distribute_transpiler.py 53.7 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
"""
Transpile the program to distributed data-parallelism programs.
The main_program will be transformed to use a remote parameter server
to do parameter optimization. And the optimization graph will be put
into a parameter server program.

Use different methods to split trainable variables to different
parameter servers.

Steps to transpile trainer:
1. split variable to multiple blocks, aligned by product(dim[1:]) (width).
2. rename splited grad variables to add trainer_id suffix ".trainer_%d".
3. modify trainer program add split_op to each grad variable.
4. append send_op to send splited variables to server and fetch
    params(splited blocks or origin param) from server.
5. append concat_op to merge splited blocks to update local weights.

Steps to transpile pserver:
1. create new program for parameter server.
2. create params and grad variables that assigned to current server instance.
3. create a sub-block in the server side program
4. append ops that should run on current server instance.
5. add listen_and_serv op
"""
D
dzhwinter 已提交
38

T
typhoonzero 已提交
39
from __future__ import print_function
40

T
typhoonzero 已提交
41
import math
42
import numpy as np
43

Y
Yancey1989 已提交
44
from ps_dispatcher import RoundRobin, HashName, PSDispatcher
Y
Yancey 已提交
45
from .. import core, framework
T
typhoonzero 已提交
46 47 48
from ..framework import Program, default_main_program, \
                        default_startup_program, \
                        Variable, Parameter, grad_var_name
49
from details import *
50 51 52

LOOKUP_TABLE_TYPE = "lookup_table"
LOOKUP_TABLE_GRAD_TYPE = "lookup_table_grad"
53
OP_ROLE_VAR_ATTR_NAME = core.op_proto_and_checker_maker.kOpRoleVarAttrName()
Y
Yancey1989 已提交
54 55 56
RPC_OP_ROLE_ATTR_NAME = op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName(
)
RPC_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.RPC
T
done  
typhoonzero 已提交
57 58


T
typhoonzero 已提交
59 60 61 62 63 64
class VarBlock:
    def __init__(self, varname, offset, size):
        self.varname = varname
        # NOTE: real offset is offset * size
        self.offset = offset
        self.size = size
T
done  
typhoonzero 已提交
65

T
typhoonzero 已提交
66 67
    def __str__(self):
        return "%s:%d:%d" % (self.varname, self.offset, self.size)
T
done  
typhoonzero 已提交
68 69


70 71 72 73
def same_or_split_var(p_name, var_name):
    return p_name == var_name or p_name.startswith(var_name + ".block")


74
def slice_variable(var_list, slice_count, min_block_size=8192):
T
typhoonzero 已提交
75
    """
76 77 78 79 80 81
    We may need to split dense tensor to one or more blocks and put
    them equally onto parameter server. One block is a sub-tensor
    aligned by dim[0] of the tensor.

    We need to have a minimal block size so that the calculations in
    the parameter server side can gain better performance. By default
82
    minimum block size 8K elements (maybe 16bit or 32bit or 64bit).
83 84 85

    Args:
        var_list (list): List of variables.
86 87
        slice_count (int): Numel of count that variables will be sliced, which
            could be the pserver services' count.
88 89
        min_block_size (int): Minimum splitted block size.
    Returns:
90
        blocks (list[(varname, block_id, current_block_size)]): A list
91
            of VarBlocks. Each VarBlock specifies a shard of the var.
T
typhoonzero 已提交
92 93 94
    """
    blocks = []
    for var in var_list:
95
        split_count = slice_count
T
typhoonzero 已提交
96 97 98 99
        var_numel = reduce(lambda x, y: x * y, var.shape)
        max_pserver_count = int(math.floor(var_numel / float(min_block_size)))
        if max_pserver_count == 0:
            max_pserver_count = 1
100
        if max_pserver_count < slice_count:
T
typhoonzero 已提交
101 102 103 104 105 106 107 108 109
            split_count = max_pserver_count
        block_size = int(math.ceil(var_numel / float(split_count)))

        if len(var.shape) >= 2:
            # align by dim1(width)
            dim1 = reduce(lambda x, y: x * y, var.shape[1:])
            remains = block_size % dim1
            if remains != 0:
                block_size += dim1 - remains
110
        # update split_count after aligning
T
typhoonzero 已提交
111 112 113 114 115 116 117 118 119
        split_count = int(math.ceil(var_numel / float(block_size)))
        for block_id in xrange(split_count):
            curr_block_size = min(block_size, var_numel - (
                (block_id) * block_size))
            block = VarBlock(var.name, block_id, curr_block_size)
            blocks.append(str(block))
    return blocks


T
done  
typhoonzero 已提交
120
class DistributeTranspiler:
121
    def _has_distributed_lookup_table(self):
122 123 124 125 126 127
        # process lookup_table_op
        # 1. check all lookup_table_op is distributed
        # 2. check all lookup_table_op share the same table.
        distributed_lookup_table_ops = []
        # support only one distributed_lookup_table now
        self.table_name = None
128
        for op in self.origin_program.global_block().ops:
129 130 131 132 133 134 135 136 137 138 139 140
            if op.type == LOOKUP_TABLE_TYPE:
                if op.attrs['is_distributed'] is True:
                    if self.table_name is None:
                        self.table_name = op.input("W")[0]
                    if self.table_name != op.input("W")[0]:
                        raise RuntimeError("all distributed lookup_table_ops"
                                           " should have only one table")
                    distributed_lookup_table_ops.append(op)
                else:
                    if self.table_name is not None:
                        assert op.input("W")[0] != self.table_name

141
        return len(distributed_lookup_table_ops) > 0
142

143 144 145 146 147
    def _update_dist_lookup_table_vars(self, param_list, grad_list,
                                       params_grads):
        # TODO(wuyi): put find a way to put dist lookup table stuff all together.
        # update self.table_param_grad and self.trainer_side_table_grad_list
        program = self.origin_program
148 149 150 151 152 153
        if self.has_distributed_lookup_table:
            param_list = [
                param for param in param_list if param.name != self.table_name
            ]
            grad_list = [
                grad for grad in grad_list
T
typhoonzero 已提交
154
                if grad.name != grad_var_name(self.table_name)
155 156 157 158 159 160
            ]
            self.table_param_grad = [
                param_grad for param_grad in params_grads
                if param_grad[0].name == self.table_name
            ][0]
            table_grad_var = self.table_param_grad[1]
161
            if self.sync_mode:
162
                self.trainer_side_table_grad_list = [
163 164
                    program.global_block().create_var(
                        name="%s.trainer_%d.pserver_%d" %
165
                        (table_grad_var.name, self.trainer_id, index),
166 167 168 169 170 171
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
            else:
172
                self.trainer_side_table_grad_list = [
173 174 175 176 177 178 179
                    program.global_block().create_var(
                        name="%s.pserver_%d" % (table_grad_var.name, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
180

