operator.h 11.6 KB
Newer Older
Q
Qiao Longfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

D
dongzhihong 已提交
17
#include <algorithm>
Q
Qiao Longfei 已提交
18 19 20 21
#include <string>
#include <unordered_map>
#include <vector>

Y
Yi Wang 已提交
22
#include "paddle/framework/attribute.h"
Y
Yu Yang 已提交
23
#include "paddle/framework/framework.pb.h"
Q
qijun 已提交
24 25 26 27
#include "paddle/framework/scope.h"
#include "paddle/framework/tensor.h"
#include "paddle/platform/device_context.h"
#include "paddle/platform/place.h"
Y
Yu Yang 已提交
28
#include "paddle/platform/variant.h"
Q
qijun 已提交
29
#include "paddle/utils/Error.h"
Q
Qiao Longfei 已提交
30 31 32 33

namespace paddle {
namespace framework {

34
/// If a variable is a empty variable, that name will be used.
35
constexpr char kEmptyVarName[] = "@EMPTY@";
36 37 38

/// If a variable is a temporary variable, that name will be set in Python,
/// but it will be convert to a unique name in scope after OpCreator.
39
constexpr char kTempVarName[] = "@TEMP@";
40 41 42 43

/// If a variable's name has a certain suffix, it means that the
/// variable is the gradient of another varibale.
/// e.g. Variable "x@GRAD" is the gradient of varibale "x".
44
constexpr char kGradVarSuffix[] = "@GRAD";
45 46

/// Variables with this suffix are supposed to be filled up with zeros.
47
constexpr char kZeroVarSuffix[] = "@ZERO";
48 49 50 51 52

inline std::string GradVarName(const std::string& var_name) {
  return var_name + kGradVarSuffix;
}

Q
Qiao Longfei 已提交
53
class OperatorBase;
54 55
class InferShapeContext;
class ExecutionContext;
56

Q
Qiao Longfei 已提交
57 58 59 60 61 62 63 64
/**
 * OperatorBase has the basic element that Net will call to do computation.
 * Only CreateOperator from OpRegistry will new Operator directly. User
 * should always construct a proto message OpDesc and call
 * OpRegistry::CreateOp(op_desc) to get an Operator instance.
 */
class OperatorBase {
 public:
65 66 67
  using VarNameMap = std::map<std::string, std::vector<std::string>>;

  OperatorBase(const std::string& type, const VarNameMap& inputs,
Y
Yu Yang 已提交
68
               const VarNameMap& outputs, const AttributeMap& attrs);
69

Q
Qiao Longfei 已提交
70 71 72 73 74 75 76 77 78
  virtual ~OperatorBase() {}

  template <typename T>
  inline const T& GetAttr(const std::string& name) const {
    PADDLE_ENFORCE(attrs_.count(name) != 0, "%s should be in AttributeMap",
                   name);
    return boost::get<T>(attrs_.at(name));
  }

79
  virtual std::string DebugString() const;
Q
Qiao Longfei 已提交
80 81 82

  /// InferShape infer the size of Variables used by this Operator with
  /// information inside scope
Y
Yu Yang 已提交
83
  virtual void InferShape(const Scope& scope) const = 0;
Q
Qiao Longfei 已提交
84 85

  /// Net will call this function to Run an op.
Y
Yu Yang 已提交
86
  virtual void Run(const Scope& scope,
Y
Yu Yang 已提交
87 88
                   const platform::DeviceContext& dev_ctx) const = 0;

Y
Yu Yang 已提交
89 90
  virtual bool IsNetOp() const { return false; }

91 92
  virtual bool SupportGPU() const { return false; }

D
dongzhihong 已提交
93 94 95
  /// rename inputs outputs name
  void Rename(const std::string& old_name, const std::string& new_name);

Q
qiaolongfei 已提交
96 97
  const VarNameMap& Inputs() const { return inputs_; }
  const VarNameMap& Outputs() const { return outputs_; }
Y
Yu Yang 已提交
98
  //! Get a input with argument's name described in `op_proto`
Y
Yan Chunwei 已提交
99
  const std::string& Input(const std::string& name) const;
Y
Yu Yang 已提交
100
  //! Get a input which has multiple variables.
Y
Yu Yang 已提交
101
  const std::vector<std::string>& Inputs(const std::string& name) const;
Y
Yi Wang 已提交
102

