ops.py 20.0 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
P
peizhilin 已提交
16
import os
17
from .layer_function_generator import generate_layer_fn, generate_activation_fn, add_sample_code
C
chengduo 已提交
18
from .. import core
19 20
from ..framework import convert_np_dtype_to_dtype_, Variable
from ..data_feeder import convert_dtype, check_variable_and_dtype, check_type, check_dtype
21
from paddle.utils import deprecated
Y
Yang Yu 已提交
22

23 24
__deprecated_func_name__ = {'tanh_shrink': 'tanhshrink', }

25
__activations_noattr__ = [
26 27
    'sigmoid',
    'logsigmoid',
28 29 30 31 32 33
    'tanh_shrink',
    'softplus',
    'softsign',
]

__unary_func__ = [
34 35
    'exp',
    'tanh',
36
    'atan',
37
    'sqrt',
Z
zhoukunsheng 已提交
38
    'rsqrt',
39 40 41
    'abs',
    'ceil',
    'floor',
C
add cos  
chengduoZH 已提交
42
    'cos',
43
    'acos',
C
add sin  
chengduoZH 已提交
44
    'sin',
45
    'sinh',
46
    'asin',
47
    'cosh',
48 49 50
    'round',
    'reciprocal',
    'square',
Y
Yu Yang 已提交
51 52
]

X
Xin Pan 已提交
53
__all__ = []
Y
Yang Yu 已提交
54

Y
Yu Yang 已提交
55
for _OP in set(__all__):
56
    globals()[_OP] = generate_layer_fn(_OP)
Y
yuyang18 已提交
57

S
sneaxiy 已提交
58 59 60 61 62
# It is a hot fix in some unittest using:
#   fluid.layers.scale(x=x, scale=10.0, out=out_var)
# e.g.: test_program_code.py, test_dist_train.py
globals()['_scale'] = generate_layer_fn('scale')

S
sneaxiy 已提交
63 64
globals()['_elementwise_div'] = generate_layer_fn('elementwise_div')

65
__all__ += __activations_noattr__
66
__all__ += __unary_func__
67 68

for _OP in set(__activations_noattr__):
69 70 71
    _new_OP = _OP
    if _OP in __deprecated_func_name__:
        _new_OP = __deprecated_func_name__[_OP]
72 73
    func = generate_activation_fn(_OP)
    func = deprecated(
74
        since="2.0.0", update_to="paddle.nn.functional.%s" % (_new_OP))(func)
75 76 77
    globals()[_OP] = func

for _OP in set(__unary_func__):
78 79 80
    _new_OP = _OP
    if _OP in __deprecated_func_name__:
        _new_OP = __deprecated_func_name__[_OP]
81
    func = generate_activation_fn(_OP)
82
    func = deprecated(since="2.0.0", update_to="paddle.%s" % (_new_OP))(func)
83
    globals()[_OP] = func
84

85 86 87 88 89 90 91
add_sample_code(globals()["sigmoid"], r"""
Examples:
    .. code-block:: python

        import numpy as np
        import paddle
        import paddle.nn.functional as F
92
        paddle.disable_static()
93 94

        x_data = np.array([-0.4, -0.2, 0.1, 0.3])
95
        x = paddle.to_variable(x_data)
96 97 98 99 100 101 102 103 104 105 106 107 108
        out = F.sigmoid(x)
        print(out.numpy())
        # [0.40131234 0.450166   0.52497919 0.57444252]

""")

add_sample_code(globals()["logsigmoid"], r"""
Examples:
    .. code-block:: python

        import numpy as np
        import paddle
        import paddle.nn.functional as F
109
        paddle.disable_static()
110 111

        x_data = np.array([-0.4, -0.2, 0.1, 0.3])
112
        x = paddle.to_variable(x_data)
113 114 115 116 117 118 119 120 121 122 123 124
        out = F.logsigmoid(x)
        print(out.numpy())
        # [-0.91301525 -0.79813887 -0.64439666 -0.55435524]

""")

add_sample_code(globals()["exp"], r"""
Examples:
    .. code-block:: python

        import numpy as np
        import paddle
125
        paddle.disable_static()
126 127

        x_data = np.array([-0.4, -0.2, 0.1, 0.3])
128
        x = paddle.to_variable(x_data)
129 130 131 132 133 134 135 136 137 138 139 140
        out = paddle.exp(x)
        print(out.numpy())
        # [0.67032005 0.81873075 1.10517092 1.34985881]

