Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
6cb66721
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
6cb66721
编写于
3月 04, 2019
作者:
D
dengkaipeng
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add cudnn support. test=develop
上级
518325f1
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
164 addition
and
50 deletion
+164
-50
paddle/fluid/operators/softmax_cudnn_op.cu.cc
paddle/fluid/operators/softmax_cudnn_op.cu.cc
+54
-16
paddle/fluid/operators/softmax_op.h
paddle/fluid/operators/softmax_op.h
+52
-31
python/paddle/fluid/tests/unittests/test_softmax_op.py
python/paddle/fluid/tests/unittests/test_softmax_op.py
+58
-3
未找到文件。
paddle/fluid/operators/softmax_cudnn_op.cu.cc
浏览文件 @
6cb66721
...
...
@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/math/softmax.h"
#include "paddle/fluid/operators/softmax_op.h"
#include "paddle/fluid/framework/op_registry.h"
namespace
paddle
{
...
...
@@ -24,22 +25,40 @@ template <typename T>
class
SoftmaxCUDNNKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
&
dev_ctx
=
context
.
template
device_context
<
platform
::
CUDADeviceContext
>();
auto
*
X
=
context
.
Input
<
Tensor
>
(
"X"
);
auto
*
Out
=
context
.
Output
<
Tensor
>
(
"Out"
);
// auto dims = X->dims();
const
int
axis
=
context
.
Attr
<
int
>
(
"axis"
);
int
rank
=
X
->
dims
().
size
();
// allocate memory on device.
Out
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
dims
=
X
->
dims
();
auto
flattened_dims
=
framework
::
flatten_to_2d
(
dims
,
dims
.
size
()
-
1
);
framework
::
LoDTensor
flattened_x
;
framework
::
LoDTensor
flattened_out
;
flattened_x
.
ShareDataWith
(
*
X
).
Resize
(
flattened_dims
);
flattened_out
.
ShareDataWith
(
*
Out
).
Resize
(
flattened_dims
);
std
::
vector
<
int
>
perm
,
shape
;
CalcTransPermAndShapeByAxis
(
*
X
,
axis
,
&
perm
,
&
shape
);
Tensor
X_2d
,
Out_2d
;
Tensor
X_trans
,
Out_trans
;
if
(
axis
!=
-
1
&&
axis
!=
rank
-
1
)
{
X_trans
.
mutable_data
<
T
>
(
framework
::
make_ddim
(
shape
),
context
.
GetPlace
());
Out_trans
.
mutable_data
<
T
>
(
framework
::
make_ddim
(
shape
),
context
.
GetPlace
());
TransCompute
<
platform
::
CUDADeviceContext
,
T
>
(
rank
,
dev_ctx
,
*
X
,
&
X_trans
,
perm
);
TransCompute
<
platform
::
CUDADeviceContext
,
T
>
(
rank
,
dev_ctx
,
*
Out
,
&
Out_trans
,
perm
);
X_2d
=
framework
::
ReshapeToMatrix
(
X_trans
,
rank
-
1
);
Out_2d
=
framework
::
ReshapeToMatrix
(
Out_trans
,
rank
-
1
);
}
else
{
X_2d
=
framework
::
ReshapeToMatrix
(
*
X
,
rank
-
1
);
Out_2d
=
framework
::
ReshapeToMatrix
(
*
Out
,
rank
-
1
);
}
math
::
SoftmaxCUDNNFunctor
<
T
>
()(
context
.
template
device_context
<
platform
::
CUDADeviceContext
>(),
&
flattened_x
,
&
flattened_out
);
&
X_2d
,
&
Out_2d
);
if
(
axis
!=
-
1
&&
axis
!=
rank
-
1
)
{
TransCompute
<
platform
::
CUDADeviceContext
,
T
>
(
rank
,
dev_ctx
,
Out_trans
,
Out
,
perm
);
}
}
};
...
...
@@ -47,25 +66,44 @@ template <typename T>
class
SoftmaxGradCUDNNKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
&
dev_ctx
=
context
.
template
device_context
<
platform
::
CUDADeviceContext
>();
auto
*
Out
=
context
.