Y
Yu Yang 已提交
103
  //! Get a output with argument's name described in `op_proto`
Y
Yan Chunwei 已提交
104
  const std::string& Output(const std::string& name) const;
Y
Yu Yang 已提交
105 106
  //! Get an output which has multiple variables.
  //! TODO add a vector_view to prevent memory copy.
Y
Yu Yang 已提交
107
  const std::vector<std::string>& Outputs(const std::string& name) const;
Y
Yan Chunwei 已提交
108

Y
Yu Yang 已提交
109
  virtual std::vector<std::string> OutputVars(bool has_intermediate) const;
Y
Yan Chunwei 已提交
110

Q
qiaolongfei 已提交
111
  const std::string& Type() const { return type_; }
Q
qiaolongfei 已提交
112
  void SetType(const std::string& type) { type_ = type; }
Y
Yi Wang 已提交
113 114
  const AttributeMap& Attrs() const { return attrs_; }

Y
Yu Yang 已提交
115
  // Return a new operator instance, which is as same as this.
Y
Yu Yang 已提交
116 117
  // Use unique_ptr to prevent caller forget to delete this pointer.
  virtual std::unique_ptr<OperatorBase> Clone() const = 0;
Y
Yu Yang 已提交
118

Q
qiaolongfei 已提交
119
 protected:
Q
Qiao Longfei 已提交
120
  std::string type_;
D
dongzhihong 已提交
121
  // NOTE: in case of OpGrad, inputs_ contains:
Y
Yu Yang 已提交
122
  // I (Inputs)
D
dongzhihong 已提交
123 124
  // O (Outputs)
  // OG (Output Gradients)
Y
Yu Yang 已提交
125
  VarNameMap inputs_;
Y
Yu Yang 已提交
126

D
dongzhihong 已提交
127 128
  // NOTE: in case of OpGrad, outputs_ contains
  // IG (Inputs Gradients)
Y
Yu Yang 已提交
129
  VarNameMap outputs_;
Q
Qiao Longfei 已提交
130
  AttributeMap attrs_;
Y
Yan Chunwei 已提交
131 132
};

Y
Yu Yang 已提交
133 134
// Macro for define a clone method.
// If you are writing an kernel operator, `Clone` will be defined when you
135
// register it. i.e. `Clone` method is not needed to define by yourself.
Y
Yu Yang 已提交
136 137 138 139
#define DEFINE_OP_CLONE_METHOD(CLS)                       \
  std::unique_ptr<OperatorBase> Clone() const final {     \
    return std::unique_ptr<OperatorBase>(new CLS(*this)); \
  }
Y
Yu Yang 已提交
140

Y
Yu Yang 已提交
141 142 143 144
// Macro for define a default constructor for Operator.
// You can also use
//   using PARENT_CLASS::PARENT_CLASS;
// to use parent's constructor.
Y
Yu Yang 已提交
145
#define DEFINE_OP_CONSTRUCTOR(CLS, PARENT_CLS)                                 \
Y
Yu Yang 已提交
146 147 148 149
  CLS(const std::string& type, const VarNameMap& inputs,                       \
      const VarNameMap& outputs, const paddle::framework::AttributeMap& attrs) \
      : PARENT_CLS(type, inputs, outputs, attrs) {}

150 151
class NOP : public OperatorBase {
 public:
152
  using OperatorBase::OperatorBase;
153 154 155
  void InferShape(const Scope& scope) const override {}
  void Run(const Scope& scope,
           const platform::DeviceContext& dev_ctx) const override {}
156 157 158
  std::unique_ptr<OperatorBase> Clone() const override {
    return std::unique_ptr<OperatorBase>(new NOP(*this));
  }
159 160
};

161
class InferShapeContext {
Y
Yan Chunwei 已提交
162
 public:
163 164
  InferShapeContext(const OperatorBase& op, const Scope& scope)
      : op_(op), scope_(scope) {}
165

Y
Yu Yang 已提交
166
  size_t InputSize(const std::string& name) const {
Y
Yu Yang 已提交
167
    return op_.Inputs(name).size();
Y
Yan Chunwei 已提交
168 169
  }

Y
Yu Yang 已提交
170
  size_t OutputSize(const std::string& name) const {
Y
Yu Yang 已提交
171
    return op_.Outputs(name).size();
Y
Yan Chunwei 已提交
172 173
  }

