test_softmax_op.py 15.3 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Q
qijun 已提交
15
import unittest
16

Q
qijun 已提交
17
import numpy as np
18
from eager_op_test import OpTest, convert_float_to_uint16
19

20
import paddle
21
import paddle.fluid as fluid
22
import paddle.fluid.core as core
23
import paddle.nn.functional as F
24 25

np.random.seed(10)
Q
qijun 已提交
26 27 28 29


def stable_softmax(x):
    """Compute the softmax of vector x in a numerically stable way."""
30 31
    # clip to shiftx, otherwise, when calc loss with
    # log(exp(shiftx)), may get log(0)=INF
32
    shiftx = (x - np.max(x)).clip(-64.0)
Q
qijun 已提交
33 34 35 36
    exps = np.exp(shiftx)
    return exps / np.sum(exps)


37 38 39 40 41 42 43 44 45
def ref_softmax(x, axis=None, dtype=None):
    x_t = x.copy()
    if dtype is not None:
        x_t = x_t.astype(dtype)
    if axis is None:
        axis = -1
    return np.apply_along_axis(stable_softmax, axis, x_t)


46 47 48 49 50 51
def softmax_wrapper(
    x, axis=-1, dtype=None, name=None, use_cudnn=False, use_mkldnn=False
):
    return paddle.nn.functional.softmax(x, axis=axis, dtype=dtype)


Q
qijun 已提交
52
class TestSoftmaxOp(OpTest):
F
fengjiayi 已提交
53 54 55
    def get_x_shape(self):
        return [10, 10]

D
dengkaipeng 已提交
56 57 58
    def get_axis(self):
        return -1

Q
qijun 已提交
59
    def setUp(self):
Q
fix bug  
qijun 已提交
60
        self.op_type = "softmax"
61
        self.python_api = softmax_wrapper
62
        self.use_cudnn = False
K
Kexin Zhao 已提交
63
        self.use_mkldnn = False
64 65
        # explicilty use float32 for ROCm, as MIOpen does not yet support float64
        self.dtype = np.float32 if core.is_compiled_with_rocm() else np.float64
K
Kexin Zhao 已提交
66
        self.init_kernel_type()
F
fengjiayi 已提交
67
        self.shape = self.get_x_shape()
D
dengkaipeng 已提交
68
        self.axis = self.get_axis()
F
fengjiayi 已提交
69

70
        np.random.seed(0)
F
fengjiayi 已提交
71
        x = np.random.uniform(0.1, 1, self.shape).astype(self.dtype)
D
dengkaipeng 已提交
72
        out = np.apply_along_axis(stable_softmax, self.axis, x)
K
Kexin Zhao 已提交
73 74 75

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
76
        self.attrs = {
D
dengkaipeng 已提交
77
            'axis': self.axis,
78
            'use_cudnn': self.use_cudnn,
79
            'use_mkldnn': self.use_mkldnn,
80
        }
81

K
Kexin Zhao 已提交
82
    def init_kernel_type(self):
83
        pass
Q
qijun 已提交
84

Q
qijun 已提交
85
    def test_check_output(self):
86
        # TODO(wangzhongpu): support mkldnn op in dygraph mode
87 88
        if self.use_cudnn:
            place = core.CUDAPlace(0)
89
            self.check_output_with_place(
90
                place, atol=1e-5, check_dygraph=(not self.use_mkldnn)
91
            )
92
        else:
93
            self.check_output(check_dygraph=(not self.use_mkldnn))
Q
qijun 已提交
94

Q
qijun 已提交
95
    def test_check_grad(self):
96
        # TODO(wangzhongpu): support mkldnn op in dygraph mode
C
chengduo 已提交
97
        if self.use_cudnn or self.dtype == np.float16:
98
            place = core.CUDAPlace(0)
C
chengduo 已提交
99 100
            if core.is_float16_supported(place):
                self.check_grad_with_place(
101 102
                    place,
                    ["X"],
103 104
                    "Out",
                    max_relative_error=0.01,
105
                    check_dygraph=(not self.use_mkldnn),
106
                )
107
        else:
108 109 110 111
            self.check_grad(
                ["X"],
                "Out",
                max_relative_error=0.01,
112
                check_dygraph=(not self.use_mkldnn),
113
            )
114 115


