softmax_impl.h 9.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
16
#include <vector>
Y
Yi Wang 已提交
17 18
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/tensor.h"
T
tensor-tang 已提交
19
#include "paddle/fluid/operators/jit/kernels.h"
20 21
#include "paddle/fluid/operators/math/cpu_vec.h"
#include "paddle/fluid/platform/cpu_info.h"
22 23 24 25 26 27 28 29 30 31 32 33

namespace paddle {
namespace operators {
namespace math {

template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;

template <typename T>
struct ValueClip {
  HOSTDEVICE T operator()(const T& x) const {
34
    const T kThreshold = static_cast<T>(-64.);
35 36 37 38
    return x < kThreshold ? kThreshold : x;
  }
};

39 40 41 42 43
template <typename DeviceContext, typename T, bool is_test>
void SoftmaxEigen(const DeviceContext& context, const int axis_dim,
                  const framework::Tensor* X, framework::Tensor* Y) {
  constexpr int kBatchDim = 0;
  constexpr int kClassDim = 1;
44
  constexpr int kAxisDim = 1;
45

46 47 48 49 50
  auto logits = EigenMatrix<T>::From(*X);
  auto softmax = EigenMatrix<T>::From(*Y);

  const int batch_size = logits.dimension(kBatchDim);
  const int num_classes = logits.dimension(kClassDim);
51
  const int num_remain = num_classes / axis_dim;
52

53 54
  Eigen::DSizes<int, 1> along_axis(kAxisDim);
  Eigen::DSizes<int, 2> batch_classes(batch_size, num_classes);
55 56
  Eigen::DSizes<int, 2> batch_by_one(batch_size, 1);
  Eigen::DSizes<int, 2> one_by_class(1, num_classes);
57 58
  Eigen::DSizes<int, 3> batch_one_remain(batch_size, 1, num_remain);
  Eigen::DSizes<int, 3> one_axis_one(1, axis_dim, 1);
59
  Eigen::DSizes<int, 2> one_axis(1, axis_dim);
60
  Eigen::DSizes<int, 3> batch_axis_remain(batch_size, axis_dim, num_remain);
61

62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
  // For numerical stability, logits should be shifted by maximum number along
  // axis, calculate shifted_logits into softmax tensor for memory reuse.
  if (num_remain == 1) {
    // axis == -1, axis and class in same dimension, calculate along
    // class dimension directly for higher performance
    softmax.device(*context.eigen_device()) = (logits -
                                               logits.maximum(along_axis)
                                                   .eval()
                                                   .reshape(batch_by_one)
                                                   .broadcast(one_by_class))
                                                  .unaryExpr(ValueClip<T>());
  } else {
    // axis != -1, class dimension split into (axis, remain), max and sum
    // should be calculated along axis dimension
    softmax.device(*context.eigen_device()) =
        (logits.reshape(batch_axis_remain) -
         logits.reshape(batch_axis_remain)
             .maximum(along_axis)
             .eval()
             .reshape(batch_one_remain)
             .broadcast(one_axis_one)
             .reshape(batch_classes))
            .unaryExpr(ValueClip<T>());
  }

  softmax.device(*context.eigen_device()) = softmax.exp();
  softmax.device(*context.eigen_device()) = (softmax *
                                             softmax.reshape(batch_axis_remain)
                                                 .sum(along_axis)
Q
QI JUN 已提交
91 92
                                                 .inverse()
                                                 .eval()
93
                                                 .broadcast(one_axis));
94 95
}

96 97 98 99 100 101 102
template <typename DeviceContext, typename T, bool is_test, typename Enable>
void SoftmaxFunctor<DeviceContext, T, is_test, Enable>::operator()(
    const DeviceContext& context, const int axis_dim,
    const framework::Tensor* X, framework::Tensor* Y) {
  SoftmaxEigen<DeviceContext, T, is_test>(context, axis_dim, X, Y);
}

103 104 105 106
template <class DeviceContext>
using enable_if_CPU = typename std::enable_if<
    std::is_same<DeviceContext, platform::CPUDeviceContext>::value>::type;

107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
template <typename DeviceContext, typename T, bool is_test>
class SoftmaxFunctor<DeviceContext, T, is_test, enable_if_CPU<DeviceContext>> {
 public:
  void operator()(const DeviceContext& context, const int axis_dim,
                  const framework::Tensor* X, framework::Tensor* Y) {
    auto in_dims = X->dims();
    constexpr int kBatchDim = 0;
    constexpr int kClassDim = 1;

    const int num_classes = in_dims[kClassDim];
    const int batch_size = in_dims[kBatchDim];
    const int num_remain = num_classes / axis_dim;

    if (num_remain == 1 && platform::MayIUse(platform::avx)) {
      const T* in_data = X->data<T>();
      T* out_data = Y->data<T>();
      for (int bs = 0; bs < batch_size; ++bs) {
        T max_val = *std::max_element(in_data, in_data + num_classes);
        max_val *= static_cast<T>(-1);
        vec_add_bias<T, platform::avx>(num_classes, max_val, in_data, out_data);
        vec_clip<T, platform::avx>(num_classes, static_cast<T>(-64), out_data,
                                   out_data);
        vec_exp<T>(num_classes, out_data, out_data);