181
    def _init_splited_vars(self, slice_var_up):
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
        # update these mappings for further transpile:
        # 1. param_var_mapping: param var name -> [splited params vars]
        # 2. grad_var_mapping: grad var name -> [splited grads vars]
        # 3. grad_param_mapping: grad.blockx -> param.blockx
        # 4. param_grad_ep_mapping: ep -> {"params": [], "grads": []}

        param_list = []
        grad_list = []
        for p, g in self.params_grads:
            # skip parameter marked not trainable
            if type(p) == Parameter and p.trainable == False:
                continue
            param_list.append(p)
            grad_list.append(g)

        self._update_dist_lookup_table_vars(param_list, grad_list,
                                            self.params_grads)

200 201 202 203 204
        if slice_var_up:
            # when we slice var up into blocks, we will slice the var according to
            # pserver services' count. A pserver may have two or more listening ports.
            grad_blocks = slice_variable(grad_list, len(self.pserver_endpoints))
            param_blocks = slice_variable(param_list,
205
                                          len(self.pserver_endpoints))
206
        else:
207
            # when we do NOT slice var up into blocks, we will always slice params
208
            # grads into one block.
209 210
            grad_blocks = slice_variable(grad_list, 1)
            param_blocks = slice_variable(param_list, 1)
Y
update  
Yancey1989 已提交
211
        assert (len(grad_blocks) == len(param_blocks))
212

213 214 215 216 217 218 219 220
        # origin_varname -> [splited_var]
        self.param_var_mapping = self._create_vars_from_blocklist(
            self.origin_program, param_blocks)
        self.grad_var_mapping = self._create_vars_from_blocklist(
            self.origin_program,
            grad_blocks,
            add_trainer_suffix=self.trainer_num > 1)
        self.grad_param_mapping = dict()
Y
update  
Yancey1989 已提交
221 222 223
        for g, p in zip(grad_blocks, param_blocks):
            g_name, g_bid, _ = g.split(":")
            p_name, p_bid, _ = p.split(":")
224 225
            self.grad_param_mapping[self.grad_var_mapping[g_name][int(g_bid)]] =  \
                    self.param_var_mapping[p_name][int(p_bid)]
226

227
        # create mapping of endpoint -> split var to create pserver side program
T
typhoonzero 已提交
228
        self.param_grad_ep_mapping = dict()
Y
Yancey1989 已提交
229 230 231 232 233 234 235 236 237
        [
            self.param_grad_ep_mapping.update({
                ep: {
                    "params": [],
                    "grads": []
                }
            }) for ep in self.pserver_endpoints
        ]

238 239 240 241 242
    def transpile(self,
                  trainer_id,
                  program=None,
                  pservers="127.0.0.1:6174",
                  trainers=1,
243
                  slice_var_up=True,
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
                  split_method=RoundRobin,
                  sync_mode=True):
        """
        :param trainer_id: one unique id for each trainer in a job.
        :type trainer_id: int
        :param program: program to transpile, default is default_main_program
        :type program: Program
        :param pservers: parameter server endpoints like "m1:6174,m2:6174"
        :type pservers: string
        :param trainers: total number of workers/trainers in the job
        :type trainers: int
        :param split_method: A function to determin how to split variables
            to different servers equally.
        :type split_method: function
        :type sync_mode: boolean default True
        :param sync_mode: if sync_mode is set True, it means that dist transpiler
        will transpile the program into sync_mode pserver and trainer program.
        """
        assert (split_method.__bases__[0] == PSDispatcher)
        if program is None:
            program = default_main_program()
        self.origin_program = program
        self.trainer_num = trainers
        self.sync_mode = sync_mode
        self.trainer_id = trainer_id
        pserver_endpoints = pservers.split(",")
        self.pserver_endpoints = pserver_endpoints
        self.optimize_ops, self.params_grads = self._get_optimize_pass()

        ps_dispatcher = split_method(self.pserver_endpoints)
        self.has_distributed_lookup_table = self._has_distributed_lookup_table()

        # split and create vars, then put splited vars in dicts for later use.
277
        self._init_splited_vars(slice_var_up)
278

Y
Yancey1989 已提交
279 280
        # step 3.1: insert send op to send gradient vars to parameter servers
        ps_dispatcher.reset()
Y
update  
Yancey1989 已提交
281
        send_vars = []
282 283 284 285 286 287

        # in general cases, the number of pservers is times of 2, and this
        # will lead to uneven distribution among weights and bias:
        #       fc_w@GRAD_trainer_0, fc_w@GRAD_trainer_1 --> pserver1
        #       fc_b@GRAD_trainer_0, fc_b@GRAD_trainer_1 --> pserver2
        # shuffle the map will avoid the uneven distribution above
288
        grad_var_mapping_items = self.grad_var_mapping.items()
289
        if not slice_var_up:
290 291 292
            np.random.shuffle(grad_var_mapping_items)

        for orig_varname, splited_vars in grad_var_mapping_items:
Y
update  
Yancey1989 已提交
293
            eplist = ps_dispatcher.dispatch(splited_vars)
294

295
            if not slice_var_up:
296 297
                assert (len(splited_vars) == 1)

Y
Yancey1989 已提交
298 299 300 301 302 303 304 305 306
            if len(splited_vars) == 1:
                orig_varname = splited_vars[0].name
                index = find_op_by_output_arg(program.global_block(),
                                              orig_varname)
            elif len(splited_vars) > 1:
                orig_var = program.global_block().vars[orig_varname]
                index = find_op_by_output_arg(program.global_block(),
                                              orig_varname)
                self._insert_split_op(program, orig_var, index, splited_vars)
Y
update  
Yancey1989 已提交
307
                index += 1
Y
Yancey1989 已提交
308 309 310 311
            else:
                AssertionError("Can not insert the send op by original "
                               "variable name :", orig_varname)

Y
Yancey1989 已提交
312
            program.global_block().insert_op(
Y
update  
Yancey1989 已提交
313
                index=index + 1,
Y
Yancey1989 已提交
314
                type="send_vars",
Y
update  
Yancey1989 已提交
315
                inputs={"X": splited_vars},
Y
Yancey1989 已提交
316 317 318 319 320
                outputs={},
                attrs={
                    "epmap": eplist,
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })
Y
update  
Yancey1989 已提交
321 322
            for _, var in enumerate(splited_vars):
                send_vars.append(var)
Y
Yancey1989 已提交
323 324 325 326 327

        if self.sync_mode:
            program.global_block().append_op(
                type="send_barrier",
                inputs={},
Y
Yancey1989 已提交
328
                outputs={},
Y
Yancey1989 已提交
329 330
                attrs={
                    "endpoints": pserver_endpoints,
Y
Yancey1989 已提交
331 332
                    "sync_mode": self.sync_mode,
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
Y
Yancey1989 已提交
333
                })
Y
Yancey1989 已提交
334 335 336