116 117 118
class TestSoftmaxOp_ZeroDim1(TestSoftmaxOp):
    def setUp(self):
        self.op_type = "softmax"
119
        self.python_api = softmax_wrapper
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
        self.use_cudnn = False
        self.use_mkldnn = False
        # explicilty use float32 for ROCm, as MIOpen does not yet support float64
        self.dtype = np.float32 if core.is_compiled_with_rocm() else np.float64

        np.random.seed(0)
        x = np.random.uniform(0.1, 1, []).astype(self.dtype)
        out = np.array(1.0).astype(self.dtype)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
        self.attrs = {
            'axis': -1,
            'use_cudnn': self.use_cudnn,
            'use_mkldnn': self.use_mkldnn,
        }


@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
class TestSoftmaxOp_ZeroDim2(TestSoftmaxOp):
    def setUp(self):
        self.op_type = "softmax"
144
        self.python_api = softmax_wrapper
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
        self.use_cudnn = True
        self.use_mkldnn = False
        # explicilty use float32 for ROCm, as MIOpen does not yet support float64
        self.dtype = np.float32 if core.is_compiled_with_rocm() else np.float64

        np.random.seed(0)
        x = np.random.uniform(0.1, 1, []).astype(self.dtype)
        out = np.array(1.0).astype(self.dtype)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
        self.attrs = {
            'axis': -1,
            'use_cudnn': self.use_cudnn,
            'use_mkldnn': self.use_mkldnn,
        }


F
fengjiayi 已提交
163 164 165 166 167
class TestSoftmaxOp2(TestSoftmaxOp):
    def get_x_shape(self):
        return [2, 3, 4, 5]


D
dengkaipeng 已提交
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
class TestSoftmaxOp3(TestSoftmaxOp):
    def get_x_shape(self):
        return [2, 3, 4, 5]

    def get_axis(self):
        return 0


class TestSoftmaxOp4(TestSoftmaxOp):
    def get_x_shape(self):
        return [2, 3, 4, 5]

    def get_axis(self):
        return 1


class TestSoftmaxOp5(TestSoftmaxOp):
    def get_x_shape(self):
        return [2, 3, 4, 5]

    def get_axis(self):
        return 2


192
class TestSoftmaxOp6(TestSoftmaxOp):
D
dengkaipeng 已提交
193 194 195 196 197 198 199
    def get_x_shape(self):
        return [2, 3, 4, 5]

    def get_axis(self):
        return 3


200 201 202
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
203
class TestSoftmaxCUDNNOp(TestSoftmaxOp):
K
Kexin Zhao 已提交
204 205 206 207
    def init_kernel_type(self):
        self.use_cudnn = True


208 209 210
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
F
fengjiayi 已提交
211 212 213 214 215
class TestSoftmaxCUDNNOp2(TestSoftmaxCUDNNOp):
    def get_x_shape(self):
        return [2, 3, 4, 5]


216 217 218
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
G
GaoWei8 已提交
219 220 221 222 223 224 225 226
class TestSoftmaxCUDNNOp3(TestSoftmaxCUDNNOp):
    def get_x_shape(self):
        return [2, 3, 4, 5]

    def get_axis(self):
        return 0


227 228 229
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
G
GaoWei8 已提交
230 231 232 233 234 235 236 237
class TestSoftmaxCUDNNOp4(TestSoftmaxCUDNNOp):
    def get_x_shape(self):
        return [2, 3, 4, 5]

    def get_axis(self):
        return 1


238 239 240
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
D
dengkaipeng 已提交
241
class TestSoftmaxCUDNNOp5(TestSoftmaxCUDNNOp):
D
dengkaipeng 已提交
242 243 244
    def get_x_shape(self):
        return [2, 3, 4, 5]

G
GaoWei8 已提交
245 246 247 248
    def get_axis(self):
        return 2


249 250 251
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
G
GaoWei8 已提交
252 253 254 255
class TestSoftmaxCUDNNOp6(TestSoftmaxCUDNNOp):
    def get_x_shape(self):
        return [2, 3, 4, 5]

D
dengkaipeng 已提交
256
    def get_axis(self):
257
        return 3
D
dengkaipeng 已提交
258 259


260 261 262
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
G
GaoWei8 已提交
263 264 265 266 267
class TestSoftmaxCUDNNOp7(TestSoftmaxCUDNNOp):
    def get_x_shape(self):
        return [2, 3, 4, 5, 6]


