softmax_impl.h 13.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
16
#include <vector>
Y
Yi Wang 已提交
17 18
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/tensor.h"
T
tensor-tang 已提交
19
#include "paddle/fluid/operators/jit/kernels.h"
20 21
#include "paddle/fluid/operators/math/cpu_vec.h"
#include "paddle/fluid/platform/cpu_info.h"
22 23 24 25 26 27 28 29 30 31 32 33

namespace paddle {
namespace operators {
namespace math {

template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;

template <typename T>
struct ValueClip {
  HOSTDEVICE T operator()(const T& x) const {
34
    const T kThreshold = static_cast<T>(-64.);
35 36 37 38
    return x < kThreshold ? kThreshold : x;
  }
};

39
template <typename DeviceContext, typename T, bool is_test>
40 41 42
class SoftmaxEigen {
 public:
  void operator()(const DeviceContext& context, const int axis_dim,
43
                  const framework::Tensor* X, framework::Tensor* Y) {
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
    constexpr int kBatchDim = 0;
    constexpr int kClassDim = 1;
    constexpr int kAxisDim = 1;

    auto logits = EigenMatrix<T>::From(*X);
    auto softmax = EigenMatrix<T>::From(*Y);

    const int batch_size = logits.dimension(kBatchDim);
    const int num_classes = logits.dimension(kClassDim);
    const int num_remain = num_classes / axis_dim;

    Eigen::DSizes<int, 1> along_axis(kAxisDim);
    Eigen::DSizes<int, 2> batch_classes(batch_size, num_classes);
    Eigen::DSizes<int, 2> batch_by_one(batch_size, 1);
    Eigen::DSizes<int, 2> one_by_class(1, num_classes);
    Eigen::DSizes<int, 3> batch_one_remain(batch_size, 1, num_remain);
    Eigen::DSizes<int, 3> one_axis_one(1, axis_dim, 1);
    Eigen::DSizes<int, 2> one_axis(1, axis_dim);
    Eigen::DSizes<int, 3> batch_axis_remain(batch_size, axis_dim, num_remain);

    // For numerical stability, logits should be shifted by maximum number along
    // axis, calculate shifted_logits into softmax tensor for memory reuse.
    if (num_remain == 1) {
      // axis == -1, axis and class in same dimension, calculate along
      // class dimension directly for higher performance
      softmax.device(*context.eigen_device()) = (logits -
                                                 logits.maximum(along_axis)
                                                     .eval()
                                                     .reshape(batch_by_one)
                                                     .broadcast(one_by_class))
                                                    .unaryExpr(ValueClip<T>());
    } else {
      // axis != -1, class dimension split into (axis, remain), max and sum
      // should be calculated along axis dimension
      softmax.device(*context.eigen_device()) =
          (logits.reshape(batch_axis_remain) -
           logits.reshape(batch_axis_remain)
               .maximum(along_axis)
               .eval()
               .reshape(batch_one_remain)
               .broadcast(one_axis_one)
               .reshape(batch_classes))
              .unaryExpr(ValueClip<T>());
    }

    softmax.device(*context.eigen_device()) = softmax.exp();
90
    softmax.device(*context.eigen_device()) =
91 92 93 94
        (softmax *
         softmax.reshape(batch_axis_remain)
             .sum(along_axis)
             .inverse()
95
             .eval()
96
             .broadcast(one_axis));
97
  }
98
};
99

100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
template <typename DeviceContext, bool is_test>
class SoftmaxEigen<DeviceContext, platform::float16, is_test> {
 public:
  void operator()(const DeviceContext& context, const int axis_dim,
                  const framework::Tensor* X, framework::Tensor* Y) {
    constexpr int kBatchDim = 0;
    constexpr int kClassDim = 1;
    constexpr int kAxisDim = 1;

    auto logits = EigenMatrix<platform::float16>::From(*X);
    auto softmax = EigenMatrix<platform::float16>::From(*Y);

    const int batch_size = logits.dimension(kBatchDim);
    const int num_classes = logits.dimension(kClassDim);
    const int num_remain = num_classes / axis_dim;

    Eigen::DSizes<int, 1> along_axis(kAxisDim);
    Eigen::DSizes<int, 2> batch_classes(batch_size, num_classes);
    Eigen::DSizes<int, 2> batch_by_one(batch_size, 1);
    Eigen::DSizes<int, 2> one_by_class(1, num_classes);
    Eigen::DSizes<int, 3> batch_one_remain(batch_size, 1, num_remain);
    Eigen::DSizes<int, 3> one_axis_one(1, axis_dim, 1);
    Eigen::DSizes<int, 2> one_axis(1, axis_dim);
    Eigen::DSizes<int, 3> batch_axis_remain(batch_size, axis_dim, num_remain);

