softmax_impl.h 17.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
16
#include <vector>
17

Y
Yi Wang 已提交
18 19
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/tensor.h"
T
tensor-tang 已提交
20
#include "paddle/fluid/operators/jit/kernels.h"
21
#include "paddle/fluid/operators/math/cpu_vec.h"
L
Leo Chen 已提交
22
#include "paddle/fluid/platform/bfloat16.h"
23
#include "paddle/fluid/platform/cpu_info.h"
L
Leo Chen 已提交
24 25 26
#include "paddle/fluid/platform/float16.h"
#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/backends/gpu/gpu_context.h"
27 28 29 30 31

namespace paddle {
namespace operators {
namespace math {

32 33
template <typename T,
          int MajorType = Eigen::RowMajor,
34 35 36 37 38 39
          typename IndexType = Eigen::DenseIndex>
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;

template <typename T>
struct ValueClip {
  HOSTDEVICE T operator()(const T& x) const {
40
    const T kThreshold = static_cast<T>(-64.);
41 42 43 44
    return x < kThreshold ? kThreshold : x;
  }
};

45
template <typename DeviceContext, typename T, bool is_test>
46 47
class SoftmaxEigen {
 public:
48 49 50 51
  void operator()(const DeviceContext& context,
                  const int axis_dim,
                  const framework::Tensor* X,
                  framework::Tensor* Y) {
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
    constexpr int kBatchDim = 0;
    constexpr int kClassDim = 1;
    constexpr int kAxisDim = 1;

    auto logits = EigenMatrix<T>::From(*X);
    auto softmax = EigenMatrix<T>::From(*Y);

    const int batch_size = logits.dimension(kBatchDim);
    const int num_classes = logits.dimension(kClassDim);
    const int num_remain = num_classes / axis_dim;

    Eigen::DSizes<int, 1> along_axis(kAxisDim);
    Eigen::DSizes<int, 2> batch_classes(batch_size, num_classes);
    Eigen::DSizes<int, 2> batch_by_one(batch_size, 1);
    Eigen::DSizes<int, 2> one_by_class(1, num_classes);
    Eigen::DSizes<int, 3> batch_one_remain(batch_size, 1, num_remain);
    Eigen::DSizes<int, 3> one_axis_one(1, axis_dim, 1);
    Eigen::DSizes<int, 2> one_axis(1, axis_dim);
    Eigen::DSizes<int, 3> batch_axis_remain(batch_size, axis_dim, num_remain);

    // For numerical stability, logits should be shifted by maximum number along
    // axis, calculate shifted_logits into softmax tensor for memory reuse.
    if (num_remain == 1) {
      // axis == -1, axis and class in same dimension, calculate along
      // class dimension directly for higher performance
77 78 79 80 81 82
      softmax.device(*context.eigen_device()) =
          (logits - logits.maximum(along_axis)
                        .eval()
                        .reshape(batch_by_one)
                        .broadcast(one_by_class))
              .unaryExpr(ValueClip<T>());
83 84 85 86
    } else {
      // axis != -1, class dimension split into (axis, remain), max and sum
      // should be calculated along axis dimension
      softmax.device(*context.eigen_device()) =
87 88 89 90 91 92
          (logits.reshape(batch_axis_remain) - logits.reshape(batch_axis_remain)
                                                   .maximum(along_axis)
                                                   .eval()
                                                   .reshape(batch_one_remain)
                                                   .broadcast(one_axis_one)
                                                   .reshape(batch_classes))
93 94 95 96
              .unaryExpr(ValueClip<T>());
    }

    softmax.device(*context.eigen_device()) = softmax.exp();
97
    softmax.device(*context.eigen_device()) =
98 99 100 101 102
        (softmax * softmax.reshape(batch_axis_remain)
                       .sum(along_axis)
                       .inverse()
                       .eval()
                       .broadcast(one_axis));
103
  }
104
};
105