174
  const Variable* InputVar(const std::string& name) const {
Y
Yu Yang 已提交
175
    return scope_.FindVar(op_.Input(name));
Y
Yan Chunwei 已提交
176 177
  }

178
  Variable* OutputVar(const std::string& name) const {
Y
Yu Yang 已提交
179
    return scope_.FindVar(op_.Output(name));
Y
Yan Chunwei 已提交
180 181
  }

182 183
  const std::vector<const Variable*> MultiInputVar(
      const std::string& name) const {
Y
Yan Chunwei 已提交
184 185
    auto names = op_.Inputs(name);
    std::vector<const Variable*> res;
186
    res.reserve(names.size());
Y
Yan Chunwei 已提交
187
    std::transform(
188
        names.begin(), names.end(), std::back_inserter(res),
Y
Yu Yang 已提交
189
        [this](const std::string& name) { return scope_.FindVar(name); });
Y
Yan Chunwei 已提交
190 191 192
    return res;
  }

193
  std::vector<const Variable*> MultiOutputVar(const std::string& name) const {
Y
Yan Chunwei 已提交
194 195
    auto names = op_.Outputs(name);
    std::vector<const Variable*> res;
196
    res.reserve(names.size());
Y
Yan Chunwei 已提交
197
    std::transform(
198
        names.begin(), names.end(), std::back_inserter(res),
Y
Yu Yang 已提交
199
        [this](const std::string& name) { return scope_.FindVar(name); });
Y
Yan Chunwei 已提交
200 201 202
    return res;
  }

203 204
  template <typename T>
  const T* Input(const std::string& name) const {
Y
Yu Yang 已提交
205
    auto* var = InputVar(name);
Y
Yan Chunwei 已提交
206
    PADDLE_ENFORCE_NOT_NULL(var, "Input(%s) should not be nullptr", name);
207
    return &var->Get<T>();
208 209 210 211
  }

  template <typename T>
  T* Output(const std::string& name) const {
212
    auto var = OutputVar(name);
Y
Yan Chunwei 已提交
213
    PADDLE_ENFORCE_NOT_NULL(var, "Output(%s) should not be nullptr", name);
214
    return var->GetMutable<T>();
215 216 217 218 219 220 221 222
  }

  template <typename T>
  const std::vector<const T*> MultiInput(const std::string& name) const {
    auto names = op_.Inputs(name);
    std::vector<const T*> res;
    res.reserve(names.size());
    std::transform(names.begin(), names.end(), std::back_inserter(res),
223
                   [&](const std::string& sub_name) {
224
                     auto var = scope_.FindVar(sub_name);
Y
Yan Chunwei 已提交
225 226 227
                     PADDLE_ENFORCE_NOT_NULL(
                         var, "MultiInput(%s:%s) should not be nullptr", name,
                         sub_name);
228
                     return &var->Get<T>();
229 230 231 232 233 234 235 236 237 238
                   });
    return res;
  }

  template <typename T>
  std::vector<const T*> MultiOutput(const std::string& name) const {
    auto names = op_.Outputs(name);
    std::vector<const T*> res;
    res.reserve(names.size());
    std::transform(names.begin(), names.end(), std::back_inserter(res),
239
                   [&](const std::string& sub_name) {
240
                     auto var = scope_.FindVar(sub_name);
Y
Yan Chunwei 已提交
241
                     PADDLE_ENFORCE_NOT_NULL(
F
fengjiayi 已提交
242
                         var, "MultiOutput(%s:%s) should not be nullptr.", name,
Y
Yan Chunwei 已提交
243
                         sub_name);
244
                     return var->GetMutable<T>();
245 246 247 248 249
                   });
    return res;
  }

  const OperatorBase& op_;
250
  const Scope& scope_;
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
};

template <typename T>
struct EigenDeviceConverter;

template <>
struct EigenDeviceConverter<platform::CPUPlace> {
  using EigenDeviceType = Eigen::DefaultDevice;
};

#ifndef PADDLE_ONLY_CPU
template <>
struct EigenDeviceConverter<platform::GPUPlace> {
  using EigenDeviceType = Eigen::GpuDevice;
};
#endif

268
class ExecutionContext : public InferShapeContext {
269
 public:
270
  ExecutionContext(const OperatorBase& op, const Scope& scope,
D
dongzhihong 已提交
271
                   const platform::DeviceContext* device_context)
272
      : InferShapeContext(op, scope), device_context_(device_context) {}
273