        # step 3.2: insert recv op to receive parameters from parameter server
        recv_vars = []
Y
update  
Yancey1989 已提交
337
        for _, var in enumerate(send_vars):
338
            recv_vars.append(self.grad_param_mapping[var])
Y
update  
Yancey1989 已提交
339
        ps_dispatcher.reset()
Y
Yancey1989 已提交
340 341
        eplist = ps_dispatcher.dispatch(recv_vars)

T
typhoonzero 已提交
342
        for i, ep in enumerate(eplist):
Y
Yancey1989 已提交
343 344
            self.param_grad_ep_mapping[ep]["params"].append(recv_vars[i])
            self.param_grad_ep_mapping[ep]["grads"].append(send_vars[i])
345

Y
Yancey1989 已提交
346
        # step4: Concat the parameters splits together after recv.
347
        for varname, splited_var in self.param_var_mapping.iteritems():
Y
Yancey1989 已提交
348 349 350 351 352 353 354 355
            eps = []
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])

            program.global_block().append_op(
                type="recv",
                inputs={},
Y
Yancey1989 已提交
356 357 358 359 360
                outputs={"Out": splited_var},
                attrs={
                    "epmap": eps,
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })
T
typhoonzero 已提交
361

T
typhoonzero 已提交
362
        program.global_block().append_op(
Y
Yancey1989 已提交
363 364
            type="fetch_barrier",
            inputs={},
Y
Yancey1989 已提交
365
            outputs={},
Q
qiaolongfei 已提交
366 367
            attrs={
                "endpoints": pserver_endpoints,
Y
Yancey1989 已提交
368
                RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
Q
qiaolongfei 已提交
369
            })
Y
Yancey1989 已提交
370

371
        for varname, splited_var in self.param_var_mapping.iteritems():
T
typhoonzero 已提交
372 373
            if len(splited_var) <= 1:
                continue
T
typhoonzero 已提交
374
            orig_param = program.global_block().vars[varname]
T
typhoonzero 已提交
375
            program.global_block().append_op(
T
typhoonzero 已提交
376
                type="concat",
T
typhoonzero 已提交
377
                inputs={"X": splited_var},
T
typhoonzero 已提交
378
                outputs={"Out": [orig_param]},
T
typhoonzero 已提交
379
                attrs={"axis": 0})
T
typhoonzero 已提交
380

381
        if self.has_distributed_lookup_table:
Q
update  
qiaolongfei 已提交
382 383
            self._replace_lookup_table_op_with_prefetch(program,
                                                        pserver_endpoints)
Y
Yancey1989 已提交
384
            self._split_table_grad_and_add_send_vars(program, pserver_endpoints)
385

T
typhoonzero 已提交
386 387
    def get_trainer_program(self):
        # remove optimize ops and add a send op to main_program
388
        delete_ops(self.origin_program.global_block(), self.optimize_ops)
389
        # FIXME(typhoonzero): serialize once will fix error occurs when clone.
390 391
        self.origin_program.__str__()
        return self.origin_program
T
typhoonzero 已提交
392 393 394 395

    def get_pserver_program(self, endpoint):
        """
        Get pserver side program using the endpoint.
396
        TODO(panyx0718): Revisit this assumption. what if #blocks > #pservers.
T
typhoonzero 已提交
397 398 399 400 401 402
        NOTE: assume blocks of the same variable is not distributed
        on the same pserver, only change param/grad varnames for
        trainers to fetch.
        """
        # step1
        pserver_program = Program()
403
        # step2: Create vars to receive vars at parameter servers.
T
typhoonzero 已提交
404 405 406 407 408 409 410 411
        recv_inputs = []
        for v in self.param_grad_ep_mapping[endpoint]["params"]:
            self._clone_var(pserver_program.global_block(), v)
        for v in self.param_grad_ep_mapping[endpoint]["grads"]:
            # create vars for each trainer in global scope, so
            # we don't need to create them when grad arrives.
            # change client side var name to origin name by
            # removing ".trainer_%d" suffix
T
update  
typhoonzero 已提交
412 413 414 415 416
            suff_idx = v.name.find(".trainer_")
            if suff_idx >= 0:
                orig_var_name = v.name[:suff_idx]
            else:
                orig_var_name = v.name
T
typhoonzero 已提交
417 418 419 420 421 422 423 424 425
            # NOTE: single_trainer_var must be created for multi-trainer
            # case to merge grads from multiple trainers
            single_trainer_var = \
                pserver_program.global_block().create_var(
                    name=orig_var_name,
                    persistable=True,
                    type=v.type,
                    dtype=v.dtype,
                    shape=v.shape)
426
            if self.sync_mode and self.trainer_num > 1:
427
                for trainer_id in xrange(self.trainer_num):
T
typhoonzero 已提交
428 429 430 431 432 433 434 435 436
                    var = pserver_program.global_block().create_var(
                        name="%s.trainer_%d" % (orig_var_name, trainer_id),
                        persistable=False,
                        type=v.type,
                        dtype=v.dtype,
                        shape=v.shape)
                    recv_inputs.append(var)
            else:
                recv_inputs.append(single_trainer_var)
437

Q
qiaolongfei 已提交
438
        # step 3
439
        # Create a union-find data structure from optimize ops,
T
typhoonzero 已提交
440 441 442
        # If two ops are connected, we could add these two ops
        # into one set.
        ufind = self._create_ufind(self.optimize_ops)
Q
qiaolongfei 已提交
443
        # step 3.2
T
typhoonzero 已提交
444 445 446 447
        # Iterate through the ops and append optimize op which
        # located on current pserver
        opt_op_on_pserver = []
        for _, op in enumerate(self.optimize_ops):
448 449
            if self._is_optimizer_op(op) and self._is_opt_op_on_pserver(
                    endpoint, op):
T
typhoonzero 已提交
450
                opt_op_on_pserver.append(op)
Q
qiaolongfei 已提交
451
        # step 3.3
T
typhoonzero 已提交
452
        # Iterate through the ops, and if an op and the optimize ops
453
        # which located on current pserver are in one set, then
T
typhoonzero 已提交
454
        # append it into the sub program.
T
typhoonzero 已提交
455 456 457 458 459

        global_ops = []
        # HACK: optimization global ops only used to scale beta1 and beta2
        # replace it with dependency engine.
        for op in self.optimize_ops:
460 461
            if self._is_adam_connected_op(op):
                global_ops.append(op)
T
typhoonzero 已提交
462

463 464
        def __append_optimize_op__(op, block, grad_to_block_id, merged_var):
            if self._is_optimizer_op(op):
Q
qiaolongfei 已提交
465
                self._append_pserver_ops(block, op, endpoint, grad_to_block_id,
466
                                         self.origin_program, merged_var)
T
typhoonzero 已提交
467
            else:
468 469 470 471 472 473 474
                self._append_pserver_non_opt_ops(block, op, endpoint)

        def __op_have_grad_input__(op):
            for varname in op.input_arg_names:
                if varname.find("@GRAD") >= 0:
                    return varname
            return ""
T
typhoonzero 已提交
475