268 269 270
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
G
GaoWei8 已提交
271 272 273 274 275 276 277 278
class TestSoftmaxCUDNNOp8(TestSoftmaxCUDNNOp):
    def get_x_shape(self):
        return [2, 3, 4, 5, 6]

    def get_axis(self):
        return 0


279 280 281
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
G
GaoWei8 已提交
282 283 284 285 286 287 288 289
class TestSoftmaxCUDNNOp9(TestSoftmaxCUDNNOp):
    def get_x_shape(self):
        return [2, 3, 4, 5, 6]

    def get_axis(self):
        return 1


290 291 292
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
G
GaoWei8 已提交
293 294 295 296 297 298 299 300
class TestSoftmaxCUDNNOp10(TestSoftmaxCUDNNOp):
    def get_x_shape(self):
        return [2, 3, 4, 5, 6]

    def get_axis(self):
        return 2


301 302 303
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
G
GaoWei8 已提交
304 305 306 307 308 309 310 311
class TestSoftmaxCUDNNOp11(TestSoftmaxCUDNNOp):
    def get_x_shape(self):
        return [2, 3, 4, 5, 6]

    def get_axis(self):
        return 3


312 313 314
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
G
GaoWei8 已提交
315 316 317 318 319 320 321 322
class TestSoftmaxCUDNNOp12(TestSoftmaxCUDNNOp):
    def get_x_shape(self):
        return [2, 3, 4, 5, 6]

    def get_axis(self):
        return 4


323 324 325
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
326 327 328 329 330 331 332 333 334 335
class TestSoftmaxFP16Op(TestSoftmaxOp):
    def init_kernel_type(self):
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=1e-3)

C
chengduo 已提交
336 337 338 339
    # FIXME: If the x_shape is [10, 10], gradient failed.
    def test_check_grad(self):
        pass

340

341 342 343
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
Z
zhupengyang 已提交
344
class TestSoftmaxFP16Op2(TestSoftmaxFP16Op):
F
fengjiayi 已提交
345
    def get_x_shape(self):
Z
zhupengyang 已提交
346
        return [2, 3, 4, 10]
347

F
fengjiayi 已提交
348

349 350 351
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
K
Kexin Zhao 已提交
352 353
class TestSoftmaxFP16CUDNNOp(TestSoftmaxOp):
    def init_kernel_type(self):
354
        self.use_cudnn = True
K
Kexin Zhao 已提交
355 356 357 358 359 360 361
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=1e-3)
Q
Qiao Longfei 已提交
362 363


364 365 366
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
F
fengjiayi 已提交
367 368 369 370 371
class TestSoftmaxFP16CUDNNOp2(TestSoftmaxFP16CUDNNOp):
    def get_x_shape(self):
        return [2, 3, 4, 5]


372 373 374
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
375 376 377
class TestSoftmaxBF16Op(OpTest):
    def setUp(self):
        self.op_type = "softmax"
378
        self.python_api = softmax_wrapper
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
        self.use_cudnn = self.init_cudnn()
        self.use_mkldnn = False
        self.dtype = np.uint16
        self.shape = [10, 10]
        self.axis = -1

        np.random.seed(0)
        x = np.random.uniform(0.1, 1, self.shape).astype(np.float32)
        out = np.apply_along_axis(stable_softmax, self.axis, x)

        self.inputs = {
            'X': OpTest.np_dtype_to_fluid_dtype(convert_float_to_uint16(x))
        }
        self.outputs = {'Out': convert_float_to_uint16(out)}
        self.attrs = {
            'axis': self.axis,
            'use_cudnn': self.use_cudnn,
396
            'use_mkldnn': self.use_mkldnn,
397 398 399 400 401 402 403
        }

    def init_cudnn(self):
        return False

    def test_check_output(self):
        place = core.CUDAPlace(0)
404
        self.check_output_with_place(place, check_dygraph=(not self.use_mkldnn))
405 406 407

    def test_check_grad(self):
        place = core.CUDAPlace(0)
408 409 410 411 412
        self.check_grad_with_place(
            place,
            ["X"],
            "Out",
            numeric_grad_delta=0.05,
413
            check_dygraph=(not self.use_mkldnn),
414
        )
415 416 417


@unittest.skipIf(
418 419
    not core.is_compiled_with_cuda()
    or core.cudnn_version() < 8100
420
    or paddle.device.cuda.get_device_capability()[0] < 8,
421
    "only support compiled with CUDA and cudnn version need larger than 8.1.0 and device's compute capability is at least 8.0",
422
)
423 424 425 426 427
class TestSoftmaxBF16CUDNNOp(TestSoftmaxBF16Op):
    def init_cudnn(self):
        return True