106 107 108
template <typename DeviceContext, bool is_test>
class SoftmaxEigen<DeviceContext, platform::float16, is_test> {
 public:
109 110 111 112
  void operator()(const DeviceContext& context,
                  const int axis_dim,
                  const framework::Tensor* X,
                  framework::Tensor* Y) {
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
    constexpr int kBatchDim = 0;
    constexpr int kClassDim = 1;
    constexpr int kAxisDim = 1;

    auto logits = EigenMatrix<platform::float16>::From(*X);
    auto softmax = EigenMatrix<platform::float16>::From(*Y);

    const int batch_size = logits.dimension(kBatchDim);
    const int num_classes = logits.dimension(kClassDim);
    const int num_remain = num_classes / axis_dim;

    Eigen::DSizes<int, 1> along_axis(kAxisDim);
    Eigen::DSizes<int, 2> batch_classes(batch_size, num_classes);
    Eigen::DSizes<int, 2> batch_by_one(batch_size, 1);
    Eigen::DSizes<int, 2> one_by_class(1, num_classes);
    Eigen::DSizes<int, 3> batch_one_remain(batch_size, 1, num_remain);
    Eigen::DSizes<int, 3> one_axis_one(1, axis_dim, 1);
    Eigen::DSizes<int, 2> one_axis(1, axis_dim);
    Eigen::DSizes<int, 3> batch_axis_remain(batch_size, axis_dim, num_remain);

    // For numerical stability, logits should be shifted by maximum number along
    // axis, calculate shifted_logits into softmax tensor for memory reuse.
    if (num_remain == 1) {
      // axis == -1, axis and class in same dimension, calculate along
      // class dimension directly for higher performance
      softmax.device(*context.eigen_device()) =
139 140 141
          (logits - logits.maximum(along_axis)
                        .reshape(batch_by_one)
                        .broadcast(one_by_class))
142 143 144 145 146
              .unaryExpr(ValueClip<platform::float16>());
    } else {
      // axis != -1, class dimension split into (axis, remain), max and sum
      // should be calculated along axis dimension
      softmax.device(*context.eigen_device()) =
147 148 149 150 151
          (logits.reshape(batch_axis_remain) - logits.reshape(batch_axis_remain)
                                                   .maximum(along_axis)
                                                   .reshape(batch_one_remain)
                                                   .broadcast(one_axis_one)
                                                   .reshape(batch_classes))
152 153 154 155 156
              .unaryExpr(ValueClip<platform::float16>());
    }

    softmax.device(*context.eigen_device()) = softmax.exp();
    softmax.device(*context.eigen_device()) =
157 158 159 160
        (softmax * softmax.reshape(batch_axis_remain)
                       .sum(along_axis)
                       .inverse()
                       .broadcast(one_axis));
161 162
  }
};
163

164 165 166
template <typename DeviceContext, bool is_test>
class SoftmaxEigen<DeviceContext, platform::bfloat16, is_test> {
 public:
167 168 169 170
  void operator()(const DeviceContext& context,
                  const int axis_dim,
                  const framework::Tensor* X,
                  framework::Tensor* Y) {
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
    constexpr int kBatchDim = 0;
    constexpr int kClassDim = 1;
    constexpr int kAxisDim = 1;

    auto logits = EigenMatrix<platform::bfloat16>::From(*X);
    auto softmax = EigenMatrix<platform::bfloat16>::From(*Y);

    const int batch_size = logits.dimension(kBatchDim);
    const int num_classes = logits.dimension(kClassDim);
    const int num_remain = num_classes / axis_dim;

    Eigen::DSizes<int, 1> along_axis(kAxisDim);
    Eigen::DSizes<int, 2> batch_classes(batch_size, num_classes);
    Eigen::DSizes<int, 2> batch_by_one(batch_size, 1);
    Eigen::DSizes<int, 2> one_by_class(1, num_classes);
    Eigen::DSizes<int, 3> batch_one_remain(batch_size, 1, num_remain);
    Eigen::DSizes<int, 3> one_axis_one(1, axis_dim, 1);
    Eigen::DSizes<int, 2> one_axis(1, axis_dim);
    Eigen::DSizes<int, 3> batch_axis_remain(batch_size, axis_dim, num_remain);

