ops.py 11.9 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
P
peizhilin 已提交
16
import os
17
from .layer_function_generator import generate_layer_fn, generate_activation_fn
C
chengduo 已提交
18
from .. import core
19 20
from ..framework import convert_np_dtype_to_dtype_, Variable
from ..data_feeder import convert_dtype, check_variable_and_dtype, check_type, check_dtype
Y
Yang Yu 已提交
21

22
__activations_noattr__ = [
23 24 25 26
    'sigmoid',
    'logsigmoid',
    'exp',
    'tanh',
27
    'atan',
28 29
    'tanh_shrink',
    'sqrt',
Z
zhoukunsheng 已提交
30
    'rsqrt',
31 32 33
    'abs',
    'ceil',
    'floor',
C
add cos  
chengduoZH 已提交
34
    'cos',
35 36
    'acos',
    'asin',
C
add sin  
chengduoZH 已提交
37
    'sin',
38 39 40 41 42
    'round',
    'reciprocal',
    'square',
    'softplus',
    'softsign',
Y
Yu Yang 已提交
43 44
]

X
Xin Pan 已提交
45
__all__ = []
Y
Yang Yu 已提交
46

Y
Yu Yang 已提交
47
for _OP in set(__all__):
48
    globals()[_OP] = generate_layer_fn(_OP)
Y
yuyang18 已提交
49

S
sneaxiy 已提交
50 51 52 53 54
# It is a hot fix in some unittest using:
#   fluid.layers.scale(x=x, scale=10.0, out=out_var)
# e.g.: test_program_code.py, test_dist_train.py
globals()['_scale'] = generate_layer_fn('scale')

S
sneaxiy 已提交
55 56
globals()['_elementwise_div'] = generate_layer_fn('elementwise_div')

57 58 59
__all__ += __activations_noattr__

for _OP in set(__activations_noattr__):
60
    globals()[_OP] = generate_activation_fn(_OP)
61

62 63 64 65 66 67
__all__ += ['softshrink']

_softshrink_ = generate_layer_fn('softshrink')


def softshrink(x, alpha=None):
68 69 70
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'softshrink')

71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
    locals_var = locals().copy()
    kwargs = dict()
    for name, val in locals_var.items():
        if val is not None:
            if name == 'alpha':
                kwargs['lambda'] = val
            else:
                kwargs[name] = val
    return _softshrink_(**kwargs)


softshrink.__doc__ = """
:strong:`Softshrink Activation Operator`

..  math::
86 87 88 89 90
    out = \\begin{cases}
            x - \\alpha, \\text{if } x > \\alpha \\\\
            x + \\alpha, \\text{if } x < -\\alpha \\\\
            0,  \\text{otherwise}
          \\end{cases}
91 92 93


Args:
94 95
    x: Input of Softshrink operator, an N-D Tensor, with data type float32, float64 or float16.
    alpha (float): non-negative offset
96 97
    
Returns:
98
    Output of Softshrink operator with the same type of input.
99 100 101 102 103

Examples:
    .. code-block:: python
    
        import paddle.fluid as fluid
104
        data = fluid.data(name="input", shape=[None, 784])
105 106 107
        result = fluid.layers.softshrink(x=data, alpha=0.3)
"""

Y
yuyang18 已提交
108 109 110 111 112 113
__all__ += ['hard_shrink']

_hard_shrink_ = generate_layer_fn('hard_shrink')


def hard_shrink(x, threshold=None):
114 115 116
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'hard_shrink')

117
    locals_var = locals().copy()
Y
yuyang18 已提交
118
    kwargs = dict()
119
    for name, val in locals_var.items():
Y
yuyang18 已提交
120 121 122 123 124
        if val is not None:
            kwargs[name] = val
    return _hard_shrink_(**kwargs)


Y
yuyang18 已提交
125
hard_shrink.__doc__ = _hard_shrink_.__doc__ + """
Y
yuyang18 已提交
126 127
Examples:

128
    >>> import paddle.fluid as fluid
Y
yuyang18 已提交
129 130 131
    >>> data = fluid.layers.data(name="input", shape=[784])
    >>> result = fluid.layers.hard_shrink(x=data, threshold=0.3)
"""
Y
yuyang18 已提交
132

W
wopeizl 已提交
133 134 135 136 137 138
__all__ += ['cumsum']

_cum_sum_ = generate_layer_fn('cumsum')


def cumsum(x, axis=None, exclusive=None, reverse=None):
139
    check_type(x, 'x', (Variable), 'cumsum')
140
    locals_var = locals().copy()
W
wopeizl 已提交
141
    kwargs = dict()
142
    for name, val in locals_var.items():
W
wopeizl 已提交
143 144 145 146 147
        if val is not None:
            kwargs[name] = val
    return _cum_sum_(**kwargs)