Input
<
Tensor
>
(
"Out"
);
auto
*
dOut
=
context
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
dX
=
context
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
const
int
axis
=
context
.
Attr
<
int
>
(
"axis"
);
int
rank
=
Out
->
dims
().
size
();
// allocate memory on device.
dX
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
dims
=
Out
->
dims
();
auto
flattened_dims
=
framework
::
flatten_to_2d
(
dims
,
dims
.
size
()
-
1
);
framework
::
LoDTensor
flattened_out
;
framework
::
LoDTensor
flattened_d_out
;
framework
::
LoDTensor
flattened_d_x
;
flattened_out
.
ShareDataWith
(
*
Out
).
Resize
(
flattened_dims
);
flattened_d_out
.
ShareDataWith
(
*
dOut
).
Resize
(
flattened_dims
);
flattened_d_x
.
ShareDataWith
(
*
dX
).
Resize
(
flattened_dims
);
std
::
vector
<
int
>
perm
,
shape
;
CalcTransPermAndShapeByAxis
(
*
dX
,
axis
,
&
perm
,
&
shape
);
Tensor
dX_2d
,
Out_2d
,
dOut_2d
;
Tensor
dX_trans
,
Out_trans
,
dOut_trans
;
if
(
axis
!=
-
1
&&
axis
!=
rank
-
1
)
{
dX_trans
.
mutable_data
<
T
>
(
framework
::
make_ddim
(
shape
),
context
.
GetPlace
());
Out_trans
.
mutable_data
<
T
>
(
framework
::
make_ddim
(
shape
),
context
.
GetPlace
());
dOut_trans
.
mutable_data
<
T
>
(
framework
::
make_ddim
(
shape
),
context
.
GetPlace
());
TransCompute
<
platform
::
CUDADeviceContext
,
T
>
(
rank
,
dev_ctx
,
*
dX
,
&
dX_trans
,
perm
);
TransCompute
<
platform
::
CUDADeviceContext
,
T
>
(
rank
,
dev_ctx
,
*
Out
,
&
Out_trans
,
perm
);
TransCompute
<
platform
::
CUDADeviceContext
,
T
>
(
rank
,
dev_ctx
,
*
dOut
,
&
dOut_trans
,
perm
);
dX_2d
=
framework
::
ReshapeToMatrix
(
dX_trans
,
rank
-
1
);
Out_2d
=
framework
::
ReshapeToMatrix
(
Out_trans
,
rank
-
1
);
dOut_2d
=
framework
::
ReshapeToMatrix
(
dOut_trans
,
rank
-
1
);
}
else
{
dX_2d
=
framework
::
ReshapeToMatrix
(
*
dX
,
rank
-
1
);
Out_2d
=
framework
::
ReshapeToMatrix
(
*
Out
,
rank
-
1
);
dOut_2d
=
framework
::
ReshapeToMatrix
(
*
dOut
,
rank
-
1
);
}
math
::
SoftmaxGradCUDNNFunctor
<
T
>
()(
context
.
template
device_context
<
platform
::
CUDADeviceContext
>(),
&
flattened_out
,
&
flattened_d_out
,
&
flattened_d_x
);
&
Out_2d
,
&
dOut_2d
,
&
dX_2d
);
if
(
axis
!=
-
1
&&
axis
!=
rank
-
1
)
{
TransCompute
<
platform
::
CUDADeviceContext
,
T
>
(
rank
,
dev_ctx
,
dX_trans
,
dX
,
perm
);
}
}
};
...
...
paddle/fluid/operators/softmax_op.h
浏览文件 @
6cb66721
...
...