""")

add_sample_code(globals()["tanh"], r"""
Examples:
    .. code-block:: python

        import numpy as np
        import paddle
141
        paddle.disable_static()
142 143

        x_data = np.array([-0.4, -0.2, 0.1, 0.3])
144
        x = paddle.to_variable(x_data)
145 146 147 148 149 150 151 152 153 154 155 156
        out = paddle.tanh(x)
        print(out.numpy())
        # [-0.37994896 -0.19737532  0.09966799  0.29131261]

""")

add_sample_code(globals()["atan"], r"""
Examples:
    .. code-block:: python

        import numpy as np
        import paddle
157
        paddle.disable_static()
158 159

        x_data = np.array([-0.4, -0.2, 0.1, 0.3])
160
        x = paddle.to_variable(x_data)
161 162 163 164 165 166 167 168 169 170 171 172
        out = paddle.atan(x)
        print(out.numpy())
        # [-0.38050638 -0.19739556  0.09966865  0.29145679]

""")

add_sample_code(globals()["tanh_shrink"], r"""
Examples:
    .. code-block:: python

        import paddle
        import paddle.nn.functional as F
173 174
        import numpy as np

175
        paddle.disable_static()
176

177 178
        x = paddle.to_tensor(np.array([-0.4, -0.2, 0.1, 0.3]))
        out = F.tanhshrink(x) # [-0.020051, -0.00262468, 0.000332005, 0.00868739]
179 180 181 182 183 184 185 186 187

""")

add_sample_code(globals()["sqrt"], r"""
Examples:
    .. code-block:: python

        import numpy as np
        import paddle
188
        paddle.disable_static()
189 190

        x_data = np.array([0.1, 0.2, 0.3, 0.4])
191
        x = paddle.to_variable(x_data)
192 193 194 195 196 197 198 199 200 201 202 203
        out = paddle.sqrt(x)
        print(out.numpy())
        # [0.31622777 0.4472136  0.54772256 0.63245553]

""")

add_sample_code(globals()["rsqrt"], r"""
Examples:
    .. code-block:: python

        import numpy as np
        import paddle
204
        paddle.disable_static()
205 206

        x_data = np.array([0.1, 0.2, 0.3, 0.4])
207
        x = paddle.to_variable(x_data)
208 209 210 211 212 213 214 215 216 217 218 219
        out = paddle.rsqrt(x)
        print(out.numpy())
        # [3.16227766 2.23606798 1.82574186 1.58113883]

""")

add_sample_code(globals()["abs"], r"""
Examples:
    .. code-block:: python

        import numpy as np
        import paddle
220
        paddle.disable_static()
221 222

        x_data = np.array([-0.4, -0.2, 0.1, 0.3])
223
        x = paddle.to_variable(x_data)
224 225 226 227 228 229 230 231 232 233 234 235
        out = paddle.abs(x)
        print(out.numpy())
        # [0.4 0.2 0.1 0.3]

""")

add_sample_code(globals()["ceil"], r"""
Examples:
    .. code-block:: python

        import numpy as np
        import paddle
236
        paddle.disable_static()
237 238

        x_data = np.array([-0.4, -0.2, 0.1, 0.3])
239
        x = paddle.to_variable(x_data)
240 241 242 243 244 245 246 247 248 249 250 251
        out = paddle.ceil(x)
        print(out.numpy())
        # [-0. -0.  1.  1.]

""")

add_sample_code(globals()["floor"], r"""
Examples:
    .. code-block:: python

        import numpy as np
        import paddle
252
        paddle.disable_static()
253 254

        x_data = np.array([-0.4, -0.2, 0.1, 0.3])
255
        x = paddle.to_variable(x_data)
256 257 258 259 260 261 262 263 264 265 266 267
        out = paddle.floor(x)
        print(out.numpy())
        # [-1. -1.  0.  0.]