L
liu zhengxi 已提交
148 149
cumsum.__doc__ = """
The cumulative sum of the elements along a given axis. By default, the first element of the result is the same of the first element of the input. If exlusive is true, the first element of the result is 0.
W
wopeizl 已提交
150

L
liu zhengxi 已提交
151 152
Args:
    x (Variable): Input of cumsum operator, the Tensor/LoDTensor needed to be cumsumed. 
T
tianshuo78520a 已提交
153
    axis (int, optional): The dimension to accumulate along. -1 means the last dimension. Default is -1.
L
liu zhengxi 已提交
154 155 156 157 158 159 160 161 162 163 164 165
    exclusive (bool, optional): Whether to perform exclusive cumsum. Default is False.
    reverse (bool, optional): If true, the cumsum is performed in the reversed direction. Default is False.

Returns:
    Variable(Tensor/LoDTensor): The result of cumsum operator, output of cumsum operator. 

Examples:
    .. code-block:: python
        
        import paddle.fluid as fluid
        data = fluid.layers.data(name="input", shape=[32, 784])
        result = fluid.layers.cumsum(data, axis=0)
W
wopeizl 已提交
166
"""
Y
yuyang18 已提交
167 168 169 170 171 172 173

__all__ += ['thresholded_relu']

_thresholded_relu_ = generate_layer_fn('thresholded_relu')


def thresholded_relu(x, threshold=None):
174 175 176
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'thresholded_relu')

177
    locals_var = locals().copy()
Y
yuyang18 已提交
178
    kwargs = dict()
179
    for name, val in locals_var.items():
Y
yuyang18 已提交
180 181 182
        if val is not None:
            kwargs[name] = val

C
chengduo 已提交
183
    return _thresholded_relu_(**kwargs)
Y
yuyang18 已提交
184 185


186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
thresholded_relu.__doc__ = """
:strong:`Thresholded ReLU Activation Operator`

Equation:
    ..  math::
        out = \\begin{cases}
            x, &if x > threshold \\\\
            0, &otherwise
            \\end{cases}

Args:
    x(Variable): The input of Thresholded ReLU op, Tensor or LoDTensor, dtype: float32 or float64.
        
    threshold(float, optional): The threshold value. Note that if the arg `threshold` is not set, the threshold in the equation is 1.0.

Returns:

    Variable: The output of Thresholded ReLU op, Tensor or LoDTensor, dtype: float32 or float64, the same as the input, shape: the same as the input.

Y
yuyang18 已提交
205
Examples:
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
    
    .. code-block:: python
    
        # declarative mode
        import numpy as np
        from paddle import fluid
        
        x = fluid.data(name="x", shape=(-1, 3), dtype="float32")
        y = fluid.layers.thresholded_relu(x, threshold=0.1)
        
        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        start = fluid.default_startup_program()
        main = fluid.default_main_program()
        
        data = np.random.randn(2, 3).astype("float32")
        exe.run(start)
        
        y_np, = exe.run(main, feed={"x": data}, fetch_list=[y])
        
        data
        # array([[ 0.21134382, -1.1805999 ,  0.32876605],
        #        [-1.2210793 , -0.7365624 ,  1.0013918 ]], dtype=float32)
        y_np
        # array([[ 0.21134382, -0.        ,  0.32876605],
        #        [-0.        , -0.        ,  1.0013918 ]], dtype=float32)
Y
yuyang18 已提交
232

233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
    .. code-block:: python
    
        # imperative mode
        import numpy as np
        from paddle import fluid
        import paddle.fluid.dygraph as dg
        
        data = np.random.randn(2, 3).astype("float32")
        place = fluid.CPUPlace()
        with dg.guard(place) as g:
            x = dg.to_variable(data)
            y = fluid.layers.thresholded_relu(x, threshold=0.1)
            y_np = y.numpy()
        data
        # array([[ 0.21134382, -1.1805999 ,  0.32876605],
        #        [-1.2210793 , -0.7365624 ,  1.0013918 ]], dtype=float32)
        y_np
        # array([[ 0.21134382, -0.        ,  0.32876605],
        #        [-0.        , -0.        ,  1.0013918 ]], dtype=float32)
Y
yuyang18 已提交
252
"""
F
Feiyu Chan 已提交
253 254 255 256 257 258

__all__ += ['gelu']

_gelu_ = generate_layer_fn('gelu')


259
def gelu(x, approximate=False):
F
Feiyu Chan 已提交
260 261 262 263 264 265 266 267 268 269 270 271 272
    locals_var = locals().copy()
    kwargs = dict()
    for name, val in locals_var.items():
        if val is not None:
            kwargs[name] = val
    return _gelu_(**kwargs)


gelu.__doc__ = """
:strong:`GeLU Activation Operator`
For more details, see [Gaussian Error Linear Units](https://arxiv.org/abs/1606.08415).

