linear_chain_crf_op.cc 13.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
C
caoying03 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/linear_chain_crf_op.h"
C
caoying03 已提交
16

X
xuezhong 已提交
17 18
#include <memory>

C
caoying03 已提交
19 20 21
namespace paddle {
namespace operators {

C
caoying03 已提交
22
class LinearChainCRFOpMaker : public framework::OpProtoAndCheckerMaker {
C
caoying03 已提交
23
 public:
Y
Yu Yang 已提交
24
  void Make() override {
C
Cao Ying 已提交
25
    AddInput("Emission",
K
kexinzhao 已提交
26 27
             "(LoDTensor, default LoDTensor<float>) "
             "A 2-D LoDTensor with shape [N x D], where N is the size of the "
C
Cao Ying 已提交
28 29 30
             "mini-batch and D is the total tag number. The unscaled emission "
             "weight matrix for the linear chain CRF. ");
    AddInput("Transition",
K
kexinzhao 已提交
31
             "(Tensor, default Tensor<float>) A 2-D Tensor with shape "
C
Cao Ying 已提交
32 33 34
             "[(D + 2) x D]. The learnable parameter for the linear_chain_crf "
             "operator. See more details in the operator's comments.");
    AddInput("Label",
35
             "(LoDTensor, default LoDTensor<int64_t>) A LoDTensor with shape "
C
Cao Ying 已提交
36 37
             "[N x 1], where N is the total element number in a mini-batch. "
             "The ground truth.");
C
caoying03 已提交
38 39
    AddOutput(
        "Alpha",
K
kexinzhao 已提交
40
        "(Tensor, default Tensor<float>) A 2-D Tensor with shape [N x D]. "
41 42 43
        "The forward vectors for the entire batch. Denote it as $\alpha$. "
        "$\alpha$ is a memo table used to calculate the normalization "
        "factor in CRF. $\alpha[k, v]$ stores the unnormalized "
C
Cao Ying 已提交
44
        "probabilites of all possible unfinished sequences of tags that end at "
45 46 47
        "position $k$ with tag $v$. For each $k$, "
        "$\alpha[k, v]$ is a vector of length $D$ with a component for "
        "each tag value $v$. This vector is called a forward vecotr and "
C
caoying03 已提交
48 49
        "will also be used in backward computations.")
        .AsIntermediate();
C
Cao Ying 已提交
50 51
    AddOutput(
        "EmissionExps",
K
kexinzhao 已提交
52
        "(Tensor, default Tensor<float>) A 2-D Tensor with shape [N x D]. "
C
Cao Ying 已提交
53 54 55
        "The exponentials of Input(Emission). This is an intermediate "
        "computational result in forward computation, and will be reused in "
        "backward computation.")
C
caoying03 已提交
56
        .AsIntermediate();
C
Cao Ying 已提交
57 58
    AddOutput(
        "TransitionExps",
K
kexinzhao 已提交
59
        "(Tensor, default Tensor<float>) A 2-D Tensor with shape "
C
Cao Ying 已提交
60 61 62
        "[(D + 2) x D]. The exponentials of Input(Transition). This is an "
        "intermediate computational result in forward computation, and "
        "will be reused in backward computation.")
C
caoying03 已提交
63
        .AsIntermediate();
C
caoying03 已提交
64 65
    AddOutput(
        "LogLikelihood",
K
kexinzhao 已提交
66
        "(Tensor, default Tensor<float>) The logarithm of the conditional "
C
caoying03 已提交
67 68
        "likelihood of each training sample in a mini-batch. This is a 2-D "
        "tensor with shape [S x 1], where S is the sequence number in a "
C
caoying03 已提交
69 70
        "mini-batch. Note: S is equal to the sequence number in a mini-batch. "
        "The output is no longer a LoDTensor.");
C
caoying03 已提交
71 72 73
    AddComment(R"DOC(
Conditional Random Field defines an undirected probabilistic graph with nodes
denoting random variables and edges denoting dependencies between these
74 75 76
variables. CRF learns the conditional probability $P(Y|X)$, where
$X = (x_1, x_2, ... , x_n)$ are structured inputs and
$Y = (y_1, y_2, ... , y_n)$ are labels for the inputs.
C
caoying03 已提交
77 78 79