    // For numerical stability, logits should be shifted by maximum number along
    // axis, calculate shifted_logits into softmax tensor for memory reuse.
    if (num_remain == 1) {
      // axis == -1, axis and class in same dimension, calculate along
      // class dimension directly for higher performance
      softmax.device(*context.eigen_device()) =
197 198 199
          (logits - logits.maximum(along_axis)
                        .reshape(batch_by_one)
                        .broadcast(one_by_class))
200 201 202 203 204
              .unaryExpr(ValueClip<platform::bfloat16>());
    } else {
      // axis != -1, class dimension split into (axis, remain), max and sum
      // should be calculated along axis dimension
      softmax.device(*context.eigen_device()) =
205 206 207 208 209
          (logits.reshape(batch_axis_remain) - logits.reshape(batch_axis_remain)
                                                   .maximum(along_axis)
                                                   .reshape(batch_one_remain)
                                                   .broadcast(one_axis_one)
                                                   .reshape(batch_classes))
210 211 212 213 214
              .unaryExpr(ValueClip<platform::bfloat16>());
    }

    softmax.device(*context.eigen_device()) = softmax.exp();
    softmax.device(*context.eigen_device()) =
215 216 217 218
        (softmax * softmax.reshape(batch_axis_remain)
                       .sum(along_axis)
                       .inverse()
                       .broadcast(one_axis));
219 220 221
  }
};

222 223
template <typename DeviceContext, typename T, bool is_test, typename Enable>
void SoftmaxFunctor<DeviceContext, T, is_test, Enable>::operator()(
224 225 226 227
    const DeviceContext& context,
    const int axis_dim,
    const framework::Tensor* X,
    framework::Tensor* Y) {
228
  SoftmaxEigen<DeviceContext, T, is_test>()(context, axis_dim, X, Y);
229 230
}

231 232
template <class DeviceContext>
using enable_if_CPU = typename std::enable_if<
L
Leo Chen 已提交
233
    std::is_same<DeviceContext, phi::CPUContext>::value>::type;
234

235 236 237
template <typename DeviceContext, typename T, bool is_test>
class SoftmaxFunctor<DeviceContext, T, is_test, enable_if_CPU<DeviceContext>> {
 public:
238 239 240 241
  void operator()(const DeviceContext& context,
                  const int axis_dim,
                  const framework::Tensor* X,
                  framework::Tensor* Y) {
242
    const auto& in_dims = X->dims();
243 244 245 246 247 248 249 250 251 252 253 254 255 256
    constexpr int kBatchDim = 0;
    constexpr int kClassDim = 1;

    const int num_classes = in_dims[kClassDim];
    const int batch_size = in_dims[kBatchDim];
    const int num_remain = num_classes / axis_dim;

    if (num_remain == 1 && platform::MayIUse(platform::avx)) {
      const T* in_data = X->data<T>();
      T* out_data = Y->data<T>();
      for (int bs = 0; bs < batch_size; ++bs) {
        T max_val = *std::max_element(in_data, in_data + num_classes);
        max_val *= static_cast<T>(-1);
        vec_add_bias<T, platform::avx>(num_classes, max_val, in_data, out_data);
257 258
        vec_clip<T, platform::avx>(
            num_classes, static_cast<T>(-64), out_data, out_data);
259 260 261 262 263 264 265 266 267 268 269
        vec_exp<T>(num_classes, out_data, out_data);

        T sum = 0;
        vec_sum<T, platform::avx>(num_classes, out_data, &sum);
        sum = static_cast<T>(1) / sum;
        vec_scal<T, platform::avx>(num_classes, sum, out_data, out_data);

        in_data += num_classes;
        out_data += num_classes;
      }
    } else {
270
      SoftmaxEigen<DeviceContext, T, is_test>()(context, axis_dim, X, Y);
271 272 273 274
    }
  }
};

