test_kron_op.py 7.6 KB
Newer Older
F
Feiyu Chan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
16

F
Feiyu Chan 已提交
17 18 19 20 21 22
import numpy as np
from op_test import OpTest

import paddle
import paddle.fluid as fluid
import paddle.fluid.dygraph as dg
23
from paddle.fluid.framework import _test_eager_guard
F
Feiyu Chan 已提交
24 25 26 27 28


class TestKronOp(OpTest):
    def setUp(self):
        self.op_type = "kron"
29
        self.python_api = paddle.kron
F
Feiyu Chan 已提交
30 31 32 33 34 35 36 37 38 39 40
        self.dtype = self._init_dtype()
        x = np.random.uniform(size=(10, 10)).astype(self.dtype)
        y = np.random.uniform(size=(10, 10)).astype(self.dtype)
        out_ref = np.kron(x, y)
        self.inputs = {'X': x, 'Y': y}
        self.outputs = {'Out': out_ref}

    def _init_dtype(self):
        return "float64"

    def test_check_output(self):
41
        self.check_output(check_eager=True)
F
Feiyu Chan 已提交
42 43

    def test_check_grad(self):
44
        self.check_grad(['X', 'Y'], 'Out', check_eager=True)
F
Feiyu Chan 已提交
45

46
    def test_check_grad_ignore_x(self):
47
        self.check_grad(['Y'], 'Out', no_grad_set=set('X'), check_eager=True)
48 49

    def test_check_grad_ignore_y(self):
50
        self.check_grad(['X'], 'Out', no_grad_set=set('Y'), check_eager=True)
51

F
Feiyu Chan 已提交
52 53 54 55

class TestKronOp2(TestKronOp):
    def setUp(self):
        self.op_type = "kron"
56
        self.python_api = paddle.kron
F
Feiyu Chan 已提交
57 58 59 60 61 62 63 64 65 66 67
        self.dtype = self._init_dtype()
        x = np.random.uniform(size=(5, 5, 4)).astype(self.dtype)
        y = np.random.uniform(size=(10, 10)).astype(self.dtype)
        out_ref = np.kron(x, y)
        self.inputs = {'X': x, 'Y': y}
        self.outputs = {'Out': out_ref}


class TestKronOp3(TestKronOp):
    def setUp(self):
        self.op_type = "kron"
68
        self.python_api = paddle.kron
F
Feiyu Chan 已提交
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
        self.dtype = self._init_dtype()
        x = np.random.uniform(size=(10, 10)).astype(self.dtype)
        y = np.random.uniform(size=(5, 5, 4)).astype(self.dtype)
        out_ref = np.kron(x, y)
        self.inputs = {'X': x, 'Y': y}
        self.outputs = {'Out': out_ref}


class TestKronLayer(unittest.TestCase):
    def test_case(self):
        a = np.random.randn(10, 10).astype(np.float64)
        b = np.random.randn(10, 10).astype(np.float64)

        place = fluid.CPUPlace()
        with dg.guard(place):
            a_var = dg.to_variable(a)
            b_var = dg.to_variable(b)
            c_var = paddle.kron(a_var, b_var)
            np.testing.assert_allclose(c_var.numpy(), np.kron(a, b))

    def test_case_with_output(self):
        a = np.random.randn(10, 10).astype(np.float64)
        b = np.random.randn(10, 10).astype(np.float64)

        main = fluid.Program()
        start = fluid.Program()
        with fluid.unique_name.guard():
            with fluid.program_guard(main, start):
                a_var = fluid.data("a", [-1, -1], dtype="float64")
                b_var = fluid.data("b", [-1, -1], dtype="float64")
W
WuHaobo 已提交
99
                out_var = paddle.kron(a_var, b_var)
F
Feiyu Chan 已提交
100 101 102 103

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(start)
104
        (c,) = exe.run(main, feed={'a': a, 'b': b}, fetch_list=[out_var])
F
Feiyu Chan 已提交
105 106
        np.testing.assert_allclose(c, np.kron(a, b))

107 108 109 110 111
    def test_api_eager_dygraph(self):
        with _test_eager_guard():
            self.test_case()
            self.test_case_with_output()