476
        # append lr decay ops to the child block if exists
477 478
        lr_ops = self._get_lr_ops()
        if len(lr_ops) > 0:
Q
qiaolongfei 已提交
479 480
            lr_decay_block = pserver_program.create_block(
                pserver_program.num_blocks - 1)
481
            for _, op in enumerate(lr_ops):
482
                self._append_pserver_non_opt_ops(lr_decay_block, op, endpoint)
483

T
typhoonzero 已提交
484
        # append op to the current block
Q
qiaolongfei 已提交
485
        grad_to_block_id = []
Q
qiaolongfei 已提交
486
        pre_block_idx = pserver_program.num_blocks - 1
T
typhoonzero 已提交
487
        for idx, opt_op in enumerate(opt_op_on_pserver):
488
            per_opt_block = pserver_program.create_block(pre_block_idx)
489 490 491 492 493 494 495 496
            # append grad merging ops before clip and weight decay
            for _, op in enumerate(self.optimize_ops):
                # find the origin @GRAD var before clipping
                grad_varname_for_block = __op_have_grad_input__(op)
                if ufind.is_connected(op, opt_op) and grad_varname_for_block:
                    merged_var = self._append_pserver_grad_merge_ops(
                        per_opt_block, grad_varname_for_block, endpoint,
                        grad_to_block_id, self.origin_program)
T
typhoonzero 已提交
497 498
            for _, op in enumerate(self.optimize_ops):
                # optimizer is connected to itself
499
                if ufind.is_connected(op, opt_op) and op not in global_ops:
500 501
                    __append_optimize_op__(op, per_opt_block, grad_to_block_id,
                                           merged_var)
T
typhoonzero 已提交
502 503

        # append global ops
504
        if global_ops:
Q
qiaolongfei 已提交
505 506 507
            opt_state_block = pserver_program.create_block(
                pserver_program.num_blocks - 1)
            for glb_op in global_ops:
X
Xi Chen 已提交
508
                __append_optimize_op__(glb_op, opt_state_block,
509
                                       grad_to_block_id, None)
T
typhoonzero 已提交
510

511 512 513 514
        # process distributed lookup_table
        prefetch_block = None
        if self.has_distributed_lookup_table:
            pserver_index = self.pserver_endpoints.index(endpoint)
515
            table_opt_block = self._create_table_optimize_block(
516
                pserver_index, pserver_program, pre_block_idx, grad_to_block_id)
517
            prefetch_block = self._create_prefetch_block(
518
                pserver_index, pserver_program, table_opt_block)
519 520 521 522 523 524 525 526 527

        # NOTE: if has_distributed_lookup_table is False, then prefetch_block will
        # not be executed, so it's safe to use optimize_block to hold the place
        if self.has_distributed_lookup_table:
            assert prefetch_block is not None
        else:
            assert prefetch_block is None
            prefetch_block = pserver_program.global_block()

T
typhoonzero 已提交
528 529 530 531 532 533
        # step5 append the listen_and_serv op
        pserver_program.global_block().append_op(
            type="listen_and_serv",
            inputs={'X': recv_inputs},
            outputs={},
            attrs={
Q
qiaolongfei 已提交
534
                "OptimizeBlock": pserver_program.block(1),
T
typhoonzero 已提交
535
                "endpoint": endpoint,
536
                "Fanin": self.trainer_num,
Q
tmp  
qiaolongfei 已提交
537 538
                "PrefetchBlock": prefetch_block,
                "sync_mode": self.sync_mode,
Q
qiaolongfei 已提交
539
                "grad_to_block_id": grad_to_block_id
T
typhoonzero 已提交
540
            })
541

T
typhoonzero 已提交
542 543 544 545 546 547 548 549 550 551
        pserver_program.sync_with_cpp()
        return pserver_program

    def get_startup_program(self, endpoint, pserver_program):
        """
        Get startup program for current parameter server.
        Modify operator input variables if there are variables that
        were split to several blocks.
        """
        s_prog = Program()
T
typhoonzero 已提交
552
        orig_s_prog = default_startup_program()
T
typhoonzero 已提交
553 554 555 556 557 558 559 560 561 562 563 564 565
        params = self.param_grad_ep_mapping[endpoint]["params"]

        def _get_splited_name_and_shape(varname):
            for idx, splited_param in enumerate(params):
                pname = splited_param.name
                if same_or_split_var(pname, varname) and varname != pname:
                    return pname, splited_param.shape
            return "", []

        # 1. create vars in pserver program to startup program
        pserver_vars = pserver_program.global_block().vars
        created_var_map = dict()
        for _, var in pserver_vars.iteritems():
T
update  
typhoonzero 已提交
566
            tmpvar = s_prog.global_block().clone_variable(var)
T
typhoonzero 已提交
567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598
            created_var_map[var.name] = tmpvar

        # 2. rename op outputs
        for op in orig_s_prog.global_block().ops:
            new_inputs = dict()
            new_outputs = dict()
            # do not append startup op if var is not on this pserver
            op_on_pserver = False
            for key in op.output_names:
                newname, _ = _get_splited_name_and_shape(op.output(key)[0])
                if newname:
                    op_on_pserver = True
                    new_outputs[key] = created_var_map[newname]
                elif op.output(key)[0] in pserver_vars:
                    op_on_pserver = True
                    new_outputs[key] = pserver_vars[op.output(key)[0]]

            # most startup program ops have no inputs
            new_inputs = self._get_input_map_from_op(pserver_vars, op)

            if op_on_pserver:
                if op.type in [
                        "gaussian_random", "fill_constant", "uniform_random"
                ]:
                    op.attrs["shape"] = new_outputs["Out"].shape
                s_prog.global_block().append_op(
                    type=op.type,
                    inputs=new_inputs,
                    outputs=new_outputs,
                    attrs=op.attrs)
        return s_prog

599 600
    # ====================== private transpiler functions =====================

601
    # transpiler function for dis lookup_table
Q
update  
qiaolongfei 已提交
602 603
    def _replace_lookup_table_op_with_prefetch(self, program,
                                               pserver_endpoints):
604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649
        # 1. replace lookup_table_op with split_ids_op -> prefetch_op -> sum_op
        self.prefetch_input_vars = None
        self.prefetch_output_vars = None

        continue_search_lookup_table_op = True
        while continue_search_lookup_table_op:
            continue_search_lookup_table_op = False
            all_ops = program.global_block().ops
            for op in all_ops:
                if op.type == LOOKUP_TABLE_TYPE:
                    continue_search_lookup_table_op = True

                    op_index = list(all_ops).index(op)
                    ids_name = op.input("Ids")
                    out_name = op.output("Out")

                    if self.prefetch_input_vars is None:
                        ids_var = program.global_block().vars[ids_name[0]]
                        self.prefetch_input_vars = self.create_splited_vars(
                            source_var=ids_var,
                            block=program.global_block(),
                            tag="_prefetch_in_")
                    if self.prefetch_output_vars is None:
                        out_var = program.global_block().vars[out_name[0]]
                        self.prefetch_output_vars = self.create_splited_vars(
                            source_var=out_var,
                            block=program.global_block(),
                            tag="_prefetch_out_")