275
template <typename DeviceContext>
276
class SoftmaxFunctor<DeviceContext, float, true, enable_if_CPU<DeviceContext>> {
277
 public:
278 279 280 281
  void operator()(const DeviceContext& context,
                  const int axis_dim,
                  const framework::Tensor* X,
                  framework::Tensor* Y) {
Z
Zhang Jun 已提交
282
    const auto& in_dims = X->dims();
283 284
    const float* in_data = X->data<float>();
    float* out_data = Y->data<float>();
285 286
    const int kBatchDim = 0;
    const int kClassDim = 1;
287
    // 2D data. Batch x C
T
tensor-tang 已提交
288
    auto compute_softmax =
289
        jit::KernelFuncs<jit::SoftmaxTuple<float>, platform::CPUPlace>::Cache()
T
tensor-tang 已提交
290
            .At(in_dims[kClassDim]);
291 292 293 294
    compute_softmax(in_data,
                    out_data,
                    in_dims[kClassDim],
                    in_dims[kBatchDim],
295
                    in_dims[kClassDim] / axis_dim);
296 297 298 299
  }
};

template <typename DeviceContext, typename T>
300 301
class SoftmaxGradEigen {
 public:
302 303 304 305
  void operator()(const DeviceContext& context,
                  const int axis_dim,
                  const framework::Tensor* y,
                  const framework::Tensor* y_grad,
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
                  framework::Tensor* x_grad) {
    auto softmax = EigenMatrix<T>::From(*y);
    auto softmax_grad = EigenMatrix<T>::From(*y_grad);
    auto logits_grad = EigenMatrix<T>::From(*x_grad);

    constexpr int kBatchDim = 0;
    constexpr int kClassDim = 1;

    const int batch_size = softmax.dimension(kBatchDim);
    const int num_classes = softmax.dimension(kClassDim);
    const int num_remain = num_classes / axis_dim;

    Eigen::DSizes<int, 1> along_class(kClassDim);
    Eigen::DSizes<int, 2> batch_by_one(batch_size, 1);
    Eigen::DSizes<int, 2> one_by_class(1, num_classes);
    Eigen::DSizes<int, 3> batch_axis_remain(batch_size, axis_dim, num_remain);
    Eigen::DSizes<int, 2> one_axis(1, axis_dim);

    auto dot = (softmax * softmax_grad)
                   .reshape(batch_axis_remain)
                   .sum(along_class)
                   .eval()
                   .broadcast(one_axis);
    logits_grad.device(*context.eigen_device()) =
        (softmax_grad - dot) * softmax;
  }
};

template <typename DeviceContext>
class SoftmaxGradEigen<DeviceContext, platform::float16> {
 public:
337 338 339 340
  void operator()(const DeviceContext& context,
                  const int axis_dim,
                  const framework::Tensor* y,
                  const framework::Tensor* y_grad,
341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
                  framework::Tensor* x_grad) {
    auto softmax = EigenMatrix<platform::float16>::From(*y);
    auto softmax_grad = EigenMatrix<platform::float16>::From(*y_grad);
    auto logits_grad = EigenMatrix<platform::float16>::From(*x_grad);

    constexpr int kBatchDim = 0;
    constexpr int kClassDim = 1;

    const int batch_size = softmax.dimension(kBatchDim);
    const int num_classes = softmax.dimension(kClassDim);
    const int num_remain = num_classes / axis_dim;

    Eigen::DSizes<int, 1> along_class(kClassDim);
    Eigen::DSizes<int, 2> batch_by_one(batch_size, 1);
    Eigen::DSizes<int, 2> one_by_class(1, num_classes);
    Eigen::DSizes<int, 3> batch_axis_remain(batch_size, axis_dim, num_remain);
    Eigen::DSizes<int, 2> one_axis(1, axis_dim);