@@ -23,59 +23,58 @@ namespace operators {
using
Tensor
=
framework
::
Tensor
;
template
<
typename
DeviceContext
,
typename
T
>
static
inline
void
TransposeAxisToEnd
(
const
Tensor
&
x
,
const
Tensor
&
out
,
Tensor
*
x_trans
,
Tensor
*
out_trans
,
const
int
axis
,
std
::
vector
<
int
>
perm
,
const
framework
::
ExecutionContext
&
ctx
)
{
static
inline
void
CalcTransPermAndShapeByAxis
(
const
Tensor
&
x
,
const
int
axis
,
std
::
vector
<
int
>*
perm
,
std
::
vector
<
int
>*
shape
)
{
auto
dim_x
=
x
.
dims
();
int
rank
=
dim_x
.
size
();
if
(
axis
==
-
1
||
axis
==
rank
-
1
)
{
*
x_trans
=
x
;
*
out_trans
=
out
;
return
;
}
auto
&
dev_ctx
=
ctx
.
template
device_context
<
DeviceContext
>();
std
::
vector
<
int
>
shape
;
for
(
int
i
=
0
;
i
<
rank
-
1
;
i
++
)
{
if
(
i
==
axis
)
{
perm
.
push_back
(
rank
-
1
);
shape
.
push_back
(
dim_x
[
rank
-
1
]);
perm
->
push_back
(
rank
-
1
);
shape
->
push_back
(
dim_x
[
rank
-
1
]);
}
else
{
perm
.
push_back
(
i
);
shape
.
push_back
(
dim_x
[
i
]);
perm
->
push_back
(
i
);
shape
->
push_back
(
dim_x
[
i
]);
}
}
perm
.
push_back
(
axis
);
shape
.
push_back
(
dim_x
[
axis
]);
x_trans
->
mutable_data
<
T
>
(
framework
::
make_ddim
(
shape
),
ctx
.
GetPlace
());
out_trans
->
mutable_data
<
T
>
(
framework
::
make_ddim
(
shape
),
ctx
.
GetPlace
());
TransCompute
<
DeviceContext
,
T
>
(
rank
,
dev_ctx
,
x
,
x_trans
,
perm
);
TransCompute
<
DeviceContext
,
T
>
(
rank
,
dev_ctx
,
out
,
out_trans
,
perm
);
perm
->
push_back
(
axis
);
shape
->
push_back
(
dim_x
[
axis
]);
}
template
<
typename
DeviceContext
,
typename
T
>
class
SoftmaxKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
&
dev_ctx
=
context
.
template
device_context
<
DeviceContext
>();
auto
*
X
=
context
.
Input
<
Tensor
>
(
"X"
);
auto
*
Out
=
context
.
Output
<
Tensor
>
(
"Out"
);
const
int
axis
=
context
.
Attr
<
int
>
(
"axis"
);
int
rank
=
X
->
dims
().
size
();
// allocate memory on device.
Out
->
mutable_data
<
T
>
(
context
.
GetPlace
());
std
::
vector
<
int
>
perm
,
shape
;
CalcTransPermAndShapeByAxis
(
*
X
,
axis
,
&
perm
,
&
shape
);
Tensor
X_2d
,
Out_2d
;
Tensor
X_trans
,
Out_trans
;
std
::
vector
<
int
>
perm
;
TransposeAxisToEnd
<
DeviceContext
,
T
>
(
*
X
,
*
Out
,
&
X_trans
,
&
Out_trans
,
axis
,
perm
,
context
);
if
(
axis
!=
-
1
&&
axis
!=
rank
-
1
)
{
X_trans
.
mutable_data
<
T
>
(
framework
::
make_ddim
(
shape
),
context
.
GetPlace
());
Out_trans
.
mutable_data
<
T
>
(
framework
::
make_ddim
(
shape
),
context
.
GetPlace
());
TransCompute
<
DeviceContext
,
T
>
(
rank
,
dev_ctx
,
*
X
,
&
X_trans
,
perm
);
TransCompute
<
DeviceContext
,
T
>
(
rank
,
dev_ctx
,
*
Out
,
&
Out_trans
,
perm
);
X_2d
=
framework
::
ReshapeToMatrix
(
X_trans
,
rank
-
1
);
Out_2d
=
framework
::
ReshapeToMatrix
(
Out_trans
,
rank
-
1
);
}
else
{
X_2d
=
framework
::
ReshapeToMatrix
(
*
X
,
rank
-
1
);
Out_2d
=
framework
::
ReshapeToMatrix
(
*
Out
,
rank
-
1
);
}
int
rank
=
X
->
dims
().
size
();
Tensor
X_2d
=
framework
::
ReshapeToMatrix
(
X_trans
,
rank
-
1
);
Tensor
Out_2d
=
framework
::
ReshapeToMatrix
(
Out_trans
,
rank
-
1
);
#ifdef PADDLE_ON_INFERENCE
math
::
SoftmaxFunctor
<
DeviceContext
,
T
,
true
>
()(
...