                    # insert split_ids_op
                    program.global_block().insert_op(
                        index=op_index,
                        type="split_ids",
                        inputs={
                            'Ids': [
                                program.global_block().vars[varname]
                                for varname in ids_name
                            ]
                        },
                        outputs={"Out": self.prefetch_input_vars})

                    # insert prefetch_op
                    program.global_block().insert_op(
                        index=op_index + 1,
                        type="prefetch",
                        inputs={'X': self.prefetch_input_vars},
Y
Yancey1989 已提交
650 651
                        outputs={"Out": self.prefetch_output_vars},
                        attrs={
652
                            "epmap": pserver_endpoints,
Y
Yancey1989 已提交
653 654
                            RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                        })
655 656 657 658 659 660 661 662 663 664 665 666 667 668 669

                    # insert concat_op
                    program.global_block().insert_op(
                        index=op_index + 2,
                        type="concat",
                        inputs={'X': self.prefetch_output_vars},
                        outputs={
                            "Out": [
                                program.global_block().vars[varname]
                                for varname in out_name
                            ]
                        },
                        attrs={"axis": 0})

                    # delete lookup_table_op
670
                    delete_ops(program.global_block(), [op])
671 672 673
                    # break for loop
                    break

Y
Yancey1989 已提交
674
    def _split_table_grad_and_add_send_vars(self, program, pserver_endpoints):
675 676 677
        # 2. add split_ids_op and send_vars_op to send gradient to pservers
        # there should only be one table_name
        all_ops = program.global_block().ops
T
typhoonzero 已提交
678
        table_grad_name = grad_var_name(self.table_name)
679 680 681 682 683 684 685 686 687 688
        for op in all_ops:
            if table_grad_name in op.output_arg_names:
                op_index = list(all_ops).index(op)
                # insert split_ids_op
                program.global_block().insert_op(
                    index=op_index + 1,
                    type="split_ids",
                    inputs={
                        'Ids': [program.global_block().vars[table_grad_name]]
                    },
689
                    outputs={"Out": self.trainer_side_table_grad_list})
690 691 692
                program.global_block().insert_op(
                    index=op_index + 2,
                    type="send_vars",
693
                    inputs={'X': self.trainer_side_table_grad_list},
Y
Yancey1989 已提交
694 695 696 697 698 699
                    outputs={},
                    attrs={
                        "sync_send": True,
                        "epmap": pserver_endpoints,
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                    })
700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719
                break

    def _create_prefetch_block(self, pserver_index, pserver_program,
                               optimize_block):
        # STEP: create prefetch block
        table_var = pserver_program.global_block().vars[self.table_name]
        prefetch_block = pserver_program.create_block(optimize_block.idx)
        trainer_ids = self.prefetch_input_vars[pserver_index]
        pserver_ids = pserver_program.global_block().create_var(
            name=trainer_ids.name,
            type=trainer_ids.type,
            shape=trainer_ids.shape,
            dtype=trainer_ids.dtype)
        trainer_out = self.prefetch_output_vars[pserver_index]
        pserver_out = pserver_program.global_block().create_var(
            name=trainer_out.name,
            type=trainer_out.type,
            shape=trainer_out.shape,
            dtype=trainer_out.dtype)
        prefetch_block.append_op(
Y
Yancey1989 已提交
720
            type="lookup_sparse_table",
721 722 723 724 725 726 727 728 729 730 731
            inputs={'Ids': pserver_ids,
                    "W": table_var},
            outputs={"Out": pserver_out},
            attrs={
                "is_sparse": True,  # has no effect on lookup_table op
                "is_distributed": True,
                "padding_idx": -1
            })
        return prefetch_block

    def _create_table_optimize_block(self, pserver_index, pserver_program,
732
                                     pre_block_idx, grad_to_block_id):
733 734
        # STEP: create table optimize block
        # create table param and grad var in pserver program
Y
Yancey1989 已提交
735 736 737 738 739 740 741 742
        origin_param_var = self.origin_program.global_block().vars[
            self.table_name]
        param_var = pserver_program.global_block().create_var(
            name=origin_param_var.name,
            shape=origin_param_var.shape,
            dtype=origin_param_var.dtype,
            type=core.VarDesc.VarType.SELECTED_ROWS,
            persistable=True)
743 744 745
        # parameter must be selected rows
        param_var.desc.set_type(core.VarDesc.VarType.SELECTED_ROWS)
        grad_var = pserver_program.global_block().clone_variable(
T
typhoonzero 已提交
746
            self.origin_program.global_block().vars[grad_var_name(
747
                self.table_name)])
748 749 750 751 752 753

        # create table optimize block in pserver program
        table_opt_op = [
            op for op in self.optimize_ops
            if op.input("Param")[0] == self.table_name
        ][0]
Q
qiaolongfei 已提交
754
        table_opt_block = pserver_program.create_block(pre_block_idx)
755 756 757
        # only support sgd now
        assert table_opt_op.type == "sgd"

758 759 760
        if self.sync_mode:
            # create grad vars in pserver program
            table_grad_var = self.table_param_grad[1]
761
            pserver_side_table_grad_list = [
762 763 764 765 766 767 768 769 770
                pserver_program.global_block().create_var(
                    name="%s.trainer_%d.pserver_%d" %
                    (table_grad_var.name, index, pserver_index),
                    type=table_grad_var.type,
                    shape=table_grad_var.shape,
                    dtype=table_grad_var.dtype)
                for index in range(self.trainer_num)
            ]

771
            # append sum op for pserver_side_table_grad_list
772 773
            table_opt_block.append_op(
                type="sum",
774
                inputs={"X": pserver_side_table_grad_list},
775
                outputs={"Out": [grad_var]})
776 777
        else:
            # in async_mode, for table gradient, it also need to be splited to each parameter server
778
            origin_grad_name = grad_var.name
779 780
            splited_grad_name = self.trainer_side_table_grad_list[
                pserver_index].name
781 782
            if not splited_grad_name.startswith(origin_grad_name):
                raise ValueError("origin_grad_var: " + splited_grad_name +
783
                                 " grad_var:" + grad_var.name)
784 785
            grad_var = pserver_program.global_block().rename_var(
                origin_grad_name, splited_grad_name)
786 787 788 789 790 791 792 793 794 795 796 797 798 799 800

        lr_var = pserver_program.global_block().vars[table_opt_op.input(
            "LearningRate")[0]]
        inputs = {
            "Param": [param_var],
            "Grad": [grad_var],
            "LearningRate": [lr_var]
        }
        outputs = {"ParamOut": [param_var]}
        table_opt_block.append_op(
            type=table_opt_op.type,
            inputs=inputs,
            outputs=outputs,
            attrs=table_opt_op.attrs)