Q
qijun 已提交
274 275 276
  template <typename PlaceType,
            typename DeviceType =
                typename EigenDeviceConverter<PlaceType>::EigenDeviceType>
277
  DeviceType& GetEigenDevice() const;
Q
qijun 已提交
278

D
dongzhihong 已提交
279
  platform::Place GetPlace() const { return device_context_->GetPlace(); }
Q
qijun 已提交
280

Q
qijun 已提交
281
  const platform::DeviceContext* device_context() const {
Q
qijun 已提交
282
    return device_context_;
Q
qijun 已提交
283
  }
Q
qijun 已提交
284

D
dongzhihong 已提交
285
  const platform::DeviceContext* device_context_;
Q
Qiao Longfei 已提交
286 287
};

Q
qijun 已提交
288 289
class OpKernel {
 public:
Q
qijun 已提交
290
  /**
291
   * ExecutionContext is the only parameter of Kernel Run function.
Q
qijun 已提交
292 293
   * Run will get input/output variables, state such as momentum and
   * device resource such as CUDA stream, cublas handle, etc. from
294
   * ExecutionContext. User should construct it before run the Operator.
Q
qijun 已提交
295 296
   */

297
  virtual void Compute(const ExecutionContext& context) const = 0;
Y
Yu Yang 已提交
298 299 300 301

  virtual ~OpKernel() {}
};

Q
Qiao Longfei 已提交
302 303
class OperatorWithKernel : public OperatorBase {
 public:
Y
Yu Yang 已提交
304 305
  struct OpKernelKey {
    platform::Place place_;
Q
Qiao Longfei 已提交
306

Y
Yu Yang 已提交
307
    OpKernelKey() = default;
L
liaogang 已提交
308
    explicit OpKernelKey(const platform::DeviceContext& dev_ctx) {
Y
Yu Yang 已提交
309 310 311
      place_ = dev_ctx.GetPlace();
    }

Q
qijun 已提交
312 313 314
    bool operator==(const OpKernelKey& o) const {
      return platform::places_are_same_class(place_, o.place_);
    }
Y
Yu Yang 已提交
315 316 317 318 319 320 321 322 323 324 325
  };

  struct OpKernelHash {
    std::hash<bool> hash_;
    size_t operator()(const OpKernelKey& key) const {
      return hash_(platform::is_gpu_place(key.place_));
    }
  };

  using OpKernelMap =
      std::unordered_map<OpKernelKey, std::unique_ptr<OpKernel>, OpKernelHash>;
Q
Qiao Longfei 已提交
326

Y
Yu Yang 已提交
327 328 329 330
  OperatorWithKernel(const std::string& type, const VarNameMap& inputs,
                     const VarNameMap& outputs, const AttributeMap& attrs)
      : OperatorBase(type, inputs, outputs, attrs) {}

331
  void InferShape(const Scope& scope) const override {
332
    InferShape(InferShapeContext(*this, scope));
333 334
  }

Y
Yu Yang 已提交
335
  void Run(const Scope& scope,
Y
Yu Yang 已提交
336
           const platform::DeviceContext& dev_ctx) const final {
Q
Qiao Longfei 已提交
337
    auto& opKernel = AllOpKernels().at(type_).at(OpKernelKey(dev_ctx));
338
    opKernel->Compute(ExecutionContext(*this, scope, &dev_ctx));
Q
Qiao Longfei 已提交
339 340
  }

Y
Yu Yang 已提交
341 342 343 344
  static std::unordered_map<std::string /* op_type */, OpKernelMap>&
  AllOpKernels() {
    static std::unordered_map<std::string, OpKernelMap> g_all_op_kernels;
    return g_all_op_kernels;
Y
Yu Yang 已提交
345
  }
Y
Yan Chunwei 已提交
346

347 348 349 350 351 352
  bool SupportGPU() const override {
    OperatorWithKernel::OpKernelKey key;
    key.place_ = platform::GPUPlace();
    return OperatorWithKernel::AllOpKernels().at(type_).count(key) != 0;
  }

Y
Yu Yang 已提交
353
 protected:
354
  virtual void InferShape(const InferShapeContext& ctx) const = 0;
Q
Qiao Longfei 已提交
355 356 357 358
};

}  // namespace framework
}  // namespace paddle