...
@@ -86,7 +85,6 @@ class SoftmaxKernel : public framework::OpKernel<T> {
#endif
if
(
axis
!=
-
1
&&
axis
!=
rank
-
1
)
{
auto
&
dev_ctx
=
context
.
template
device_context
<
DeviceContext
>();
TransCompute
<
DeviceContext
,
T
>
(
rank
,
dev_ctx
,
Out_trans
,
Out
,
perm
);
}
}
...
...
@@ -96,21 +94,44 @@ template <typename DeviceContext, typename T>
class
SoftmaxGradKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
&
dev_ctx
=
context
.
template
device_context
<
DeviceContext
>();
auto
*
Out
=
context
.
Input
<
Tensor
>
(
"Out"
);
auto
*
dOut
=
context
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
dX
=
context
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
const
int
axis
=
context
.
Attr
<
int
>
(
"axis"
);
int
rank
=
Out
->
dims
().
size
();
// allocate memory on device.
dX
->
mutable_data
<
T
>
(
context
.
GetPlace
());
int
rank
=
Out
->
dims
().
size
();
Tensor
Out_2d
=
framework
::
ReshapeToMatrix
(
*
Out
,
rank
-
1
);
Tensor
dOut_2d
=
framework
::
ReshapeToMatrix
(
*
dOut
,
rank
-
1
);
Tensor
dX_2d
=
framework
::
ReshapeToMatrix
(
*
dX
,
rank
-
1
);
std
::
vector
<
int
>
perm
,
shape
;
CalcTransPermAndShapeByAxis
(
*
dX
,
axis
,
&
perm
,
&
shape
);
Tensor
dX_2d
,
Out_2d
,
dOut_2d
;
Tensor
dX_trans
,
Out_trans
,
dOut_trans
;
if
(
axis
!=
-
1
&&
axis
!=
rank
-
1
)
{
dX_trans
.
mutable_data
<
T
>
(
framework
::
make_ddim
(
shape
),
context
.
GetPlace
());
Out_trans
.
mutable_data
<
T
>
(
framework
::
make_ddim
(
shape
),
context
.
GetPlace
());
dOut_trans
.
mutable_data
<
T
>
(
framework
::
make_ddim
(
shape
),
context
.
GetPlace
());
TransCompute
<
DeviceContext
,
T
>
(
rank
,
dev_ctx
,
*
dX
,
&
dX_trans
,
perm
);
TransCompute
<
DeviceContext
,
T
>
(
rank
,
dev_ctx
,
*
Out
,
&
Out_trans
,
perm
);
TransCompute
<
DeviceContext
,
T
>
(
rank
,
dev_ctx
,
*
dOut
,
&
dOut_trans
,
perm
);
dX_2d
=
framework
::
ReshapeToMatrix
(
dX_trans
,
rank
-
1
);
Out_2d
=
framework
::
ReshapeToMatrix
(
Out_trans
,
rank
-
1
);
dOut_2d
=
framework
::
ReshapeToMatrix
(
dOut_trans
,
rank
-
1
);
}
else
{
dX_2d
=
framework
::
ReshapeToMatrix
(
*
dX
,
rank
-
1
);
Out_2d
=
framework
::
ReshapeToMatrix
(
*
Out
,
rank
-
1
);
dOut_2d
=
framework
::
ReshapeToMatrix
(
*
dOut
,
rank
-
1
);
}
math
::
SoftmaxGradFunctor
<
DeviceContext
,
T
>
()(
context
.
template
device_context
<
DeviceContext
>(),
&
Out_2d
,
&
dOut_2d
,
&
dX_2d
);
if
(
axis
!=
-
1
&&
axis
!=
rank
-
1
)
{
TransCompute
<
DeviceContext
,
T
>
(
rank
,
dev_ctx
,
dX_trans
,
dX
,
perm
);
}
}
};
...