801 802 803
        # add table parameter gradient and it's block id to grad_to_block_id
        grad_to_block_id.append(grad_var.name + ":" + str(table_opt_block.idx))

804 805
        return table_opt_block

T
typhoonzero 已提交
806 807 808 809 810
    def _create_vars_from_blocklist(self,
                                    program,
                                    block_list,
                                    add_trainer_suffix=False):
        """
811
        Create vars for each split.
T
typhoonzero 已提交
812 813
        NOTE: only grads need to be named for different trainers, use
              add_trainer_suffix to rename the grad vars.
814 815 816 817
        Args:
            program (ProgramDesc): ProgramDesc which gradients blong.
            block_list (list[(varname, block_id, block_size)]): List of gradient blocks.
            add_trainer_suffix (Bool): Add trainer suffix to new variable's name if set True.
818 819
        Returns:
            var_mapping (dict(varname->[new_varname_variable])):A dict mapping
820
                from original var name to each var split.
T
typhoonzero 已提交
821
        """
822 823

        # varname->[(block_id, current_block_size)]
T
typhoonzero 已提交
824
        block_map = dict()
825

T
typhoonzero 已提交
826
        var_mapping = dict()
T
typhoonzero 已提交
827 828 829 830 831 832
        for block_str in block_list:
            varname, offset, size = block_str.split(":")
            if not block_map.has_key(varname):
                block_map[varname] = []
            block_map[varname].append((long(offset), long(size)))
        for varname, splited in block_map.iteritems():
T
typhoonzero 已提交
833
            orig_var = program.global_block().var(varname)
T
typhoonzero 已提交
834
            if len(splited) == 1:
835
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
836 837 838 839 840 841 842 843
                    new_var_name = "%s.trainer_%d" % \
                        (orig_var.name, self.trainer_id)
                    program.global_block().rename_var(varname, new_var_name)
                    var_mapping[varname] = \
                        [program.global_block().var(new_var_name)]
                else:
                    var_mapping[varname] = \
                        [program.global_block().var(orig_var.name)]
T
typhoonzero 已提交
844
                continue
T
typhoonzero 已提交
845 846

            var_mapping[varname] = []
T
typhoonzero 已提交
847 848 849 850
            orig_shape = orig_var.shape
            orig_dim1_flatten = 1
            if len(orig_shape) >= 2:
                orig_dim1_flatten = reduce(lambda x, y: x * y, orig_shape[1:])
T
typhoonzero 已提交
851

T
typhoonzero 已提交
852
            for i, block in enumerate(splited):
T
typhoonzero 已提交
853
                size = block[1]
T
typhoonzero 已提交
854 855 856 857
                rows = size / orig_dim1_flatten
                splited_shape = [rows]
                if len(orig_shape) >= 2:
                    splited_shape.extend(orig_shape[1:])
T
typhoonzero 已提交
858
                new_var_name = ""
859
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
860 861 862 863 864
                    new_var_name = "%s.block%d.trainer_%d" % \
                        (varname, i, self.trainer_id)
                else:
                    new_var_name = "%s.block%d" % \
                        (varname, i)
T
typhoonzero 已提交
865
                var = program.global_block().create_var(
T
typhoonzero 已提交
866 867
                    name=new_var_name,
                    persistable=False,
T
typhoonzero 已提交
868
                    dtype=orig_var.dtype,
869
                    type=orig_var.type,
T
typhoonzero 已提交
870
                    shape=splited_shape)  # flattend splited var
T
typhoonzero 已提交
871
                var_mapping[varname].append(var)
T
typhoonzero 已提交
872
            program.global_block().sync_with_cpp()
T
typhoonzero 已提交
873
        return var_mapping
T
done  
typhoonzero 已提交
874

875 876 877 878 879 880 881 882 883 884 885
    def create_splited_vars(self, source_var, block, tag):
        return [
            block.create_var(
                name=str(source_var.name + tag + str(index)),
                type=source_var.type,
                shape=source_var.shape,
                dtype=source_var.dtype)
            for index in range(len(self.pserver_endpoints))
        ]

    def _clone_var(self, block, var, persistable=True):
T
done  
typhoonzero 已提交
886 887 888 889 890 891 892
        assert isinstance(var, Variable)
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
893
            persistable=persistable)
T
done  
typhoonzero 已提交
894

Y
Yancey1989 已提交
895
    def _insert_split_op(self, program, orig_var, index, splited_vars):
Y
update  
Yancey1989 已提交
896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919
        if orig_var.type == core.VarDesc.VarType.SELECTED_ROWS:
            height_sections = []
            for v in splited_vars:
                height_sections.append(v.shape[0])
            program.global_block().insert_op(
                index=index + 1,
                type="split_selected_rows",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
                attrs={"height_sections": height_sections})
        elif orig_var.type == core.VarDesc.VarType.LOD_TENSOR:
            sections = []
            for v in splited_vars:
                sections.append(v.shape[0])
            program.global_block().insert_op(
                index=index + 1,
                type="split_byref",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
                attrs={"sections": sections}  # assume split evenly
            )
        else:
            AssertionError("Variable type should be in set "
                           "[LOD_TENSOR, SELECTED_ROWS]")
T
done  
typhoonzero 已提交
920

T
typhoonzero 已提交
921 922 923 924
    def _get_optimizer_input_shape(self, op_type, varkey, orig_shape,
                                   param_shape):
        """
        Returns the shape for optimizer inputs that need to be reshaped when
925
        Param and Grad is split to multiple servers.
T
typhoonzero 已提交
926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947
        """
        # HACK(typhoonzero): Should use functions of corresponding optimizer in
        # optimizer.py to get the shape, do not  bind this in the transpiler.
        if op_type == "adam":
            if varkey in ["Moment1", "Moment2"]:
                return param_shape
        elif op_type == "adagrad":
            if varkey == "Moment":
                return param_shape
        elif op_type == "adamax":
            if varkey in ["Moment", "InfNorm"]:
                return param_shape
        elif op_type == "momentum":
            if varkey == "Velocity":
                return param_shape
        elif op_type == "":
            if varkey == "Moment":
                return param_shape
        elif op_type == "sgd":
            pass
        return orig_shape

