spatial_scale;
    T roi_ymin = offset_input_rois[1] * spatial_scale;
    T roi_xmax = offset_input_rois[2] * spatial_scale;
    T roi_ymax = offset_input_rois[3] * spatial_scale;

127 128
    T roi_width = max(roi_xmax - roi_xmin, static_cast<T>(1.));
    T roi_height = max(roi_ymax - roi_ymin, static_cast<T>(1.));
J
jerrywgz 已提交
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
    T bin_size_h = static_cast<T>(roi_height) / static_cast<T>(pooled_height);
    T bin_size_w = static_cast<T>(roi_width) / static_cast<T>(pooled_width);

    const T* offset_input_data =
        input_data + (roi_batch_ind * channels + c) * height * width;

    int roi_bin_grid_h = (sampling_ratio > 0)
                             ? sampling_ratio
                             : ceil(roi_height / pooled_height);
    int roi_bin_grid_w =
        (sampling_ratio > 0) ? sampling_ratio : ceil(roi_width / pooled_width);
    const T count = roi_bin_grid_h * roi_bin_grid_w;
    T output_val = 0;
    for (int iy = 0; iy < roi_bin_grid_h; iy++) {
      const T y = roi_ymin + ph * bin_size_h +
                  static_cast<T>(iy + .5f) * bin_size_h /
                      static_cast<T>(roi_bin_grid_h);
      for (int ix = 0; ix < roi_bin_grid_w; ix++) {
        const T x = roi_xmin + pw * bin_size_w +
                    static_cast<T>(ix + .5f) * bin_size_w /
                        static_cast<T>(roi_bin_grid_w);
J
jerrywgz 已提交
150
        T val = BilinearInterpolate(offset_input_data, height, width, y, x);
J
jerrywgz 已提交
151 152 153 154 155 156 157 158 159 160
        output_val += val;
      }
    }
    output_val /= count;
    output_data[i] = output_val;
  }
}

template <typename T>
__global__ void GPUROIAlignBackward(const int nthreads, const T* input_rois,
161
                                    const T* out_grad, const int num_rois,
J
jerrywgz 已提交
162 163 164 165 166 167 168 169 170
                                    const float spatial_scale,
                                    const int channels, const int height,
                                    const int width, const int pooled_height,
                                    const int pooled_width,
                                    const int sampling_ratio,
                                    int* roi_batch_id_data, T* input_grad) {
  CUDA_1D_KERNEL_LOOP(i, nthreads) {
    int pw = i % pooled_width;
    int ph = (i / pooled_width) % pooled_height;
171
    int c = (i / pooled_width / pooled_height) % channels;
J
jerrywgz 已提交
172 173 174 175 176 177 178 179 180
    int n = i / pooled_width / pooled_height / channels;
    const T* offset_input_rois = input_rois + n * kROISize;
    int roi_batch_ind = roi_batch_id_data[n];

    T roi_xmin = offset_input_rois[0] * spatial_scale;
    T roi_ymin = offset_input_rois[1] * spatial_scale;
    T roi_xmax = offset_input_rois[2] * spatial_scale;
    T roi_ymax = offset_input_rois[3] * spatial_scale;

181 182
    T roi_width = max(roi_xmax - roi_xmin, static_cast<T>(1.));
    T roi_height = max(roi_ymax - roi_ymin, static_cast<T>(1.));
J
jerrywgz 已提交
183 184 185
    T bin_size_h = static_cast<T>(roi_height) / static_cast<T>(pooled_height);
    T bin_size_w = static_cast<T>(roi_width) / static_cast<T>(pooled_width);

186
    T* offset_input_grad =
J
jerrywgz 已提交
187 188 189 190 191 192 193 194 195 196 197 198 199 200
        input_grad + (roi_batch_ind * channels + c) * height * width;

    const T* offset_out_grad =
        out_grad + (n * channels + c) * pooled_height * pooled_width;
    const T out_grad_this_bin = offset_out_grad[ph * pooled_width + pw];

    int roi_bin_grid_h = (sampling_ratio > 0)
                             ? sampling_ratio
                             : ceil(roi_height / pooled_height);
    int roi_bin_grid_w =
        (sampling_ratio > 0) ? sampling_ratio : ceil(roi_width / pooled_width);