...
python/paddle/fluid/tests/unittests/test_softmax_op.py
浏览文件 @
6cb66721
...
...
@@ -31,6 +31,9 @@ class TestSoftmaxOp(OpTest):
def
get_x_shape
(
self
):
return
[
10
,
10
]
def
get_axis
(
self
):
return
-
1
def
setUp
(
self
):
self
.
op_type
=
"softmax"
self
.
use_cudnn
=
False
...
...
@@ -38,15 +41,15 @@ class TestSoftmaxOp(OpTest):
self
.
dtype
=
np
.
float32
self
.
init_kernel_type
()
self
.
shape
=
self
.
get_x_shape
()
self
.
axis
=
self
.
get_axis
()
x
=
np
.
random
.
uniform
(
0.1
,
1
,
self
.
shape
).
astype
(
self
.
dtype
)
out
=
np
.
apply_along_axis
(
stable_softmax
,
1
,
x
.
reshape
([
-
1
,
self
.
shape
[
-
1
]]))
out
=
out
.
reshape
(
self
.
shape
)
out
=
np
.
apply_along_axis
(
stable_softmax
,
self
.
axis
,
x
)
self
.
inputs
=
{
'X'
:
OpTest
.
np_dtype_to_fluid_dtype
(
x
)}
self
.
outputs
=
{
'Out'
:
out
}
self
.
attrs
=
{
'axis'
:
self
.
axis
,
'use_cudnn'
:
self
.
use_cudnn
,
'use_mkldnn'
:
self
.
use_mkldnn
}
...
...
@@ -76,6 +79,38 @@ class TestSoftmaxOp2(TestSoftmaxOp):
return
[
2
,
3
,
4
,
5
]
class
TestSoftmaxOp3
(
TestSoftmaxOp
):
def
get_x_shape
(
self
):
return
[
2
,
3
,
4
,
5
]
def
get_axis
(
self
):
return
0
class
TestSoftmaxOp4
(
TestSoftmaxOp
):
def
get_x_shape
(
self
):
return
[
2
,
3
,
4
,
5
]
def
get_axis
(
self
):
return
1
class
TestSoftmaxOp5
(
TestSoftmaxOp
):
def
get_x_shape
(
self
):
return
[
2
,
3
,
4
,
5
]
def
get_axis
(
self
):
return
2
class
TestSoftmaxOp5
(
TestSoftmaxOp
):
def
get_x_shape
(
self
):
return
[
2
,
3
,
4
,
5
]
def
get_axis
(
self
):
return
3
@
unittest
.
skipIf
(
not
core
.
is_compiled_with_cuda
(),
"core is not compiled with CUDA"
)
class
TestSoftmaxCUDNNOp
(
TestSoftmaxOp
):
...
...
@@ -90,6 +125,26 @@ class TestSoftmaxCUDNNOp2(TestSoftmaxCUDNNOp):
return
[
2
,
3
,
4
,
5
]
@
unittest
.
skipIf
(
not
core
.
is_compiled_with_cuda
(),
"core is not compiled with CUDA"
)
class
TestSoftmaxCUDNNOp3
(
TestSoftmaxCUDNNOp
):
def
get_x_shape
(
self
):
return
[
2
,
3
,
4
,
5
]
def
get_axis
(
self
):
return
1
@
unittest
.
skipIf
(
not
core
.
is_compiled_with_cuda
(),
"core is not compiled with CUDA"
)
class
TestSoftmaxCUDNNOp2
(
TestSoftmaxCUDNNOp
):
def
get_x_shape
(
self
):
return
[
2
,
3
,
4
,
5
]
def
get_axis
(
self
):
return
2
@
unittest
.
skipIf
(
not
core
.
is_compiled_with_cuda
(),
"core is not compiled with CUDA"
)
class
TestSoftmaxFP16Op
(
TestSoftmaxOp
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录