F
Feiyu Chan 已提交
112

113 114 115
class TestComplexKronOp(OpTest):
    def setUp(self):
        self.op_type = "kron"
116
        self.python_api = paddle.kron
117 118 119 120 121 122 123 124 125
        self.x_shape = np.array([10, 10])
        self.y_shape = np.array([3, 35])
        self.out_shape = self.x_shape * self.y_shape
        self.init_base_dtype()
        self.init_input_output()
        self.init_grad_input_output()

        self.inputs = {
            'X': OpTest.np_dtype_to_fluid_dtype(self.x),
126
            'Y': OpTest.np_dtype_to_fluid_dtype(self.y),
127 128 129 130 131 132 133 134 135
        }
        self.attrs = {'axis': -1, 'use_mkldnn': False}
        self.outputs = {'Out': self.out}

    def init_base_dtype(self):
        self.dtype = np.float64

    def init_input_output(self):
        self.x = np.random.random(self.x_shape).astype(
136 137
            self.dtype
        ) + 1j * np.random.random(self.x_shape).astype(self.dtype)
138
        self.y = np.random.random(self.y_shape).astype(
139 140
            self.dtype
        ) + 1j * np.random.random(self.y_shape).astype(self.dtype)
141 142 143
        self.out = np.kron(self.x, self.y)

    def init_grad_input_output(self):
144 145 146
        self.grad_out = np.ones(self.out_shape, self.dtype) + 1j * np.ones(
            self.out_shape, self.dtype
        )
147 148 149 150
        self.grad_x = self.get_grad_x_by_numpy()
        self.grad_y = self.get_grad_y_by_numpy()

    def get_grad_x_by_numpy(self):
151
        grad_x = np.zeros(self.x_shape, np.complex128)
152 153 154 155 156 157 158
        for x_i in range(self.x_shape[0]):
            for x_j in range(self.x_shape[1]):
                for i in range(self.y_shape[0]):
                    for j in range(self.y_shape[1]):
                        idx_i = x_i * self.y_shape[0] + i
                        idx_j = x_j * self.y_shape[1] + j
                        grad_x[x_i][x_j] += self.grad_out[idx_i][
159 160
                            idx_j
                        ] * np.conj(self.y[i][j])
161 162 163
        return grad_x

    def get_grad_y_by_numpy(self):
164
        grad_y = np.zeros(self.y_shape, np.complex128)
165 166 167 168 169 170 171
        for y_i in range(self.y_shape[0]):
            for y_j in range(self.y_shape[1]):
                for x_i in range(self.x_shape[0]):
                    for x_j in range(self.x_shape[1]):
                        idx_i = x_i * self.y_shape[0] + y_i
                        idx_j = x_j * self.y_shape[1] + y_j
                        grad_y[y_i][y_j] += self.grad_out[idx_i][
172 173
                            idx_j
                        ] * np.conj(self.x[x_i][x_j])
174 175 176
        return grad_y

    def test_check_output(self):
177
        self.check_output(check_eager=True)
178 179

    def test_check_grad_normal(self):
180 181 182 183 184 185 186
        self.check_grad(
            ['X', 'Y'],
            'Out',
            user_defined_grads=[self.grad_x, self.grad_y],
            user_defined_grad_outputs=[self.grad_out],
            check_eager=True,
        )
187 188

    def test_check_grad_ingore_x(self):
189 190 191 192 193 194 195 196
        self.check_grad(
            ['Y'],
            'Out',
            no_grad_set=set("X"),
            user_defined_grads=[self.grad_y],
            user_defined_grad_outputs=[self.grad_out],
            check_eager=True,
        )
197 198

    def test_check_grad_ingore_y(self):
199 200 201 202 203 204 205 206
        self.check_grad(
            ['X'],
            'Out',
            no_grad_set=set('Y'),
            user_defined_grads=[self.grad_x],
            user_defined_grad_outputs=[self.grad_out],
            check_eager=True,
        )
207 208


C
chentianyu03 已提交
209 210 211 212
class TestKronOpTypePromotion(TestComplexKronOp):
    def init_input_output(self):
        self.x = np.random.random(self.x_shape).astype(self.dtype)
        self.y = np.random.random(self.y_shape).astype(
213 214
            self.dtype
        ) + 1j * np.random.random(self.y_shape).astype(self.dtype)
C
chentianyu03 已提交
215 216 217
        self.out = np.kron(self.x, self.y)

    def init_grad_input_output(self):
218 219 220
        self.grad_out = np.ones(self.out_shape, self.dtype) + 1j * np.ones(
            self.out_shape, self.dtype
        )
C
chentianyu03 已提交
221 222 223 224
        self.grad_x = self.get_grad_x_by_numpy().real
        self.grad_y = self.get_grad_y_by_numpy()


F
Feiyu Chan 已提交
225
if __name__ == '__main__':
226
    paddle.enable_static()
F
Feiyu Chan 已提交
227
    unittest.main()