Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
2214394e
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
2214394e
编写于
8月 11, 2020
作者:
Z
zhupengyang
提交者:
GitHub
8月 11, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
softmax: refine doc; input->x (#25976)
上级
3076205b
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
160 addition
and
7 deletion
+160
-7
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+2
-6
python/paddle/fluid/tests/unittests/test_softmax_op.py
python/paddle/fluid/tests/unittests/test_softmax_op.py
+41
-0
python/paddle/nn/functional/activation.py
python/paddle/nn/functional/activation.py
+117
-1
未找到文件。
python/paddle/fluid/layers/nn.py
浏览文件 @
2214394e
...
...
@@ -1190,10 +1190,6 @@ def chunk_eval(input,
def softmax(input, use_cudnn=False, name=None, axis=-1):
"""
:alias_main: paddle.nn.functional.softmax
:alias: paddle.nn.functional.softmax,paddle.nn.functional.activation.softmax
:old_api: paddle.fluid.layers.softmax
This operator implements the softmax layer. The calculation process is as follows:
1. The dimension :attr:`axis` of the ``input`` will be permuted to the last.
...
...
@@ -1307,8 +1303,8 @@ def softmax(input, use_cudnn=False, name=None, axis=-1):
attrs = {"axis": axis, "use_cudnn": use_cudnn}
helper = LayerHelper('softmax', **locals())
check_variable_and_dtype(input, 'input
', ['float16', 'float32', 'float64']
,
'softmax')
check_variable_and_dtype(input, 'input
/x'
,
['float16', 'float32', 'float64'],
'softmax')
dtype = helper.input_dtype()
softmax_out = helper.create_variable_for_type_inference(dtype)
...
...
python/paddle/fluid/tests/unittests/test_softmax_op.py
浏览文件 @
2214394e
...
...
@@ -20,6 +20,9 @@ from op_test import OpTest
import
paddle.fluid.core
as
core
import
paddle.fluid
as
fluid
from
paddle.fluid
import
compiler
,
Program
,
program_guard
import
paddle
np
.
random
.
seed
(
10
)
def
stable_softmax
(
x
):
...
...
@@ -220,5 +223,43 @@ class TestSoftmaxFP16CUDNNOp2(TestSoftmaxFP16CUDNNOp):
return
[
2
,
3
,
4
,
5
]
class
TestNnFunctionalSoftmaxApi
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
place
=
paddle
.
CUDAPlace
(
0
)
if
core
.
is_compiled_with_cuda
(
)
else
paddle
.
CPUPlace
()
self
.
x_np
=
np
.
random
.
uniform
(
-
1.
,
1.
,
[
2
,
3
,
4
,
5
]).
astype
(
'float32'
)
self
.
out_ref
=
np
.
apply_along_axis
(
stable_softmax
,
-
1
,
self
.
x_np
)
def
test_api_static
(
self
):
train_program
=
Program
()
startup_program
=
Program
()
with
program_guard
(
train_program
,
startup_program
):
x
=
paddle
.
data
(
'X'
,
self
.
x_np
.
shape
,
'float32'
)
out
=
paddle
.
nn
.
functional
.
softmax
(
x
)
exe
=
paddle
.
Executor
(
self
.
place
)
res
=
exe
.
run
(
train_program
,
feed
=
{
'X'
:
self
.
x_np
},
fetch_list
=
[
out
])
assert
np
.
allclose
(
self
.
out_ref
,
res
[
0
])
def
test_api_imperative
(
self
):
with
paddle
.
imperative
.
guard
(
self
.
place
):
x
=
paddle
.
imperative
.
to_variable
(
self
.
x_np
)
out
=
paddle
.
nn
.
functional
.
softmax
(
x
)
assert
np
.
allclose
(
self
.
out_ref
,
out
.
numpy
())
out
=
paddle
.
nn
.
functional
.
softmax
(
x
,
axis
=
0
)
out_ref
=
np
.
apply_along_axis
(
stable_softmax
,
0
,
self
.
x_np
)
assert
np
.
allclose
(
out_ref
,
out
.
numpy
())
def
test_error
(
self
):
with
program_guard
(
Program
(),
Program
()):
# The x should be variable and its dtype should be float32, float64.
self
.
assertRaises
(
TypeError
,
paddle
.
nn
.
functional
.
softmax
,
[
1
])
x
=
paddle
.
data
(
name
=
'x'
,
shape
=
[
2
,
3
],
dtype
=
'int32'
)
self
.
assertRaises
(
TypeError
,
paddle
.
nn
.
functional
.
softmax
,
x
)
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/nn/functional/activation.py
浏览文件 @
2214394e
...
...
@@ -26,7 +26,6 @@ from ...fluid.layers import maxout #DEFINE_ALIAS
from
...fluid.layers
import
relu6
#DEFINE_ALIAS
from
...fluid.layers
import
selu
#DEFINE_ALIAS
from
...fluid.layers
import
soft_relu
#DEFINE_ALIAS
from
...fluid.layers
import
softmax
#DEFINE_ALIAS
from
...fluid.layers
import
softplus
#DEFINE_ALIAS
from
...fluid.layers
import
softshrink
#DEFINE_ALIAS
from
...fluid.layers
import
softsign
#DEFINE_ALIAS
...