Linear chain CRF is a special case of CRF that is useful for sequence labeling
task. Sequence labeling tasks do not assume a lot of conditional
C
caoying03 已提交
80 81 82
independences among inputs. The only constraint they impose is that the input
and output must be linear sequences. Thus, the graph of such a CRF is a simple
chain or a line, which results in the linear chain CRF.
C
caoying03 已提交
83

C
caoying03 已提交
84
This operator implements the Forward-Backward algorithm for the linear chain
K
kexinzhao 已提交
85 86
CRF. Please refer to http://www.cs.columbia.edu/~mcollins/fb.pdf and
http://cseweb.ucsd.edu/~elkan/250Bwinter2012/loglinearCRFs.pdf for details.
C
caoying03 已提交
87 88

Equation:
Y
yi.wu 已提交
89

90
1. Denote Input(Emission) to this operator as $x$ here.
K
kexinzhao 已提交
91
2. The first D values of Input(Transition) to this operator are for starting
92
weights, denoted as $a$ here.
K
kexinzhao 已提交
93
3. The next D values of Input(Transition) of this operator are for ending
94
weights, denoted as $b$ here.
K
kexinzhao 已提交
95
4. The remaning values of Input(Transition) are for transition weights,
96 97
denoted as $w$ here.
5. Denote Input(Label) as $s$ here.
C
caoying03 已提交
98

99 100 101 102 103 104 105
The probability of a sequence $s$ of length $L$ is defined as:
$$P(s) = (1/Z) \exp(a_{s_1} + b_{s_L}
                + \sum_{l=1}^L x_{s_l}
                + \sum_{l=2}^L w_{s_{l-1},s_l})$$

where $Z$ is a normalization value so that the sum of $P(s)$ over
all possible sequences is 1, and $x$ is the emission feature weight
C
caoying03 已提交
106 107
to the linear chain CRF.

K
kexinzhao 已提交
108
Finally, the linear chain CRF operator outputs the logarithm of the conditional
C
caoying03 已提交
109 110 111
likelihood of each training sample in a mini-batch.

NOTE:
Y
yi.wu 已提交
112

C
caoying03 已提交
113 114 115 116
1. The feature function for a CRF is made up of the emission features and the
transition features. The emission feature weights are NOT computed in
this operator. They MUST be computed first before this operator is called.

C
caoying03 已提交
117
2. Because this operator performs global normalization over all possible
C
caoying03 已提交
118 119 120 121
sequences internally, it expects UNSCALED emission feature weights.
Please do not call this op with the emission feature being output of any
nonlinear activation.

122
3. The 2nd dimension of Input(Emission) MUST be equal to the tag number.
C
caoying03 已提交
123 124 125 126 127

)DOC");
  }
};

C
caoying03 已提交
128
class LinearChainCRFOp : public framework::OperatorWithKernel {
C
caoying03 已提交
129 130 131
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

C
caoying03 已提交
132 133 134 135 136 137 138 139 140
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("Emission"),
                   "Input(Emission) should be not null.");
    PADDLE_ENFORCE(ctx->HasInput("Transition"),
                   "Input(Transition) should be not null.");
    PADDLE_ENFORCE(ctx->HasInput("Label"), "Input(Label) should be not null.");

    PADDLE_ENFORCE(ctx->HasOutput("Alpha"),
                   "Output(Alpha) should be not null.");
C
caoying03 已提交
141 142 143 144
    PADDLE_ENFORCE(ctx->HasOutput("EmissionExps"),
                   "Output(EmissionExps) should be not null.");
    PADDLE_ENFORCE(ctx->HasOutput("TransitionExps"),
                   "Output(TransitionExps) should be not null.");
C
caoying03 已提交
145 146 147 148
    PADDLE_ENFORCE(ctx->HasOutput("LogLikelihood"),
                   "Output(LogLikelihood) should be not null.");

    auto emission_dims = ctx->GetInputDim("Emission");
T
tensor-tang 已提交
149
    PADDLE_ENFORCE_EQ(emission_dims.size(), 2,
150
                      "The Input(Emission) should be a 2-D tensor.");
C
caoying03 已提交
151 152 153
    PADDLE_ENFORCE(emission_dims[0], "An empty mini-batch is not allowed.");