    const T count = roi_bin_grid_h * roi_bin_grid_w;
    for (int iy = 0; iy < roi_bin_grid_h; iy++) {
201
      const T y = roi_ymin + ph * bin_size_h +
J
jerrywgz 已提交
202 203 204
                  static_cast<T>(iy + .5f) * bin_size_h /
                      static_cast<T>(roi_bin_grid_h);
      for (int ix = 0; ix < roi_bin_grid_w; ix++) {
205
        const T x = roi_xmin + pw * bin_size_w +
J
jerrywgz 已提交
206 207
                    static_cast<T>(ix + .5f) * bin_size_w /
                        static_cast<T>(roi_bin_grid_w);
208 209
        T w1 = 0, w2 = 0, w3 = 0, w4 = 0;
        int x_low = -1, x_high = -1, y_low = -1, y_high = -1;
J
jerrywgz 已提交
210 211
        BilinearInterpolateGradient(height, width, y, x, &w1, &w2, &w3, &w4,
                                    &x_low, &x_high, &y_low, &y_high);
J
jerrywgz 已提交
212 213 214 215 216 217 218 219 220 221 222 223
        T diff1 = out_grad_this_bin * w1 / count;
        T diff2 = out_grad_this_bin * w2 / count;
        T diff3 = out_grad_this_bin * w3 / count;
        T diff4 = out_grad_this_bin * w4 / count;
        if (x_low >= 0 && x_high >= 0 && y_low >= 0 && y_high >= 0) {
          platform::CudaAtomicAdd(offset_input_grad + y_low * width + x_low,
                                  diff1);
          platform::CudaAtomicAdd(offset_input_grad + y_low * width + x_high,
                                  diff2);
          platform::CudaAtomicAdd(offset_input_grad + y_high * width + x_low,
                                  diff3);
          platform::CudaAtomicAdd(offset_input_grad + y_high * width + x_high,
224
                                  diff4);
J
jerrywgz 已提交
225 226 227 228 229 230 231 232 233 234
        }
      }
    }
  }
}

template <typename Place, typename T>
class GPUROIAlignOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
235
    auto* in = ctx.Input<Tensor>("X");
J
jerrywgz 已提交
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
    auto* rois = ctx.Input<LoDTensor>("ROIs");
    auto* out = ctx.Output<Tensor>("Out");

    auto pooled_height = ctx.Attr<int>("pooled_height");
    auto pooled_width = ctx.Attr<int>("pooled_width");
    auto spatial_scale = ctx.Attr<float>("spatial_scale");
    auto sampling_ratio = ctx.Attr<int>("sampling_ratio");

    auto in_dims = in->dims();
    int batch_size = in_dims[0];
    int channels = in_dims[1];
    int height = in_dims[2];
    int width = in_dims[3];

    int rois_num = rois->dims()[0];

    if (rois_num == 0) return;

    int output_size = out->numel();
    int blocks = NumBlocks(output_size);
    int threads = kNumCUDAThreads;

    Tensor roi_batch_id_list;
    roi_batch_id_list.Resize({rois_num});
260 261
    auto cplace = platform::CPUPlace();
    int* roi_batch_id_data = roi_batch_id_list.mutable_data<int>(cplace);
F
FDInSky 已提交
262
    auto& dev_ctx = ctx.cuda_device_context();
263
    auto gplace = BOOST_GET_CONST(platform::CUDAPlace, ctx.GetPlace());
F
FDInSky 已提交
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
    if (ctx.HasInput("RoisLod")) {
      auto* rois_lod = ctx.Input<Tensor>("RoisLod");
      int rois_batch_size = rois_lod->numel();
      PADDLE_ENFORCE_EQ(
          rois_batch_size - 1, batch_size,
          platform::errors::InvalidArgument(
              "The rois_batch_size and imgs "
              "batch_size must be the same. But received rois_batch_size = %d, "
              "batch_size = %d",
              rois_batch_size, batch_size));

      std::vector<int64_t> rois_lod_(rois_batch_size);
      memory::Copy(cplace, rois_lod_.data(), gplace, rois_lod->data<int64_t>(),
                   sizeof(int64_t) * rois_batch_size, 0);
      for (int n = 0; n < rois_batch_size - 1; ++n) {
        for (size_t i = rois_lod_[n]; i < rois_lod_[n + 1]; ++i) {
          roi_batch_id_data[i] = n;
        }
      }
    } else {
      auto lod = rois->lod();
      PADDLE_ENFORCE_EQ(
          lod.empty(), false,
287 288
          platform::errors::InvalidArgument("Input(ROIs) in ROIAlignOp does "
                                            "not contain LoD information."));
F
FDInSky 已提交
289 290 291 292 293
      auto rois_lod = lod.back();
      int rois_batch_size = rois_lod.size() - 1;
      PADDLE_ENFORCE_EQ(
          rois_batch_size, batch_size,
          platform::errors::InvalidArgument(
294 295 296
              "The batch size of rois and batch size "
              "of images must be the same. But received rois batch size = %d, "
              "and images batch size = %d",
F
FDInSky 已提交
297 298
              rois_batch_size, batch_size));
      int rois_num_with_lod = rois_lod[rois_batch_size];
299 300 301 302 303 304 305 306
      PADDLE_ENFORCE_EQ(
          rois_num, rois_num_with_lod,
          platform::errors::InvalidArgument(
              "The actual number of rois and the number of rois "
              "provided from Input(RoIsLoD) in RoIAlign must be the same."
              " But received actual number of rois is %d, and the number "
              "of rois from RoIsLoD is %d",
              rois_num, rois_num_with_lod));
F
FDInSky 已提交
307 308 309 310
      for (int n = 0; n < rois_batch_size; ++n) {
        for (size_t i = rois_lod[n]; i < rois_lod[n + 1]; ++i) {
          roi_batch_id_data[i] = n;
        }
J
jerrywgz 已提交
311 312
      }
    }
313
    int bytes = roi_batch_id_list.numel() * sizeof(int);
314
    auto roi_ptr = memory::Alloc(dev_ctx, bytes);
315 316 317 318
    int* roi_id_data = reinterpret_cast<int*>(roi_ptr->ptr());
    memory::Copy(gplace, roi_id_data, cplace, roi_batch_id_data, bytes,
                 dev_ctx.stream());
    GPUROIAlignForward<T><<<blocks, threads, 0, dev_ctx.stream()>>>(
J
jerrywgz 已提交
319
        output_size, in->data<T>(), rois->data<T>(), spatial_scale, channels,
320
        height, width, pooled_height, pooled_width, sampling_ratio, roi_id_data,
J
jerrywgz 已提交
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
        out->mutable_data<T>(ctx.GetPlace()));
  }
};

