learning_rate_scheduler.py 16.3 KB
Newer Older
Q
Qiao Longfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
yuyang18 已提交
14 15 16 17 18 19 20 21
"""
When training a model, it's often useful to decay the
learning rate during training process, this is called
learning_rate_decay. There are many strategies to do
this, this module will provide some classical method.
User can also implement their own learning_rate_decay
strategy according to this module.
"""
Q
Qiao Longfei 已提交
22

23 24
from __future__ import print_function

25 26
import math

27 28 29 30
from . import control_flow
from . import nn
from . import ops
from . import tensor
31
from ..initializer import init_on_cpu
32
from ..framework import default_main_program, Parameter, unique_name, name_scope
M
minqiyang 已提交
33 34
from ..dygraph import base as imperative_base
from ..dygraph import learning_rate_scheduler as imperate_lr
Q
Qiao Longfei 已提交
35

36 37
__all__ = [
    'exponential_decay', 'natural_exp_decay', 'inverse_time_decay',
38 39
    'polynomial_decay', 'piecewise_decay', 'noam_decay', 'cosine_decay',
    'linear_lr_warmup'
40
]
Q
Qiao Longfei 已提交
41 42


43
def _decay_step_counter(begin=0):
Y
Yu Yang 已提交
44
    # the first global step is zero in learning rate decay
45
    global_step = nn.autoincreased_step_counter(
46
        counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
47
    global_step = tensor.cast(global_step, 'float32')
Y
Yu Yang 已提交
48 49 50
    return global_step


51
def noam_decay(d_model, warmup_steps):
Y
yuyang18 已提交
52 53 54
    """
    Noam decay method. The numpy implementation of noam decay as follows.

X
xiaoting 已提交
55 56 57 58 59 60 61 62 63 64 65
    .. code-block:: python
      
      import numpy as np
      # set hyper parameters
      d_model = 2
      current_steps = 20
      warmup_steps = 200
      # compute
      lr_value = np.power(d_model, -0.5) * np.min([
                              np.power(current_steps, -0.5),
                              np.power(warmup_steps, -1.5) * current_steps])
Y
yuyang18 已提交
66 67 68

    Please reference `attention is all you need
    <https://arxiv.org/pdf/1706.03762.pdf>`_.
69 70 71

    Args:
        d_model(Variable): The dimensionality of input and output of model.
Y
yuyang18 已提交
72

73 74 75 76
        warmup_steps(Variable): A super parameter.

    Returns:
        The decayed learning rate.
X
xiaoting 已提交
77 78 79 80 81 82 83 84 85
    Examples:
        .. code-block:: python

          import padde.fluid as fluid
          warmup_steps = 100
          learning_rate = 0.01
          lr = fluid.layers.learning_rate_scheduler.noam_decay(
                         1/(warmup_steps *(learning_rate ** 2)),
                         warmup_steps)
86
    """
87
    with default_main_program()._lr_schedule_guard():
M
minqiyang 已提交
88 89 90 91 92
        if imperative_base.enabled():
            decay = imperate_lr.NoamDecay(d_model, warmup_steps)
            return decay
        else:
            global_step = _decay_step_counter(1)
F
fengjiayi 已提交
93

M
minqiyang 已提交
94 95 96
            a = global_step**-0.5
            b = (warmup_steps**-1.5) * global_step
            lr_value = (d_model**-0.5) * nn.elementwise_min(a, b)
97

M
minqiyang 已提交
98
            return lr_value
99 100


Y
Yu Yang 已提交
101
def exponential_decay(learning_rate, decay_steps, decay_rate, staircase=False):
F
fengjiayi 已提交
102
    """
103
    Applies exponential decay to the learning rate.
F
fengjiayi 已提交
104

105 106
    When training a model, it is often recommended to lower the learning rate as the
    training progresses. By using this function, the learning rate will be decayed by
F
fengjiayi 已提交
107 108 109 110 111 112
    'decay_rate' every 'decay_steps' steps.

    >>> if staircase == True:
    >>>     decayed_learning_rate = learning_rate * decay_rate ^ floor(global_step / decay_steps)
    >>> else:
    >>>     decayed_learning_rate = learning_rate * decay_rate ^ (global_step / decay_steps)
Q
Qiao Longfei 已提交
113 114

    Args:
F
fengjiayi 已提交
115 116 117 118 119
        learning_rate(Variable|float): The initial learning rate.
        decay_steps(int): See the decay computation above.
        decay_rate(float): The decay rate. See the decay computation above.
        staircase(Boolean): If True, decay the learning rate at discrete intervals.
                            Default: False
Q
Qiao Longfei 已提交
120 121

    Returns:
F
fengjiayi 已提交
122
        Variable: The decayed learning rate
F
fengjiayi 已提交
123 124 125 126 127 128 129 130 131 132 133 134 135