""")

add_sample_code(globals()["cos"], r"""
Examples:
    .. code-block:: python

        import numpy as np
        import paddle
268
        paddle.disable_static()
269 270

        x_data = np.array([-0.4, -0.2, 0.1, 0.3])
271
        x = paddle.to_variable(x_data)
272 273 274 275 276 277 278 279 280 281 282 283
        out = paddle.cos(x)
        print(out.numpy())
        # [0.92106099 0.98006658 0.99500417 0.95533649]

""")

add_sample_code(globals()["acos"], r"""
Examples:
    .. code-block:: python

        import numpy as np
        import paddle
284
        paddle.disable_static()
285 286

        x_data = np.array([-0.4, -0.2, 0.1, 0.3])
287
        x = paddle.to_variable(x_data)
288 289 290 291 292 293 294 295 296 297 298 299
        out = paddle.acos(x)
        print(out.numpy())
        # [1.98231317 1.77215425 1.47062891 1.26610367]

""")

add_sample_code(globals()["sin"], r"""
Examples:
    .. code-block:: python

        import numpy as np
        import paddle
300
        paddle.disable_static()
301 302

        x_data = np.array([-0.4, -0.2, 0.1, 0.3])
303
        x = paddle.to_variable(x_data)
304 305 306 307 308 309 310 311 312 313 314 315
        out = paddle.sin(x)
        print(out.numpy())
        # [-0.38941834 -0.19866933  0.09983342  0.29552021]

""")

add_sample_code(globals()["asin"], r"""
Examples:
    .. code-block:: python

        import numpy as np
        import paddle
316
        paddle.disable_static()
317 318

        x_data = np.array([-0.4, -0.2, 0.1, 0.3])
319
        x = paddle.to_variable(x_data)
320 321 322 323 324 325 326 327 328 329 330 331
        out = paddle.asin(x)
        print(out.numpy())
        # [-0.41151685 -0.20135792  0.10016742  0.30469265]

""")

add_sample_code(globals()["cosh"], r"""
Examples:
    .. code-block:: python

        import numpy as np
        import paddle
332
        paddle.disable_static()
333 334

        x_data = np.array([-0.4, -0.2, 0.1, 0.3])
335
        x = paddle.to_variable(x_data)
336 337 338 339 340 341 342 343 344 345 346 347
        out = paddle.cosh(x)
        print(out.numpy())
        # [1.08107237 1.02006676 1.00500417 1.04533851]

""")

add_sample_code(globals()["sinh"], r"""
Examples:
    .. code-block:: python

        import numpy as np
        import paddle
348
        paddle.disable_static()
349 350

        x_data = np.array([-0.4, -0.2, 0.1, 0.3])
351
        x = paddle.to_variable(x_data)
352 353 354 355 356 357 358 359 360 361 362 363
        out = paddle.sinh(x)
        print(out.numpy())
        # [-0.41075233 -0.201336    0.10016675  0.30452029]

""")

add_sample_code(globals()["round"], r"""
Examples:
    .. code-block:: python

        import numpy as np
        import paddle
364
        paddle.disable_static()
365 366

        x_data = np.array([-0.5, -0.2, 0.6, 1.5])
367
        x = paddle.to_variable(x_data)
368 369 370 371 372 373 374 375 376 377 378 379
        out = paddle.round(x)
        print(out.numpy())
        # [-1. -0.  1.  2.]

""")

add_sample_code(globals()["reciprocal"], r"""
Examples:
    .. code-block:: python

        import numpy as np
        import paddle
380
        paddle.disable_static()
381 382

        x_data = np.array([-0.4, -0.2, 0.1, 0.3])
383
        x = paddle.to_variable(x_data)
384 385 386 387 388 389 390 391 392 393 394 395
        out = paddle.reciprocal(x)
        print(out.numpy())
        # [-2.5        -5.         10.          3.33333333]

""")

add_sample_code(globals()["square"], r"""
Examples:
    .. code-block:: python

        import numpy as np
        import paddle
396
        paddle.disable_static()
397 398

        x_data = np.array([-0.4, -0.2, 0.1, 0.3])
399
        x = paddle.to_variable(x_data)
400 401 402 403 404 405 406 407 408 409 410 411
        out = paddle.square(x)
        print(out.numpy())
        # [0.16 0.04 0.01 0.09]

""")

add_sample_code(globals()["softplus"], r"""
Examples:
    .. code-block:: python

        import paddle
        import paddle.nn.functional as F
412 413
        import numpy as np

414
        paddle.disable_static()
415

416 417
        x = paddle.to_tensor(np.array([-0.4, -0.2, 0.1, 0.3]))
        out = F.softplus(x) # [0.513015, 0.598139, 0.744397, 0.854355]
418 419 420 421 422 423 424 425 426

""")

add_sample_code(globals()["softsign"], r"""
Examples:
    .. code-block:: python

        import paddle
        import paddle.nn.functional as F
427 428
        import numpy as np