948 949
    def _get_varname_parts(self, varname):
        # returns origin, blockid, trainerid
T
typhoonzero 已提交
950
        orig_var_name = ""
951 952 953 954 955 956 957 958 959 960
        trainer_part = ""
        block_part = ""
        trainer_idx = varname.find(".trainer_")
        if trainer_idx >= 0:
            trainer_part = varname[trainer_idx + 1:]
        else:
            trainer_idx = len(varname)
        block_index = varname.find(".block")
        if block_index >= 0:
            block_part = varname[block_index + 1:trainer_idx]
T
typhoonzero 已提交
961
        else:
962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988
            block_index = len(varname)
        orig_var_name = varname[0:min(block_index, trainer_idx)]
        return orig_var_name, block_part, trainer_part

    def _orig_varname(self, varname):
        orig, _, _ = self._get_varname_parts(varname)
        return orig

    def _append_pserver_grad_merge_ops(self, optimize_block,
                                       grad_varname_for_block, endpoint,
                                       grad_to_block_id, origin_program):
        program = optimize_block.program
        pserver_block = program.global_block()
        grad_block = None
        for g in self.param_grad_ep_mapping[endpoint]["grads"]:
            if self._orig_varname(g.name) == \
                    self._orig_varname(grad_varname_for_block):
                grad_block = g
                break
        if not grad_block:
            # do not append this op if current endpoint
            # is not dealing with this grad block
            return
        orig_varname, block_name, trainer_name = self._get_varname_parts(
            grad_block.name)
        if block_name:
            merged_var_name = '.'.join([orig_varname, block_name])
T
typhoonzero 已提交
989
        else:
990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
            merged_var_name = orig_varname
        merged_var = \
            pserver_block.vars[merged_var_name]
        grad_to_block_id.append(merged_var.name + ":" + str(optimize_block.idx))
        if self.sync_mode and self.trainer_num > 1:
            vars2merge = []
            for i in xrange(self.trainer_num):
                per_trainer_name = "%s.trainer_%d" % \
                (merged_var_name, i)
                vars2merge.append(pserver_block.vars[per_trainer_name])

            optimize_block.append_op(
                type="sum",
                inputs={"X": vars2merge},
                outputs={"Out": merged_var})
            # TODO(panyx0718): What if it's SELECTED_ROWS.
            if not merged_var.type == core.VarDesc.VarType.SELECTED_ROWS:
                optimize_block.append_op(
                    type="scale",
                    inputs={"X": merged_var},
                    outputs={"Out": merged_var},
                    attrs={"scale": 1.0 / float(self.trainer_num)})
        return merged_var
T
typhoonzero 已提交
1013

1014
    def _append_pserver_ops(self, optimize_block, opt_op, endpoint,
1015
                            grad_to_block_id, origin_program, merged_var):
1016
        program = optimize_block.program
T
typhoonzero 已提交
1017
        pserver_block = program.global_block()
T
typhoonzero 已提交
1018
        new_inputs = dict()
T
typhoonzero 已提交
1019 1020
        # update param/grad shape first, then other inputs like
        # moment can use the updated shape
T
typhoonzero 已提交
1021
        for key in opt_op.input_names:
T
typhoonzero 已提交
1022 1023 1024 1025 1026 1027
            if key == "Grad":
                new_inputs[key] = merged_var
            elif key == "Param":
                # param is already created on global program
                param_block = None
                for p in self.param_grad_ep_mapping[endpoint]["params"]:
T
typhoonzero 已提交
1028
                    if same_or_split_var(p.name, opt_op.input(key)[0]):
T
typhoonzero 已提交
1029 1030 1031 1032
                        param_block = p
                        break
                if not param_block:
                    return
T
typhoonzero 已提交
1033
                tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
1034
                    name=param_block.name,
T
typhoonzero 已提交
1035
                    persistable=True,
T
typhoonzero 已提交
1036 1037 1038
                    dtype=param_block.dtype,
                    shape=param_block.shape)
                new_inputs[key] = tmpvar
1039
            elif key == "LearningRate":
1040
                # learning rate variable has already be created by non-optimize op,
1041
                # don't create it once again.
1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
                lr_varname = opt_op.input(key)[0]
                if pserver_block.vars.has_key(lr_varname):
                    new_inputs[key] = pserver_block.vars[opt_op.input(key)[0]]
                else:
                    origin_var = origin_program.global_block().vars[lr_varname]
                    tmpvar = pserver_block.create_var(
                        name=origin_var.name,
                        persistable=origin_var.persistable,
                        dtype=origin_var.dtype,
                        shape=origin_var.shape)
                    new_inputs[key] = tmpvar
T
typhoonzero 已提交
1053

T
typhoonzero 已提交
1054
        for key in opt_op.input_names:
1055 1056
            new_shape = None
            if key in ["Param", "Grad", "LearningRate"]:
T
typhoonzero 已提交
1057
                continue
1058
            var = self.origin_program.global_block().vars[opt_op.input(key)[0]]
T
typhoonzero 已提交
1059 1060 1061 1062
            # update accumulator variable shape
            param_shape = new_inputs["Param"].shape
            new_shape = self._get_optimizer_input_shape(opt_op.type, key,
                                                        var.shape, param_shape)
T
typhoonzero 已提交
1063
            tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
1064 1065 1066 1067 1068
                name=var.name,
                persistable=var.persistable,
                dtype=var.dtype,
                shape=new_shape)
            new_inputs[key] = tmpvar
T
typhoonzero 已提交
1069

1070
        # change output's ParamOut variable
1071 1072
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
1073
        outputs["ParamOut"] = new_inputs["Param"]
T
typhoonzero 已提交
1074

1075
        optimize_block.append_op(
T
typhoonzero 已提交
1076 1077
            type=opt_op.type,
            inputs=new_inputs,
T
typhoonzero 已提交
1078
            outputs=outputs,
T
typhoonzero 已提交
1079 1080
            attrs=opt_op.attrs)

1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
    def _is_splited_grad_var(self, var, var_dict):
        grad_block = None
        for _, g in var_dict.iteritems():
            if self._orig_varname(g.name) == self._orig_varname(var.name):
                if g.name.find(".trainer_") == -1:
                    grad_block = g
                    break
        return grad_block

    def _append_pserver_non_opt_ops(self, optimize_block, opt_op, endpoint):
1091
        program = optimize_block.program
1092
        # Append the ops for parameters that do not need to be optimized/updated
1093 1094
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, opt_op)
1095
        for key, varlist in inputs.iteritems():
1096 1097
            if not isinstance(varlist, list):
                varlist = [varlist]
T
typhoonzero 已提交
1098
            for var in varlist:
1099 1100 1101 1102 1103 1104 1105
                # for ops like clipping and weight decay, get the splited var
                # for inputs/outputs
                grad_block = self._is_splited_grad_var(
                    var, program.global_block().vars)
                if grad_block:
                    inputs[key] = grad_block
                elif not program.global_block().vars.has_key(var.name):
1106
                    program.global_block().create_var(
T
typhoonzero 已提交
1107 1108 1109 1110 1111
                        name=var.name,
                        persistable=var.persistable,
                        dtype=var.dtype,
                        shape=var.shape)

1112 1113
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
1114
        for key, varlist in outputs.iteritems():
1115 1116 1117
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
1118 1119 1120 1121 1122 1123
                grad_block = self._is_splited_grad_var(
                    var, program.global_block().vars)
                if grad_block:
                    outputs[key] = grad_block
                elif not program.global_block().vars.has_key(var.name):
                    program.global_block().clone_variable(var)
1124