    // For numerical stability, logits should be shifted by maximum number along
    // axis, calculate shifted_logits into softmax tensor for memory reuse.
    if (num_remain == 1) {
      // axis == -1, axis and class in same dimension, calculate along
      // class dimension directly for higher performance
      softmax.device(*context.eigen_device()) =
          (logits -
           logits.maximum(along_axis)
               .reshape(batch_by_one)
               .broadcast(one_by_class))
              .unaryExpr(ValueClip<platform::float16>());
    } else {
      // axis != -1, class dimension split into (axis, remain), max and sum
      // should be calculated along axis dimension
      softmax.device(*context.eigen_device()) =
          (logits.reshape(batch_axis_remain) -
           logits.reshape(batch_axis_remain)
               .maximum(along_axis)
               .reshape(batch_one_remain)
               .broadcast(one_axis_one)
               .reshape(batch_classes))
              .unaryExpr(ValueClip<platform::float16>());
    }

    softmax.device(*context.eigen_device()) = softmax.exp();
    softmax.device(*context.eigen_device()) =
        (softmax *
         softmax.reshape(batch_axis_remain)
             .sum(along_axis)
             .inverse()
             .broadcast(one_axis));
  }
};
158

159 160 161 162
template <typename DeviceContext, typename T, bool is_test, typename Enable>
void SoftmaxFunctor<DeviceContext, T, is_test, Enable>::operator()(
    const DeviceContext& context, const int axis_dim,
    const framework::Tensor* X, framework::Tensor* Y) {
163
  SoftmaxEigen<DeviceContext, T, is_test>()(context, axis_dim, X, Y);
164 165
}

166 167 168 169
template <class DeviceContext>
using enable_if_CPU = typename std::enable_if<
    std::is_same<DeviceContext, platform::CPUDeviceContext>::value>::type;

170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
template <typename DeviceContext, typename T, bool is_test>
class SoftmaxFunctor<DeviceContext, T, is_test, enable_if_CPU<DeviceContext>> {
 public:
  void operator()(const DeviceContext& context, const int axis_dim,
                  const framework::Tensor* X, framework::Tensor* Y) {
    auto in_dims = X->dims();
    constexpr int kBatchDim = 0;
    constexpr int kClassDim = 1;

    const int num_classes = in_dims[kClassDim];
    const int batch_size = in_dims[kBatchDim];
    const int num_remain = num_classes / axis_dim;

    if (num_remain == 1 && platform::MayIUse(platform::avx)) {
      const T* in_data = X->data<T>();
      T* out_data = Y->data<T>();
      for (int bs = 0; bs < batch_size; ++bs) {
        T max_val = *std::max_element(in_data, in_data + num_classes);
        max_val *= static_cast<T>(-1);
        vec_add_bias<T, platform::avx>(num_classes, max_val, in_data, out_data);
        vec_clip<T, platform::avx>(num_classes, static_cast<T>(-64), out_data,
                                   out_data);
        vec_exp<T>(num_classes, out_data, out_data);

        T sum = 0;
        vec_sum<T, platform::avx>(num_classes, out_data, &sum);
        sum = static_cast<T>(1) / sum;
        vec_scal<T, platform::avx>(num_classes, sum, out_data, out_data);

        in_data += num_classes;
        out_data += num_classes;
      }
    } else {
203
      SoftmaxEigen<DeviceContext, T, is_test>()(context, axis_dim, X, Y);
204 205 206 207
    }
  }
};

208
template <typename DeviceContext>
209
class SoftmaxFunctor<DeviceContext, float, true, enable_if_CPU<DeviceContext>> {
210
 public:
211 212
  void operator()(const DeviceContext& context, const int axis_dim,
                  const framework::Tensor* X, framework::Tensor* Y) {
213 214 215
    auto in_dims = X->dims();
    const float* in_data = X->data<float>();
    float* out_data = Y->data<float>();
216 217
    const int kBatchDim = 0;
    const int kClassDim = 1;
218
    // 2D data. Batch x C
T
tensor-tang 已提交
219
    auto compute_softmax =
220
        jit::KernelFuncs<jit::SoftmaxTuple<float>, platform::CPUPlace>::Cache()
T
tensor-tang 已提交
221
            .At(in_dims[kClassDim]);
222 223
    compute_softmax(in_data, out_data, in_dims[kClassDim], in_dims[kBatchDim],
                    in_dims[kClassDim] / axis_dim);
224 225 226 227
  }
};

template <typename DeviceContext, typename T>
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
class SoftmaxGradEigen {
 public:
  void operator()(const DeviceContext& context, const int axis_dim,
                  const framework::Tensor* y, const framework::Tensor* y_grad,
                  framework::Tensor* x_grad) {
    auto softmax = EigenMatrix<T>::From(*y);
    auto softmax_grad = EigenMatrix<T>::From(*y_grad);
    auto logits_grad = EigenMatrix<T>::From(*x_grad);

    constexpr int kBatchDim = 0;
    constexpr int kClassDim = 1;

    const int batch_size = softmax.dimension(kBatchDim);
    const int num_classes = softmax.dimension(kClassDim);
    const int num_remain = num_classes / axis_dim;