429
        paddle.disable_static()
430

431 432
        x = paddle.to_tensor(np.array([-0.4, -0.2, 0.1, 0.3]))
        out = F.softsign(x) # [-0.285714, -0.166667, 0.0909091, 0.230769]
433 434 435

""")

436 437 438 439 440 441
__all__ += ['softshrink']

_softshrink_ = generate_layer_fn('softshrink')


def softshrink(x, alpha=None):
442 443 444
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'softshrink')

445 446 447 448 449 450 451 452 453 454 455 456
    locals_var = locals().copy()
    kwargs = dict()
    for name, val in locals_var.items():
        if val is not None:
            if name == 'alpha':
                kwargs['lambda'] = val
            else:
                kwargs[name] = val
    return _softshrink_(**kwargs)


softshrink.__doc__ = """
457 458 459
	:alias_main: paddle.nn.functional.softshrink
	:alias: paddle.nn.functional.softshrink,paddle.nn.functional.activation.softshrink
	:old_api: paddle.fluid.layers.softshrink
S
swtkiwi 已提交
460

461 462 463
:strong:`Softshrink Activation Operator`

..  math::
464 465 466 467 468
    out = \\begin{cases}
            x - \\alpha, \\text{if } x > \\alpha \\\\
            x + \\alpha, \\text{if } x < -\\alpha \\\\
            0,  \\text{otherwise}
          \\end{cases}
469 470 471


Args:
472 473
    x: Input of Softshrink operator, an N-D Tensor, with data type float32, float64 or float16.
    alpha (float): non-negative offset
474 475
    
Returns:
476
    Output of Softshrink operator with the same type of input.
477 478 479 480 481

Examples:
    .. code-block:: python
    
        import paddle.fluid as fluid
482
        data = fluid.data(name="input", shape=[None, 784])
483 484 485
        result = fluid.layers.softshrink(x=data, alpha=0.3)
"""

Y
yuyang18 已提交
486 487 488 489 490
__all__ += ['hard_shrink']

_hard_shrink_ = generate_layer_fn('hard_shrink')


491
@deprecated(since="2.0.0", update_to="paddle.nn.functional.hardshrink")
Y
yuyang18 已提交
492
def hard_shrink(x, threshold=None):
493 494 495
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'hard_shrink')

496
    locals_var = locals().copy()
Y
yuyang18 已提交
497
    kwargs = dict()
498
    for name, val in locals_var.items():
Y
yuyang18 已提交
499 500 501 502 503
        if val is not None:
            kwargs[name] = val
    return _hard_shrink_(**kwargs)


Y
yuyang18 已提交
504
hard_shrink.__doc__ = _hard_shrink_.__doc__ + """
Y
yuyang18 已提交
505 506
Examples:

507
    >>> import paddle.fluid as fluid
Y
yuyang18 已提交
508 509 510
    >>> data = fluid.layers.data(name="input", shape=[784])
    >>> result = fluid.layers.hard_shrink(x=data, threshold=0.3)
"""
Y
yuyang18 已提交
511

W
wopeizl 已提交
512 513 514 515 516
__all__ += ['cumsum']

_cum_sum_ = generate_layer_fn('cumsum')


517 518 519 520
@deprecated(
    since="2.0.0",
    update_to="paddle.cumsum",
    reason="New APIs for Paddle 2.0 are coming.")
W
wopeizl 已提交
521
def cumsum(x, axis=None, exclusive=None, reverse=None):
522
    check_type(x, 'x', (Variable), 'cumsum')
523
    locals_var = locals().copy()
W
wopeizl 已提交
524
    kwargs = dict()
525
    for name, val in locals_var.items():
W
wopeizl 已提交
526 527 528 529 530
        if val is not None:
            kwargs[name] = val
    return _cum_sum_(**kwargs)


L
liu zhengxi 已提交
531
cumsum.__doc__ = """
532 533 534
	:alias_main: paddle.cumsum
	:alias: paddle.cumsum,paddle.tensor.cumsum,paddle.tensor.math.cumsum
	:old_api: paddle.fluid.layers.cumsum
S
swtkiwi 已提交
535

L
liu zhengxi 已提交
536
The cumulative sum of the elements along a given axis. By default, the first element of the result is the same of the first element of the input. If exlusive is true, the first element of the result is 0.
W
wopeizl 已提交
537

L
liu zhengxi 已提交
538 539
Args:
    x (Variable): Input of cumsum operator, the Tensor/LoDTensor needed to be cumsumed. 
T
tianshuo78520a 已提交
540
    axis (int, optional): The dimension to accumulate along. -1 means the last dimension. Default is -1.
L
liu zhengxi 已提交
541 542 543 544 545 546 547 548 549 550 551 552
    exclusive (bool, optional): Whether to perform exclusive cumsum. Default is False.
    reverse (bool, optional): If true, the cumsum is performed in the reversed direction. Default is False.