1125
        optimize_block.append_op(
T
typhoonzero 已提交
1126
            type=opt_op.type,
T
typhoonzero 已提交
1127 1128
            inputs=inputs,
            outputs=outputs,
T
typhoonzero 已提交
1129 1130
            attrs=opt_op.attrs)

1131 1132 1133 1134
    def _is_op_connected(self, op1, op2):
        # If one op's input is another op's output or
        # one op's output is another op's input, we say
        # the two operator is connected.
T
typhoonzero 已提交
1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147
        def _append_inname_remove_beta(varname_list):
            op_input_names = []
            for in_name in varname_list:
                # HACK: remove beta1 and beta2 to avoid let all
                # ops connected.
                if in_name.startswith("beta2_pow_acc") or \
                    in_name.startswith("beta1_pow_acc"):
                    continue
                else:
                    op_input_names.append(in_name)
            return op_input_names

        op1_input_names = _append_inname_remove_beta(op1.desc.input_arg_names())
T
typhoonzero 已提交
1148 1149
        op1_output_names = op1.desc.output_arg_names()

T
typhoonzero 已提交
1150
        op2_input_names = _append_inname_remove_beta(op2.desc.input_arg_names())
T
typhoonzero 已提交
1151
        op2_output_names = op2.desc.output_arg_names()
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168

        if set(op1_output_names) & set(op2_input_names) or \
           set(op1_input_names) & set(op2_output_names):
            return True
        return False

    def _create_ufind(self, optimize_ops):
        # Create a unit find data struct by optimize ops
        ufind = UnionFind(optimize_ops)
        for i in xrange(len(optimize_ops)):
            for j in xrange(i, len(optimize_ops)):
                op1 = optimize_ops[i]
                op2 = optimize_ops[j]
                if self._is_op_connected(op1, op2):
                    ufind.union(op1, op2)
        return ufind

1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
    def _is_opt_role_op(self, op):
        # NOTE: depend on oprole to find out whether this op is for
        # optimize
        op_maker = core.op_proto_and_checker_maker
        optimize_role = core.op_proto_and_checker_maker.OpRole.Optimize
        if op_maker.kOpRoleAttrName() in op.attrs and \
            int(op.attrs[op_maker.kOpRoleAttrName()]) == int(optimize_role):
            return True
        return False

    def _is_optimizer_op(self, op):
T
typhoonzero 已提交
1180 1181
        if "Param" in op.input_names and \
            "LearningRate" in op.input_names:
1182 1183 1184 1185 1186 1187 1188
            return True
        return False

    def _is_opt_op_on_pserver(self, endpoint, op):
        param_names = [
            p.name for p in self.param_grad_ep_mapping[endpoint]["params"]
        ]
T
typhoonzero 已提交
1189
        if op.input("Param")[0] in param_names:
1190 1191 1192
            return True
        else:
            for n in param_names:
T
typhoonzero 已提交
1193
                param = op.input("Param")[0]
T
typhoonzero 已提交
1194
                if same_or_split_var(n, param) and n != param:
1195 1196 1197
                    return True
            return False

T
typhoonzero 已提交
1198
    def _get_input_map_from_op(self, varmap, op):
1199
        """Returns a dict from op input name to the vars in varmap."""
T
typhoonzero 已提交
1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
        iomap = dict()
        for key in op.input_names:
            vars = []
            for varname in op.input(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap

    def _get_output_map_from_op(self, varmap, op):
1212
        """Returns a dict from op output name to the vars in varmap."""
T
typhoonzero 已提交
1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
        iomap = dict()
        for key in op.output_names:
            vars = []
            for varname in op.output(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap
1223 1224 1225 1226 1227 1228

    def _get_lr_ops(self):
        lr_ops = []
        # find learning rate variables by optimize op
        lr_vars = set()
        for op in self.optimize_ops:
1229
            if self._is_optimizer_op(op):
1230 1231 1232 1233
                lr_vars.add(op.input("LearningRate")[0])

        find_ops = []
        # find ops which output is lr var
1234
        block = self.origin_program.global_block()
1235 1236 1237 1238 1239
        for op in block.ops:
            if set(op.output_arg_names) & lr_vars:
                find_ops.append(op)
        # make a union find struct by the ops in default_main_program
        ufind = UnionFind(block.ops)
1240

1241 1242 1243 1244 1245
        for op1 in block.ops:
            for op2 in block.ops:
                # NOTE: we need to skip all optimize ops, since it is connected
                # with forward/backward ops and lr ops, we only need the lr ops.
                if op1 != op2 and self._is_op_connected(op1, op2) and \
1246
                    not self._is_optimizer_op(op1) and not self._is_optimizer_op(op2):
1247 1248 1249 1250 1251 1252
                    ufind.union(op1, op2)
        # find all ops which is related with lr var
        for op1 in block.ops:
            for op2 in find_ops:
                if ufind.is_connected(op1, op2):
                    lr_ops.append(op1)
1253 1254
                    # we only need to append op for once
                    break
1255
        return lr_ops
Y
Yancey1989 已提交
1256 1257

    def _get_optimize_pass(self):
1258 1259 1260 1261 1262 1263
        """
        Get optimizer operators, paramters and gradients from origin_program
        Returns:
            opt_ops (list): optimize operators.
            params_grads (dict): paramter->gradient.
        """
Y
Yancey1989 已提交
1264 1265 1266
        block = self.origin_program.global_block()
        opt_ops = []
        params_grads = []
1267
        origin_var_dict = self.origin_program.global_block().vars
Y
Yancey1989 已提交
1268
        for op in block.ops:
1269
            if self._is_opt_role_op(op):
Y
Yancey1989 已提交
1270
                opt_ops.append(op)
1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
                # HACK(wuyi): if we find grad vars from input of optimize
                # ops, we may get the output of clip op. Use syntax "@GRAD"
                # and op_role_var to get the pair.
                for input_name in op.input_arg_names:
                    if input_name.find("@GRAD") != -1 and \
                        op.attrs[RPC_OP_ROLE_ATTR_NAME]:
                        param_name = op.attrs[OP_ROLE_VAR_ATTR_NAME][0]
                        params_grads.append([
                            origin_var_dict[param_name],
                            origin_var_dict[input_name]
                        ])
1282 1283
            elif self._is_adam_connected_op(op):
                opt_ops.append(op)
Y
Yancey1989 已提交
1284 1285 1286
            else:
                pass
        return opt_ops, params_grads
1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298

    def _is_adam_connected_op(self, op):
        """
        A hack function to determinate whether the input operator
        is connected to optimize operator.
        """
        if op.type == "scale":
            for in_name in op.input_arg_names:
                if in_name.startswith("beta1_pow_acc") or \
                        in_name.startswith("beta2_pow_acc"):
                    return True
        return False