359 360 361 362 363 364 365 366 367 368 369 370
    auto dot = (softmax * softmax_grad)
                   .reshape(batch_axis_remain)
                   .sum(along_class)
                   .broadcast(one_axis);
    logits_grad.device(*context.eigen_device()) =
        (softmax_grad - dot) * softmax;
  }
};

template <typename DeviceContext>
class SoftmaxGradEigen<DeviceContext, platform::bfloat16> {
 public:
371 372 373 374
  void operator()(const DeviceContext& context,
                  const int axis_dim,
                  const framework::Tensor* y,
                  const framework::Tensor* y_grad,
375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
                  framework::Tensor* x_grad) {
    auto softmax = EigenMatrix<platform::bfloat16>::From(*y);
    auto softmax_grad = EigenMatrix<platform::bfloat16>::From(*y_grad);
    auto logits_grad = EigenMatrix<platform::bfloat16>::From(*x_grad);

    constexpr int kBatchDim = 0;
    constexpr int kClassDim = 1;

    const int batch_size = softmax.dimension(kBatchDim);
    const int num_classes = softmax.dimension(kClassDim);
    const int num_remain = num_classes / axis_dim;

    Eigen::DSizes<int, 1> along_class(kClassDim);
    Eigen::DSizes<int, 2> batch_by_one(batch_size, 1);
    Eigen::DSizes<int, 2> one_by_class(1, num_classes);
    Eigen::DSizes<int, 3> batch_axis_remain(batch_size, axis_dim, num_remain);
    Eigen::DSizes<int, 2> one_axis(1, axis_dim);

393 394 395 396 397 398 399 400
    auto dot = (softmax * softmax_grad)
                   .reshape(batch_axis_remain)
                   .sum(along_class)
                   .broadcast(one_axis);
    logits_grad.device(*context.eigen_device()) =
        (softmax_grad - dot) * softmax;
  }
};
401

402 403
template <typename DeviceContext, typename T, typename Enable>
void SoftmaxGradFunctor<DeviceContext, T, Enable>::operator()(
404 405 406 407
    const DeviceContext& context,
    const int axis_dim,
    const framework::Tensor* y,
    const framework::Tensor* y_grad,
408
    framework::Tensor* x_grad) {
409
  SoftmaxGradEigen<DeviceContext, T>()(context, axis_dim, y, y_grad, x_grad);
410 411 412 413 414
}

template <typename DeviceContext, typename T>
class SoftmaxGradFunctor<DeviceContext, T, enable_if_CPU<DeviceContext>> {
 public:
415 416 417 418
  void operator()(const DeviceContext& context,
                  const int axis_dim,
                  const framework::Tensor* y,
                  const framework::Tensor* y_grad,
419
                  framework::Tensor* x_grad) {
Z
Zhang Jun 已提交
420
    const auto& out_dims = y->dims();
421 422 423 424 425 426 427 428 429 430 431 432
    constexpr int kBatchDim = 0;
    constexpr int kClassDim = 1;
    const int num_classes = out_dims[kClassDim];
    const int batch_size = out_dims[kBatchDim];
    const int num_remain = num_classes / axis_dim;

    if (num_remain == 1 && platform::MayIUse(platform::avx)) {
      const T* out_data = y->data<T>();
      const T* out_grad = y_grad->data<T>();
      T* in_grad = x_grad->data<T>();
      for (int bs = 0; bs < batch_size; ++bs) {
        T scalar;
433 434
        vec_mul_reduce<T, platform::avx>(
            num_classes, out_grad, out_data, &scalar);
435 436 437 438 439 440 441 442
        scalar *= static_cast<T>(-1);
        vec_add_bias<T, platform::avx>(num_classes, scalar, out_grad, in_grad);
        vec_mul<T, platform::avx>(num_classes, out_data, in_grad, in_grad);
        out_data += num_classes;
        out_grad += num_classes;
        in_grad += num_classes;
      }
    } else {
443 444
      SoftmaxGradEigen<DeviceContext, T>()(
          context, axis_dim, y, y_grad, x_grad);
445 446 447 448
    }
  }
};

449 450 451
}  // namespace math
}  // namespace operators
}  // namespace paddle