...
@@ -67,6 +66,7 @@ from ...fluid.layer_helper import LayerHelper
from
...fluid.framework
import
in_dygraph_mode
,
convert_np_dtype_to_dtype_
from
...fluid
import
core
from
...fluid.data_feeder
import
check_variable_and_dtype
import
paddle
def
hsigmoid
(
input
,
...
...
@@ -305,6 +305,122 @@ def sigmoid(input, inplace=False, name=None):
return
outputs
def
softmax
(
x
,
axis
=-
1
,
name
=
None
):
"""
This operator implements the softmax layer. The calculation process is as follows:
1. The dimension :attr:`axis` of ``x`` will be permuted to the last.
2. Then ``x`` will be logically flattened to a 2-D matrix. The matrix's second
dimension(row length) is the same as the dimension :attr:`axis` of ``x``,
and the first dimension(column length) is the product of all other dimensions
of ``x``. For each row of the matrix, the softmax operator squashes the
K-dimensional(K is the width of the matrix, which is also the size of ``x``'s
dimension :attr:`axis`) vector of arbitrary real values to a K-dimensional
vector of real values in the range [0, 1] that add up to 1.
3. After the softmax operation is completed, the inverse operations of steps 1 and 2
are performed to restore the two-dimensional matrix to the same dimension as the ``x`` .
It computes the exponential of the given dimension and the sum of exponential
values of all the other dimensions in the K-dimensional vector input.
Then the ratio of the exponential of the given dimension and the sum of
exponential values of all the other dimensions is the output of the softmax
operator.
For each row :math:`i` and each column :math:`j` in the matrix, we have:
.. math::
out[i, j] =
\\
frac{\exp(x[i, j])}{\sum_j(exp(x[i, j])}
Example:
.. code-block:: text
Case 1:
Input:
x.shape = [2, 3, 4]
x.data = [[[2.0, 3.0, 4.0, 5.0],
[3.0, 4.0, 5.0, 6.0],
[7.0, 8.0, 8.0, 9.0]],
[[1.0, 2.0, 3.0, 4.0],
[5.0, 6.0, 7.0, 8.0],
[6.0, 7.0, 8.0, 9.0]]]
Attrs:
axis = -1
Output:
out.shape = [2, 3, 4]
out.data = [[[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
[0.07232949, 0.19661193, 0.19661193, 0.53444665]],
[[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
[0.0320586 , 0.08714432, 0.23688282, 0.64391426]]]
Case 2:
Input:
x.shape = [2, 3, 4]
x.data = [[[2.0, 3.0, 4.0, 5.0],
[3.0, 4.0, 5.0, 6.0],
[7.0, 8.0, 8.0, 9.0]],
[[1.0, 2.0, 3.0, 4.0],
[5.0, 6.0, 7.0, 8.0],
[6.0, 7.0, 8.0, 9.0]]]
Attrs:
axis = 1
Output:
out.shape = [2, 3, 4]
out.data = [[[0.00657326, 0.00657326, 0.01714783, 0.01714783],
[0.01786798, 0.01786798, 0.04661262, 0.04661262],
[0.97555875, 0.97555875, 0.93623955, 0.93623955]],
[[0.00490169, 0.00490169, 0.00490169, 0.00490169],
[0.26762315, 0.26762315, 0.26762315, 0.26762315],
[0.72747516, 0.72747516, 0.72747516, 0.72747516]]]
Args:
x (Tensor): The input multi-dimension Tensor with data type float32, float64.
axis (int, optional): The axis along which to perform softmax calculations.
It should be in range [-D, D), where D is the dimensions of ``x`` .
When ``axis`` < 0, it works the same way as :math:`axis + D` .
Default is -1.
name (str, optional): Name for the operation (optional, default is None).
For more information, please refer to :ref:`api_guide_Name`.
Returns:
A Tensor with the same data type and shape as ``x`` .
Examples:
.. code-block:: python
import paddle
import paddle.nn.functional as F
import numpy as np
paddle.enable_imperative()
x = np.array([[[2.0, 3.0, 4.0, 5.0],
[3.0, 4.0, 5.0, 6.0],
[7.0, 8.0, 8.0, 9.0]],
[[1.0, 2.0, 3.0, 4.0],
[5.0, 6.0, 7.0, 8.0],
[6.0, 7.0, 8.0, 9.0]]], 'float32')
x = paddle.imperative.to_variable(x)
out = F.softmax(x)
# [[[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
# [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
# [0.07232949, 0.19661193, 0.19661193, 0.53444665]],
# [[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
# [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
# [0.0320586 , 0.08714432, 0.23688282, 0.64391426]]]
"""
return
paddle
.
fluid
.
layers
.
softmax
(
input
=
x
,
axis
=
axis
,
name
=
name
)
def
log_softmax
(
input
,
axis
=
None
,
dtype
=
None
,
name
=
None
):
"""
:alias_main: paddle.nn.functional.log_softmax
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录