    Examples:
        .. code-block:: python

          base_lr = 0.1
          sgd_optimizer = fluid.optimizer.SGD(
                learning_rate=fluid.layers.exponential_decay(
                    learning_rate=base_lr,
                    decay_steps=10000,
                    decay_rate=0.5,
                    staircase=True))
          sgd_optimizer.minimize(avg_cost)

Q
Qiao Longfei 已提交
136
    """
137
    with default_main_program()._lr_schedule_guard():
138 139 140 141 142 143
        if imperative_base.enabled():
            decay = imperate_lr.ExponentialDecay(learning_rate, decay_steps,
                                                 decay_rate, staircase)
            return decay
        else:
            global_step = _decay_step_counter()
Q
Qiao Longfei 已提交
144

145 146 147 148
            div_res = global_step / decay_steps
            if staircase:
                div_res = ops.floor(div_res)
            decayed_lr = learning_rate * (decay_rate**div_res)
149

150
            return decayed_lr
Q
Qiao Longfei 已提交
151 152


Y
Yu Yang 已提交
153
def natural_exp_decay(learning_rate, decay_steps, decay_rate, staircase=False):
Q
Qiao Longfei 已提交
154 155
    """Applies natural exponential decay to the initial learning rate.

Y
Yu Yang 已提交
156 157 158 159 160
    >>> if not staircase:
    >>>     decayed_learning_rate = learning_rate * exp(- decay_rate * (global_step / decay_steps))
    >>> else:
    >>>     decayed_learning_rate = learning_rate * exp(- decay_rate * (global_step / decay_steps))

Q
Qiao Longfei 已提交
161 162 163 164 165 166 167 168 169 170
    Args:
        learning_rate: A scalar float32 value or a Variable. This
          will be the initial learning rate during training
        decay_steps: A Python `int32` number.
        decay_rate: A Python `float` number.
        staircase: Boolean. If set true, decay the learning rate every decay_steps.

    Returns:
        The decayed learning rate
    """
171
    with default_main_program()._lr_schedule_guard():
172 173 174 175 176 177
        if imperative_base.enabled():
            decay = imperate_lr.NaturalExpDecay(learning_rate, decay_steps,
                                                decay_rate, staircase)
            return decay
        else:
            global_step = _decay_step_counter()
Q
Qiao Longfei 已提交
178

179 180 181 182
            div_res = global_step / decay_steps
            if staircase:
                div_res = ops.floor(div_res)
            decayed_lr = learning_rate * ops.exp(-1 * decay_rate * div_res)
183

184
            return decayed_lr
Q
Qiao Longfei 已提交
185 186


Y
Yu Yang 已提交
187
def inverse_time_decay(learning_rate, decay_steps, decay_rate, staircase=False):
F
fengjiayi 已提交
188 189
    """
    Applies inverse time decay to the initial learning rate.
Q
Qiao Longfei 已提交
190

191 192
    When training a model, it is often recommended to lower the learning rate as the
    training progresses. By using this function, an inverse decay function will be
F
fengjiayi 已提交
193
    applied to the initial learning rate.
Q
Qiao Longfei 已提交
194

F
fengjiayi 已提交
195
    >>> if staircase == True:
Y
Yu Yang 已提交
196 197 198 199
    >>>     decayed_learning_rate = learning_rate / (1 + decay_rate * floor(global_step / decay_step))
    >>> else:
    >>>     decayed_learning_rate = learning_rate / (1 + decay_rate * global_step / decay_step)

Q
Qiao Longfei 已提交
200
    Args:
F
fengjiayi 已提交
201 202 203 204 205
        learning_rate(Variable|float): The initial learning rate.
        decay_steps(int): See the decay computation above.
        decay_rate(float): The decay rate. See the decay computation above.
        staircase(Boolean): If True, decay the learning rate at discrete intervals.
                            Default: False
Q
Qiao Longfei 已提交
206 207

    Returns:
F
fengjiayi 已提交
208
        Variable: The decayed learning rate
F
fengjiayi 已提交
209 210 211 212 213 214 215 216 217 218 219 220

    Examples:
        .. code-block:: python

          base_lr = 0.1
          sgd_optimizer = fluid.optimizer.SGD(
                learning_rate=fluid.layers.inverse_time_decay(
                    learning_rate=base_lr,
                    decay_steps=10000,
                    decay_rate=0.5,
                    staircase=True))
          sgd_optimizer.minimize(avg_cost)
Q
Qiao Longfei 已提交
221
    """
222
    with default_main_program()._lr_schedule_guard():
223 224 225 226 227 228
        if imperative_base.enabled():
            decay = imperate_lr.InverseTimeDecay(learning_rate, decay_steps,
                                                 decay_rate, staircase)
            return decay
        else:
            global_step = _decay_step_counter()
Q
Qiao Longfei 已提交
229

230 231 232
            div_res = global_step / decay_steps
            if staircase:
                div_res = ops.floor(div_res)
233

234
            decayed_lr = learning_rate / (1 + decay_rate * div_res)
Q
Qiao Longfei 已提交
235

236
            return decayed_lr
237 238 239 240 241 242 243


def polynomial_decay(learning_rate,
                     decay_steps,
                     end_learning_rate=0.0001,
                     power=1.0,
                     cycle=False):
Q
qiaolongfei 已提交
244 245 246
    """
    Applies polynomial decay to the initial learning rate.