        T sum = 0;
        vec_sum<T, platform::avx>(num_classes, out_data, &sum);
        sum = static_cast<T>(1) / sum;
        vec_scal<T, platform::avx>(num_classes, sum, out_data, out_data);

        in_data += num_classes;
        out_data += num_classes;
      }
    } else {
      SoftmaxEigen<DeviceContext, T, is_test>(context, axis_dim, X, Y);
    }
  }
};

145
template <typename DeviceContext>
146
class SoftmaxFunctor<DeviceContext, float, true, enable_if_CPU<DeviceContext>> {
147
 public:
148 149
  void operator()(const DeviceContext& context, const int axis_dim,
                  const framework::Tensor* X, framework::Tensor* Y) {
150 151 152
    auto in_dims = X->dims();
    const float* in_data = X->data<float>();
    float* out_data = Y->data<float>();
153 154
    const int kBatchDim = 0;
    const int kClassDim = 1;
155
    // 2D data. Batch x C
T
tensor-tang 已提交
156
    auto compute_softmax =
157
        jit::KernelFuncs<jit::SoftmaxTuple<float>, platform::CPUPlace>::Cache()
T
tensor-tang 已提交
158
            .At(in_dims[kClassDim]);
159 160
    compute_softmax(in_data, out_data, in_dims[kClassDim], in_dims[kBatchDim],
                    in_dims[kClassDim] / axis_dim);
161 162 163 164
  }
};

template <typename DeviceContext, typename T>
165 166 167 168
void SoftmaxGradEigen(const DeviceContext& context, const int axis_dim,
                      const framework::Tensor* y,
                      const framework::Tensor* y_grad,
                      framework::Tensor* x_grad) {
169 170 171 172
  auto softmax = EigenMatrix<T>::From(*y);
  auto softmax_grad = EigenMatrix<T>::From(*y_grad);
  auto logits_grad = EigenMatrix<T>::From(*x_grad);

173 174
  constexpr int kBatchDim = 0;
  constexpr int kClassDim = 1;
175 176 177

  const int batch_size = softmax.dimension(kBatchDim);
  const int num_classes = softmax.dimension(kClassDim);
178
  const int num_remain = num_classes / axis_dim;
179 180 181 182

  Eigen::DSizes<int, 1> along_class(kClassDim);
  Eigen::DSizes<int, 2> batch_by_one(batch_size, 1);
  Eigen::DSizes<int, 2> one_by_class(1, num_classes);
183 184
  Eigen::DSizes<int, 3> batch_axis_remain(batch_size, axis_dim, num_remain);
  Eigen::DSizes<int, 2> one_axis(1, axis_dim);
185 186

  auto dot = (softmax * softmax_grad)
187
                 .reshape(batch_axis_remain)
188 189
                 .sum(along_class)
                 .eval()
190
                 .broadcast(one_axis);
Q
QI JUN 已提交
191
  logits_grad.device(*context.eigen_device()) = (softmax_grad - dot) * softmax;
192 193
}

194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
template <typename DeviceContext, typename T, typename Enable>
void SoftmaxGradFunctor<DeviceContext, T, Enable>::operator()(
    const DeviceContext& context, const int axis_dim,
    const framework::Tensor* y, const framework::Tensor* y_grad,
    framework::Tensor* x_grad) {
  SoftmaxGradEigen<DeviceContext, T>(context, axis_dim, y, y_grad, x_grad);
}

template <typename DeviceContext, typename T>
class SoftmaxGradFunctor<DeviceContext, T, enable_if_CPU<DeviceContext>> {
 public:
  void operator()(const DeviceContext& context, const int axis_dim,
                  const framework::Tensor* y, const framework::Tensor* y_grad,
                  framework::Tensor* x_grad) {
    auto out_dims = y->dims();
    constexpr int kBatchDim = 0;
    constexpr int kClassDim = 1;
    const int num_classes = out_dims[kClassDim];
    const int batch_size = out_dims[kBatchDim];
    const int num_remain = num_classes / axis_dim;

    if (num_remain == 1 && platform::MayIUse(platform::avx)) {
      const T* out_data = y->data<T>();
      const T* out_grad = y_grad->data<T>();
      T* in_grad = x_grad->data<T>();
      for (int bs = 0; bs < batch_size; ++bs) {
        T scalar;
        vec_mul_reduce<T, platform::avx>(num_classes, out_grad, out_data,
                                         &scalar);
        scalar *= static_cast<T>(-1);
        vec_add_bias<T, platform::avx>(num_classes, scalar, out_grad, in_grad);
        vec_mul<T, platform::avx>(num_classes, out_data, in_grad, in_grad);
        out_data += num_classes;
        out_grad += num_classes;
        in_grad += num_classes;
      }
    } else {
      SoftmaxGradEigen<DeviceContext, T>(context, axis_dim, y, y_grad, x_grad);
    }
  }
};

236 237 238
}  // namespace math
}  // namespace operators
}  // namespace paddle