Returns:
    Variable(Tensor/LoDTensor): The result of cumsum operator, output of cumsum operator. 

Examples:
    .. code-block:: python
        
        import paddle.fluid as fluid
        data = fluid.layers.data(name="input", shape=[32, 784])
        result = fluid.layers.cumsum(data, axis=0)
W
wopeizl 已提交
553
"""
Y
yuyang18 已提交
554 555 556 557 558 559 560

__all__ += ['thresholded_relu']

_thresholded_relu_ = generate_layer_fn('thresholded_relu')


def thresholded_relu(x, threshold=None):
561 562 563
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'thresholded_relu')

564
    locals_var = locals().copy()
Y
yuyang18 已提交
565
    kwargs = dict()
566
    for name, val in locals_var.items():
Y
yuyang18 已提交
567 568 569
        if val is not None:
            kwargs[name] = val

C
chengduo 已提交
570
    return _thresholded_relu_(**kwargs)
Y
yuyang18 已提交
571 572


573
thresholded_relu.__doc__ = """
574 575 576
	:alias_main: paddle.nn.functional.thresholded_relu
	:alias: paddle.nn.functional.thresholded_relu,paddle.nn.functional.activation.thresholded_relu
	:old_api: paddle.fluid.layers.thresholded_relu
S
swtkiwi 已提交
577

578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
:strong:`Thresholded ReLU Activation Operator`

Equation:
    ..  math::
        out = \\begin{cases}
            x, &if x > threshold \\\\
            0, &otherwise
            \\end{cases}

Args:
    x(Variable): The input of Thresholded ReLU op, Tensor or LoDTensor, dtype: float32 or float64.
        
    threshold(float, optional): The threshold value. Note that if the arg `threshold` is not set, the threshold in the equation is 1.0.

Returns:

    Variable: The output of Thresholded ReLU op, Tensor or LoDTensor, dtype: float32 or float64, the same as the input, shape: the same as the input.

Y
yuyang18 已提交
596
Examples:
597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622
    
    .. code-block:: python
    
        # declarative mode
        import numpy as np
        from paddle import fluid
        
        x = fluid.data(name="x", shape=(-1, 3), dtype="float32")
        y = fluid.layers.thresholded_relu(x, threshold=0.1)
        
        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        start = fluid.default_startup_program()
        main = fluid.default_main_program()
        
        data = np.random.randn(2, 3).astype("float32")
        exe.run(start)
        
        y_np, = exe.run(main, feed={"x": data}, fetch_list=[y])
        
        data
        # array([[ 0.21134382, -1.1805999 ,  0.32876605],
        #        [-1.2210793 , -0.7365624 ,  1.0013918 ]], dtype=float32)
        y_np
        # array([[ 0.21134382, -0.        ,  0.32876605],
        #        [-0.        , -0.        ,  1.0013918 ]], dtype=float32)
Y
yuyang18 已提交
623

624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642
    .. code-block:: python
    
        # imperative mode
        import numpy as np
        from paddle import fluid
        import paddle.fluid.dygraph as dg
        
        data = np.random.randn(2, 3).astype("float32")
        place = fluid.CPUPlace()
        with dg.guard(place) as g:
            x = dg.to_variable(data)
            y = fluid.layers.thresholded_relu(x, threshold=0.1)
            y_np = y.numpy()
        data
        # array([[ 0.21134382, -1.1805999 ,  0.32876605],
        #        [-1.2210793 , -0.7365624 ,  1.0013918 ]], dtype=float32)
        y_np
        # array([[ 0.21134382, -0.        ,  0.32876605],
        #        [-0.        , -0.        ,  1.0013918 ]], dtype=float32)
Y
yuyang18 已提交
643
"""
F
Feiyu Chan 已提交
644 645 646 647 648 649

__all__ += ['gelu']

_gelu_ = generate_layer_fn('gelu')


650
@deprecated(since="2.0.0", update_to="paddle.nn.functional.gelu")
651
def gelu(x, approximate=False):
F
Feiyu Chan 已提交
652 653 654 655 656 657 658 659 660 661 662 663 664
    locals_var = locals().copy()
    kwargs = dict()
    for name, val in locals_var.items():
        if val is not None:
            kwargs[name] = val
    return _gelu_(**kwargs)


gelu.__doc__ = """
:strong:`GeLU Activation Operator`
For more details, see [Gaussian Error Linear Units](https://arxiv.org/abs/1606.08415).