X
xiaoting 已提交
247
    .. code-block:: text
Q
qiaolongfei 已提交
248 249 250 251 252 253 254

     if cycle:
       decay_steps = decay_steps * ceil(global_step / decay_steps)
     else:
       global_step = min(global_step, decay_steps)
       decayed_learning_rate = (learning_rate - end_learning_rate) *
            (1 - global_step / decay_steps) ^ power + end_learning_rate
255 256

    Args:
Q
qiaolongfei 已提交
257
        learning_rate(Variable|float32): A scalar float32 value or a Variable. This
Q
update  
qiaolongfei 已提交
258
          will be the initial learning rate during training.
Q
qiaolongfei 已提交
259
        decay_steps(int32): A Python `int32` number.
Q
update  
qiaolongfei 已提交
260 261 262
        end_learning_rate(float): A Python `float` number.
        power(float): A Python `float` number.
        cycle(bool): If set true, decay the learning rate every decay_steps.
263 264

    Returns:
Q
update  
qiaolongfei 已提交
265
        Variable: The decayed learning rate
X
xiaoting 已提交
266 267 268 269 270 271 272 273 274 275 276

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          start_lr = 0.01
          total_step = 5000
          end_lr = 0
          lr = fluid.layers.polynomial_decay(
              start_lr, total_step, end_lr, power=1)

277
    """
278
    with default_main_program()._lr_schedule_guard():
279 280 281 282
        if imperative_base.enabled():
            decay = imperate_lr.PolynomialDecay(learning_rate, decay_steps,
                                                end_learning_rate, power, cycle)
            return decay
283
        else:
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
            global_step = _decay_step_counter()

            if cycle:
                div_res = ops.ceil(global_step / decay_steps)
                zero_var = tensor.fill_constant(
                    shape=[1], dtype='float32', value=0.0)
                one_var = tensor.fill_constant(
                    shape=[1], dtype='float32', value=1.0)

                with control_flow.Switch() as switch:
                    with switch.case(global_step == zero_var):
                        tensor.assign(input=one_var, output=div_res)
                decay_steps = decay_steps * div_res
            else:
                decay_steps_var = tensor.fill_constant(
                    shape=[1], dtype='float32', value=float(decay_steps))
                global_step = nn.elementwise_min(
                    x=global_step, y=decay_steps_var)
302

303 304 305
            decayed_lr = (learning_rate - end_learning_rate) * \
                ((1 - global_step / decay_steps) ** power) + end_learning_rate
            return decayed_lr
306 307


Y
Yu Yang 已提交
308
def piecewise_decay(boundaries, values):
309 310
    """Applies piecewise decay to the initial learning rate.

X
xiaoting 已提交
311
    The algorithm can be described as the code below.
X
Xin Pan 已提交
312

X
xiaoting 已提交
313
    .. code-block:: text
X
Xin Pan 已提交
314

X
xiaoting 已提交
315 316 317 318 319 320 321 322
      boundaries = [10000, 20000]
      values = [1.0, 0.5, 0.1]
      if step < 10000:
          learning_rate = 1.0
      elif 10000 <= step < 20000:
          learning_rate = 0.5
      else:
          learning_rate = 0.1
X
Xin Pan 已提交
323 324 325 326 327 328 329 330
    Args:
        boundaries: A list of steps numbers.
        values: A list of learning rate values that will be picked during
            different step boundaries.

    Returns:
        The decayed learning rate.