template <typename Place, typename T>
class GPUROIAlignGradOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* in = ctx.Input<Tensor>("X");
    auto* rois = ctx.Input<LoDTensor>("ROIs");

    auto* out_grad = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto* in_grad = ctx.Output<Tensor>(framework::GradVarName("X"));

    auto pooled_height = ctx.Attr<int>("pooled_height");
    auto pooled_width = ctx.Attr<int>("pooled_width");
    auto spatial_scale = ctx.Attr<float>("spatial_scale");
    auto sampling_ratio = ctx.Attr<int>("sampling_ratio");

    int rois_num = rois->dims()[0];
    int channels = in->dims()[1];
    int height = in->dims()[2];
    int width = in->dims()[3];

J
jerrywgz 已提交
345 346 347 348 349
    if (!in_grad) {
      return;
    }
    Tensor roi_batch_id_list;
    roi_batch_id_list.Resize({rois_num});
350 351
    auto cplace = platform::CPUPlace();
    int* roi_batch_id_data = roi_batch_id_list.mutable_data<int>(cplace);
F
FDInSky 已提交
352 353

    auto& dev_ctx = ctx.cuda_device_context();
354
    auto gplace = BOOST_GET_CONST(platform::CUDAPlace, ctx.GetPlace());
F
FDInSky 已提交
355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
    if (ctx.HasInput("RoisLod")) {
      auto* rois_lod = ctx.Input<Tensor>("RoisLod");
      int rois_batch_size = rois_lod->numel();
      std::vector<int64_t> rois_lod_(rois_batch_size);
      memory::Copy(cplace, rois_lod_.data(), gplace, rois_lod->data<int64_t>(),
                   sizeof(int64_t) * rois_batch_size, 0);
      for (int n = 0; n < rois_batch_size - 1; ++n) {
        for (size_t i = rois_lod_[n]; i < rois_lod_[n + 1]; ++i) {
          roi_batch_id_data[i] = n;
        }
      }
    } else {
      auto rois_lod = rois->lod().back();
      int rois_batch_size = rois_lod.size() - 1;
      for (int n = 0; n < rois_batch_size; ++n) {
        for (size_t i = rois_lod[n]; i < rois_lod[n + 1]; ++i) {
          roi_batch_id_data[i] = n;
        }
J
jerrywgz 已提交
373 374
      }
    }
375 376
    auto roi_ptr =
        memory::Alloc(dev_ctx, roi_batch_id_list.numel() * sizeof(int));
377 378 379 380
    int* roi_id_data = reinterpret_cast<int*>(roi_ptr->ptr());
    int bytes = roi_batch_id_list.numel() * sizeof(int);
    memory::Copy(gplace, roi_id_data, cplace, roi_batch_id_data, bytes,
                 dev_ctx.stream());
J
jerrywgz 已提交
381 382
    in_grad->mutable_data<T>(ctx.GetPlace());
    math::SetConstant<Place, T> set_zero;
383
    set_zero(dev_ctx, in_grad, static_cast<T>(0));
J
jerrywgz 已提交
384 385 386 387 388 389

    int output_grad_size = out_grad->numel();
    int blocks = NumBlocks(output_grad_size);
    int threads = kNumCUDAThreads;

    if (output_grad_size > 0) {
390
      GPUROIAlignBackward<T><<<blocks, threads, 0, dev_ctx.stream()>>>(
J
jerrywgz 已提交
391 392
          output_grad_size, rois->data<T>(), out_grad->data<T>(), rois_num,
          spatial_scale, channels, height, width, pooled_height, pooled_width,
393
          sampling_ratio, roi_id_data,
J
jerrywgz 已提交
394 395
          in_grad->mutable_data<T>(ctx.GetPlace()));
    }
J
jerrywgz 已提交
396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(
    roi_align,
    ops::GPUROIAlignOpKernel<paddle::platform::CUDADeviceContext, float>,
    ops::GPUROIAlignOpKernel<paddle::platform::CUDADeviceContext, double>);
REGISTER_OP_CUDA_KERNEL(
    roi_align_grad,
    ops::GPUROIAlignGradOpKernel<paddle::platform::CUDADeviceContext, float>,
    ops::GPUROIAlignGradOpKernel<paddle::platform::CUDADeviceContext, double>);