Equation:
665 666 667 668 669
    if approximate is True
    ..  math::
        out = 0.5 * x * (1 + tanh(\\sqrt{\\frac{2}{\\pi}} * (x + 0.044715x^{3})))

    else
F
Feiyu Chan 已提交
670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728
    ..  math::
        out = 0.5 * x * (1 + erf(\\frac{x}{\\sqrt{2}}))

Args:

    x(Variable): The input of GeLU op, Tensor or LoDTensor, dtype: float32 or float64.

Returns:

    Variable: The output of GeLU op, Tensor or LoDTensor, dtype: float32 or float64, the same as the input, shape: the same as the input.

Examples:
    
    .. code-block:: python
    
        # declarative mode
        import numpy as np
        from paddle import fluid
        
        x = fluid.data(name="x", shape=(-1, 3), dtype="float32")
        y = fluid.layers.gelu(x)
        
        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        start = fluid.default_startup_program()
        main = fluid.default_main_program()
        
        data = np.random.randn(2, 3).astype("float32")
        exe.run(start)
        
        y_np, = exe.run(main, feed={"x": data}, fetch_list=[y])
        
        data
        # array([[ 0.87165993, -1.0541513 , -0.37214822],
        #         [ 0.15647964,  0.32496083,  0.33045998]], dtype=float32)
        y_np
        # array([[ 0.70456535, -0.15380788, -0.13207214],
        #        [ 0.08796856,  0.20387867,  0.2080159 ]], dtype=float32)

    .. code-block:: python
    
        # imperative mode
        import numpy as np
        from paddle import fluid
        import paddle.fluid.dygraph as dg
        
        data = np.random.randn(2, 3).astype("float32")
        place = fluid.CPUPlace()
        with dg.guard(place) as g:
            x = dg.to_variable(data)
            y = fluid.layers.gelu(x)
            y_np = y.numpy()
        data
        # array([[ 0.87165993, -1.0541513 , -0.37214822],
        #        [ 0.15647964,  0.32496083,  0.33045998]], dtype=float32)
        y_np
        # array([[ 0.70456535, -0.15380788, -0.13207214],
        #        [ 0.08796856,  0.20387867,  0.2080159 ]], dtype=float32)
"""
F
Feiyu Chan 已提交
729 730 731 732 733 734

__all__ += ['erf']

_erf_ = generate_layer_fn('erf')


W
WuHaobo 已提交
735
def erf(x, name=None):
F
Feiyu Chan 已提交
736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
    locals_var = locals().copy()
    kwargs = dict()
    for name, val in locals_var.items():
        if val is not None:
            kwargs[name] = val
    return _erf_(**kwargs)


erf.__doc__ = """
:strong:`Erf Operator`
For more details, see [Error function](https://en.wikipedia.org/wiki/Error_function).

Equation:
    ..  math::
        out = \\frac{2}{\\sqrt{\\pi}} \\int_{0}^{x}e^{- \\eta^{2}}d\\eta

Args:

W
WuHaobo 已提交
754
    x (Tensor): The input tensor, it's data type should be float32, float64.
F
Feiyu Chan 已提交
755 756 757

Returns:

W
WuHaobo 已提交
758
    Tensor: The output of Erf op, dtype: float32 or float64, the same as the input, shape: the same as the input.
F
Feiyu Chan 已提交
759 760 761 762 763 764

Examples:
    
    .. code-block:: python
    
        import numpy as np
W
WuHaobo 已提交
765 766 767 768 769 770 771
        import paddle
        paddle.disable_static()
        x_data = np.array([-0.4, -0.2, 0.1, 0.3])
        x = paddle.to_tensor(x_data)
        out = paddle.erf(x)
        print(out.numpy())
        # [-0.42839236 -0.22270259  0.11246292  0.32862676]
F
Feiyu Chan 已提交
772
"""