X
xiaoting 已提交
331 332 333 334 335 336 337 338 339 340 341
    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          boundaries = [10000, 20000]
          values = [1.0, 0.5, 0.1]
          optimizer = fluid.optimizer.Momentum(
              momentum=0.9,
              learning_rate=fluid.layers.piecewise_decay(boundaries=boundaries, values=values),
              regularization=fluid.regularizer.L2Decay(1e-4))

X
Xin Pan 已提交
342

343
    """
344 345 346 347
    with default_main_program()._lr_schedule_guard():
        if len(values) - len(boundaries) != 1:
            raise ValueError("len(values) - len(boundaries) should be 1")

348
        if imperative_base.enabled():
M
minqiyang 已提交
349
            decay = imperate_lr.PiecewiseDecay(boundaries, values, 0)
350 351 352
            return decay
        else:
            global_step = _decay_step_counter()
353

354 355 356 357 358 359
            lr = tensor.create_global_var(
                shape=[1],
                value=0.0,
                dtype='float32',
                persistable=True,
                name="learning_rate")
360

361 362 363 364 365 366 367 368 369 370 371 372
            with control_flow.Switch() as switch:
                for i in range(len(boundaries)):
                    boundary_val = tensor.fill_constant(
                        shape=[1],
                        dtype='float32',
                        value=float(boundaries[i]),
                        force_cpu=True)
                    value_var = tensor.fill_constant(
                        shape=[1], dtype='float32', value=float(values[i]))
                    with switch.case(global_step < boundary_val):
                        tensor.assign(value_var, lr)
                last_value_var = tensor.fill_constant(
373 374
                    shape=[1],
                    dtype='float32',
375 376 377
                    value=float(values[len(values) - 1]))
                with switch.default():
                    tensor.assign(last_value_var, lr)
378

379
            return lr
W
Wu Yi 已提交
380 381


S
shippingwang 已提交
382 383 384 385
def cosine_decay(learning_rate, step_each_epoch, epochs):
    """
    Applies cosine decay to the learning rate.

S
shippingwang 已提交
386
    when training a model, it is often recommended to lower the learning rate as the
S
shippingwang 已提交
387 388
    training progresses. By using this function, the learning rate will be decayed by
    following cosine decay strategy.
S
shippingwang 已提交
389

390 391 392
    .. math::

	decayed\_lr = learning\_rate * 0.5 * (math.cos * (epoch * \\frac{math.pi}{epochs} ) + 1)
S
shippingwang 已提交
393 394 395 396 397 398
    
    Args:
        learning_rate(Variable|float): The initial learning rate.
        step_each_epoch(int): the number of steps in an epoch.
        epochs(int): the number of epochs.

399 400
    Returns:
	Variable: The decayed learning rate.
S
shippingwang 已提交
401

402 403
    Examples:
	.. code-block:: python
S
shippingwang 已提交
404

405 406 407
  	    base_lr = 0.1
	    lr = fluid.layers.cosine_decay(
	    learning_rate = base_lr, step_each_epoch=10000, epochs=120)
S
shippingwang 已提交
408
    """
409

S
shippingwang 已提交
410
    with default_main_program()._lr_schedule_guard():
M
minqiyang 已提交
411 412 413 414 415 416
        if imperative_base.enabled():
            decay = imperate_lr.CosineDecay(learning_rate, step_each_epoch,
                                            epochs)
            return decay
        else:
            global_step = _decay_step_counter()
S
shippingwang 已提交
417

M
minqiyang 已提交
418 419 420 421
            cur_epoch = ops.floor(global_step / step_each_epoch)
            decayed_lr = learning_rate * 0.5 * (
                ops.cos(cur_epoch * math.pi / epochs) + 1)
            return decayed_lr
S
shippingwang 已提交
422 423


424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
def linear_lr_warmup(learning_rate, warmup_steps, start_lr, end_lr):
    """
    Applies linear learning rate warmup before the normal learning rate
    scheduling.

    .. code-block:: python

     if global_step < warmup_steps:
         linear_step = end_lr - start_lr
         lr = start_lr + linear_step * (global_step / warmup_steps)

    Args:
        learning_rate (float | Variable): A float value or Variable.
        warmup_steps (int): The warmup steps.
        start_lr (float): The start learning of warmup.
        end_lr (float): The end learning of warmup.

    Returns:
        The decayed learning rate in warmup period.

    Examples:
        .. code-block:: python

            boundaries = [100, 200]
            lr_steps = [0.1, 0.01, 0.001]
            warmup_steps = 50 
            start_lr = 1. / 3. 
            end_lr = 0.1
            decayed_lr = fluid.layers.linear_lr_warmup(
                fluid.layers.piecewise_decay(boundaries, lr_steps),
                warmup_steps, start_lr, end_lr)

    """
    assert (isinstance(end_lr, float))
    assert (isinstance(start_lr, float))
    linear_step = end_lr - start_lr
    with default_main_program()._lr_schedule_guard():
        lr = tensor.create_global_var(
            shape=[1],
            value=0.0,
            dtype='float32',
            persistable=True,
            name="learning_rate_warmup")

        global_step = _decay_step_counter()

        with control_flow.Switch() as switch:
            with switch.case(global_step < warmup_steps):
                decayed_lr = start_lr + linear_step * (global_step /
                                                       float(warmup_steps))
                tensor.assign(decayed_lr, lr)
            with switch.default():
                tensor.assign(learning_rate, lr)
    return lr