    Eigen::DSizes<int, 1> along_class(kClassDim);
    Eigen::DSizes<int, 2> batch_by_one(batch_size, 1);
    Eigen::DSizes<int, 2> one_by_class(1, num_classes);
    Eigen::DSizes<int, 3> batch_axis_remain(batch_size, axis_dim, num_remain);
    Eigen::DSizes<int, 2> one_axis(1, axis_dim);

    auto dot = (softmax * softmax_grad)
                   .reshape(batch_axis_remain)
                   .sum(along_class)
                   .eval()
                   .broadcast(one_axis);
    logits_grad.device(*context.eigen_device()) =
        (softmax_grad - dot) * softmax;
  }
};

template <typename DeviceContext>
class SoftmaxGradEigen<DeviceContext, platform::float16> {
 public:
  void operator()(const DeviceContext& context, const int axis_dim,
                  const framework::Tensor* y, const framework::Tensor* y_grad,
                  framework::Tensor* x_grad) {
    auto softmax = EigenMatrix<platform::float16>::From(*y);
    auto softmax_grad = EigenMatrix<platform::float16>::From(*y_grad);
    auto logits_grad = EigenMatrix<platform::float16>::From(*x_grad);

    constexpr int kBatchDim = 0;
    constexpr int kClassDim = 1;

    const int batch_size = softmax.dimension(kBatchDim);
    const int num_classes = softmax.dimension(kClassDim);
    const int num_remain = num_classes / axis_dim;

    Eigen::DSizes<int, 1> along_class(kClassDim);
    Eigen::DSizes<int, 2> batch_by_one(batch_size, 1);
    Eigen::DSizes<int, 2> one_by_class(1, num_classes);
    Eigen::DSizes<int, 3> batch_axis_remain(batch_size, axis_dim, num_remain);
    Eigen::DSizes<int, 2> one_axis(1, axis_dim);

    auto dot = (softmax * softmax_grad)
                   .reshape(batch_axis_remain)
                   .sum(along_class)
                   .broadcast(one_axis);
    logits_grad.device(*context.eigen_device()) =
        (softmax_grad - dot) * softmax;
  }
};
291

292 293 294 295 296
template <typename DeviceContext, typename T, typename Enable>
void SoftmaxGradFunctor<DeviceContext, T, Enable>::operator()(
    const DeviceContext& context, const int axis_dim,
    const framework::Tensor* y, const framework::Tensor* y_grad,
    framework::Tensor* x_grad) {
297
  SoftmaxGradEigen<DeviceContext, T>()(context, axis_dim, y, y_grad, x_grad);
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
}

template <typename DeviceContext, typename T>
class SoftmaxGradFunctor<DeviceContext, T, enable_if_CPU<DeviceContext>> {
 public:
  void operator()(const DeviceContext& context, const int axis_dim,
                  const framework::Tensor* y, const framework::Tensor* y_grad,
                  framework::Tensor* x_grad) {
    auto out_dims = y->dims();
    constexpr int kBatchDim = 0;
    constexpr int kClassDim = 1;
    const int num_classes = out_dims[kClassDim];
    const int batch_size = out_dims[kBatchDim];
    const int num_remain = num_classes / axis_dim;

    if (num_remain == 1 && platform::MayIUse(platform::avx)) {
      const T* out_data = y->data<T>();
      const T* out_grad = y_grad->data<T>();
      T* in_grad = x_grad->data<T>();
      for (int bs = 0; bs < batch_size; ++bs) {
        T scalar;
        vec_mul_reduce<T, platform::avx>(num_classes, out_grad, out_data,
                                         &scalar);
        scalar *= static_cast<T>(-1);
        vec_add_bias<T, platform::avx>(num_classes, scalar, out_grad, in_grad);
        vec_mul<T, platform::avx>(num_classes, out_data, in_grad, in_grad);
        out_data += num_classes;
        out_grad += num_classes;
        in_grad += num_classes;
      }
    } else {
329 330
      SoftmaxGradEigen<DeviceContext, T>()(context, axis_dim, y, y_grad,
                                           x_grad);
331 332 333 334
    }
  }
};

335 336 337
}  // namespace math
}  // namespace operators
}  // namespace paddle