Equation:
273 274 275 276 277
    if approximate is True
    ..  math::
        out = 0.5 * x * (1 + tanh(\\sqrt{\\frac{2}{\\pi}} * (x + 0.044715x^{3})))

    else
F
Feiyu Chan 已提交
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
    ..  math::
        out = 0.5 * x * (1 + erf(\\frac{x}{\\sqrt{2}}))

Args:

    x(Variable): The input of GeLU op, Tensor or LoDTensor, dtype: float32 or float64.

Returns:

    Variable: The output of GeLU op, Tensor or LoDTensor, dtype: float32 or float64, the same as the input, shape: the same as the input.

Examples:
    
    .. code-block:: python
    
        # declarative mode
        import numpy as np
        from paddle import fluid
        
        x = fluid.data(name="x", shape=(-1, 3), dtype="float32")
        y = fluid.layers.gelu(x)
        
        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        start = fluid.default_startup_program()
        main = fluid.default_main_program()
        
        data = np.random.randn(2, 3).astype("float32")
        exe.run(start)
        
        y_np, = exe.run(main, feed={"x": data}, fetch_list=[y])
        
        data
        # array([[ 0.87165993, -1.0541513 , -0.37214822],
        #         [ 0.15647964,  0.32496083,  0.33045998]], dtype=float32)
        y_np
        # array([[ 0.70456535, -0.15380788, -0.13207214],
        #        [ 0.08796856,  0.20387867,  0.2080159 ]], dtype=float32)

    .. code-block:: python
    
        # imperative mode
        import numpy as np
        from paddle import fluid
        import paddle.fluid.dygraph as dg
        
        data = np.random.randn(2, 3).astype("float32")
        place = fluid.CPUPlace()
        with dg.guard(place) as g:
            x = dg.to_variable(data)
            y = fluid.layers.gelu(x)
            y_np = y.numpy()
        data
        # array([[ 0.87165993, -1.0541513 , -0.37214822],
        #        [ 0.15647964,  0.32496083,  0.33045998]], dtype=float32)
        y_np
        # array([[ 0.70456535, -0.15380788, -0.13207214],
        #        [ 0.08796856,  0.20387867,  0.2080159 ]], dtype=float32)
"""
F
Feiyu Chan 已提交
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415

__all__ += ['erf']

_erf_ = generate_layer_fn('erf')


def erf(x):
    locals_var = locals().copy()
    kwargs = dict()
    for name, val in locals_var.items():
        if val is not None:
            kwargs[name] = val
    return _erf_(**kwargs)


erf.__doc__ = """
:strong:`Erf Operator`
For more details, see [Error function](https://en.wikipedia.org/wiki/Error_function).

Equation:
    ..  math::
        out = \\frac{2}{\\sqrt{\\pi}} \\int_{0}^{x}e^{- \\eta^{2}}d\\eta

Args:

    x(Variable): The input of Erf op, Tensor or LoDTensor, dtype: float32 or float64.

Returns:

    Variable: The output of Erf op, Tensor or LoDTensor, dtype: float32 or float64, the same as the input, shape: the same as the input.

Examples:
    
    .. code-block:: python
    
        # declarative mode
        import numpy as np
        from paddle import fluid
        
        x = fluid.data(name="x", shape=(-1, 3), dtype="float32")
        y = fluid.layers.erf(x)
        
        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        start = fluid.default_startup_program()
        main = fluid.default_main_program()
        
        data = np.random.randn(2, 3).astype("float32")
        exe.run(start)
        
        y_np, = exe.run(main, feed={"x": data}, fetch_list=[y])
        
        data
        # array([[ 0.4643714 , -1.1509596 ,  1.2538221 ],
        #        [ 0.34369683,  0.27478245,  1.1805398 ]], dtype=float32)
        y_np
        # array([[ 0.48863927, -0.8964121 ,  0.9237998 ],
        #        [ 0.37307587,  0.30242872,  0.9049887 ]], dtype=float32)

    .. code-block:: python
    
        # imperative mode
        import numpy as np
        from paddle import fluid
        import paddle.fluid.dygraph as dg
        
        data = np.random.randn(2, 3).astype("float32")
        place = fluid.CPUPlace()
        with dg.guard(place) as g:
            x = dg.to_variable(data)
            y = fluid.layers.erf(x)
            y_np = y.numpy()
        data
        # array([[ 0.4643714 , -1.1509596 ,  1.2538221 ],
        #        [ 0.34369683,  0.27478245,  1.1805398 ]], dtype=float32)
        y_np
        # array([[ 0.48863927, -0.8964121 ,  0.9237998 ],
        #        [ 0.37307587,  0.30242872,  0.9049887 ]], dtype=float32)
"""