428
class TestSoftmaxAPI(unittest.TestCase):
429
    def setUp(self):
430 431 432 433 434 435
        self.place = (
            paddle.CUDAPlace(0)
            if core.is_compiled_with_cuda()
            else paddle.CPUPlace()
        )
        self.x_np = np.random.uniform(-1.0, 1.0, [2, 3, 4, 5]).astype('float32')
436
        self.out_ref = np.apply_along_axis(stable_softmax, -1, self.x_np)
437 438 439 440
        self.executed_api()

    def executed_api(self):
        self.softmax = F.softmax
441

442 443
    def test_static_check(self):
        with paddle.static.program_guard(paddle.static.Program()):
444
            x = paddle.fluid.data('X', self.x_np.shape, 'float32')
445
            out1 = self.softmax(x)
446 447
            m = paddle.nn.Softmax()
            out2 = m(x)
448
            exe = paddle.static.Executor(self.place)
449 450 451
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_softmax(self.x_np, axis=-1, dtype=None)
        for r in res:
452
            np.testing.assert_allclose(out_ref, r, rtol=1e-05)
453

454
    def test_dygraph_check(self):
455
        paddle.disable_static(self.place)
456

457
        x = paddle.to_tensor(self.x_np)
458 459
        out1 = self.softmax(x)
        x = paddle.to_tensor(self.x_np)
460 461 462 463
        m = paddle.nn.Softmax()
        out2 = m(x)
        out_ref = ref_softmax(self.x_np, axis=-1, dtype=None)
        for r in [out1, out2]:
464
            np.testing.assert_allclose(out_ref, r.numpy(), rtol=1e-05)
465

466 467
        out1 = self.softmax(x, axis=0)
        x = paddle.to_tensor(self.x_np)
468 469 470 471
        m = paddle.nn.Softmax(axis=0)
        out2 = m(x)
        out_ref = ref_softmax(self.x_np, axis=0, dtype=None)
        for r in [out1, out2]:
472
            np.testing.assert_allclose(out_ref, r.numpy(), rtol=1e-05)
473

474 475 476 477 478 479 480
        # explicilty use float32 for ROCm, as MIOpen does not yet support float64
        if core.is_compiled_with_rocm():
            out = self.softmax(x, dtype=np.float32)
            out_ref = ref_softmax(self.x_np, axis=-1, dtype=np.float32)
        else:
            out = self.softmax(x, dtype=np.float64)
            out_ref = ref_softmax(self.x_np, axis=-1, dtype=np.float64)
481
        np.testing.assert_allclose(out_ref, out.numpy(), rtol=1e-05)
482

483
        paddle.enable_static()
484 485

    def test_error(self):
486 487
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
488
            self.assertRaises(TypeError, self.softmax, 1)
489
            # The input dtype must be float16, float32, float64.
490 491 492
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[2, 3], dtype='int32'
            )
493
            self.assertRaises(TypeError, self.softmax, x_int32)
494
            # support the input dtype is float16
495 496 497
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[2, 3], dtype='float16'
            )
498 499 500
            self.softmax(x_fp16)


501 502 503 504 505
class TestSoftmaxAPI_ZeroDim(unittest.TestCase):
    def test_dygraph(self):
        paddle.disable_static()
        x = paddle.rand([])
        x.stop_gradient = False
506
        x.retain_grads()
507 508

        out = paddle.nn.functional.softmax(x)
509
        out.retain_grads()
510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
        out.backward()
        self.assertEqual(x.shape, [])
        self.assertEqual(x.grad.shape, [])
        self.assertEqual(out.shape, [])
        self.assertEqual(out.grad.shape, [])

        paddle.enable_static()

    def test_static(self):
        main_prog = fluid.Program()
        with fluid.program_guard(main_prog, fluid.Program()):
            x = paddle.rand([])
            x.stop_gradient = False
            out = paddle.nn.functional.softmax(x)
            fluid.backward.append_backward(out)

            # Test compile shape
            self.assertEqual(x.shape, ())
            self.assertEqual(out.shape, ())

            exe = fluid.Executor()
            result = exe.run(main_prog, fetch_list=[x, out])

            # Test runtime shape
            self.assertEqual(result[0].shape, ())
            self.assertEqual(result[1].shape, ())


538 539 540
class TestSoftmaxInplaceAPI(TestSoftmaxAPI):
    def executed_api(self):
        self.softmax = F.softmax_
541 542


C
caoying03 已提交
543
if __name__ == "__main__":
Q
qijun 已提交
544
    unittest.main()