    auto transition_dims = ctx->GetInputDim("Transition");
T
tensor-tang 已提交
154
    PADDLE_ENFORCE_EQ(transition_dims.size(), 2,
155
                      "The Input(Transition) should be a 2-D tensor.");
X
xuezhong 已提交
156 157 158 159 160 161 162 163 164 165 166 167 168
    bool check = true;
    if ((!ctx->IsRuntime()) &&
        (transition_dims[0] <= 0 || transition_dims[1] <= 0)) {
      check = false;
    }
    if (check) {
      PADDLE_ENFORCE_EQ(
          transition_dims[0] - 2, transition_dims[1],
          "An invalid dimension for the Input(Transition), which should "
          "be a 2-D tensor with shape [(D + 2) x D].");
    }
    PADDLE_INFERSHAPE_ENFORCE_EQ(
        ctx, emission_dims[1], transition_dims[1],
169
        "The 2nd dimension of the Input(Emission) and the Input(Transition) "
C
caoying03 已提交
170
        "should be equal to the tag number.");
C
caoying03 已提交
171 172

    auto label_dims = ctx->GetInputDim("Label");
C
caoying03 已提交
173
    PADDLE_ENFORCE(label_dims.size() == 2UL && label_dims[1] == 1UL,
174 175
                   "The Input(Label) should be a 2-D tensor with the 2nd "
                   "dimensions fixed to 1.");
X
xuezhong 已提交
176 177
    PADDLE_INFERSHAPE_ENFORCE_EQ(
        ctx, emission_dims[0], label_dims[0],
178 179
        "The height of Input(Emission) and the height of Input(Label) "
        "should be the same.");
C
caoying03 已提交
180 181

    ctx->SetOutputDim("Alpha", emission_dims);
C
caoying03 已提交
182 183
    ctx->SetOutputDim("EmissionExps", emission_dims);
    ctx->SetOutputDim("TransitionExps", transition_dims);
C
caoying03 已提交
184
    // TODO(caoying) This is tricky. The 1st dimension of Output(LogLikelihood)
185
    // is the sequence number in a mini-batch. The dimension set here should be
C
caoying03 已提交
186 187
    // resized to its correct size in the function Compute. Fix this once we can
    // get LoD information in the InferShape interface.
C
caoying03 已提交
188 189 190
    ctx->SetOutputDim("LogLikelihood", {emission_dims[0], 1});
  }

C
caoying03 已提交
191
 protected:
C
Cao Ying 已提交
192 193
  // Explicitly set that the data type of computation kernel of linear_chain_crf
  // is determined by its input "Emission".
194
  framework::OpKernelType GetExpectedKernelType(
C
caoying03 已提交
195
      const framework::ExecutionContext& ctx) const override {
Y
Yu Yang 已提交
196 197
    return framework::OpKernelType(ctx.Input<LoDTensor>("Emission")->type(),
                                   platform::CPUPlace());
C
caoying03 已提交
198
  }
C
caoying03 已提交
199 200
};

C
caoying03 已提交
201
class LinearChainCRFGradOp : public framework::OperatorWithKernel {
C
caoying03 已提交
202 203 204
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

C
caoying03 已提交
205 206 207 208 209 210 211 212 213
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("EmissionExps"),
                   "Input(EmissionExps) should be not null.");
    PADDLE_ENFORCE(ctx->HasInput("TransitionExps"),
                   "Input(TransitionExps) should be not null.");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("LogLikelihood")),
                   "Input(LogLikelihood@GRAD) shoudl be not null.");

    auto emission_exps_dims = ctx->GetInputDim("EmissionExps");
T
tensor-tang 已提交
214
    PADDLE_ENFORCE_EQ(emission_exps_dims.size(), 2,
C
caoying03 已提交
215
                      "The Input(EmissionExps) should be a 2-D tensor.");
C
caoying03 已提交
216 217 218
    PADDLE_ENFORCE(emission_exps_dims[0],
                   "An empty mini-batch is not allowed.");

219
    auto transition_exps_dims = ctx->GetInputDim("TransitionExps");
T
tensor-tang 已提交
220
    PADDLE_ENFORCE_EQ(transition_exps_dims.size(), 2,
C
caoying03 已提交
221
                      "The Input(TransitionExps) should be a 2-D tensor.");
X
xuezhong 已提交
222 223 224 225 226 227 228 229 230 231 232 233 234
    bool check = true;
    if ((!ctx->IsRuntime()) &&
        (transition_exps_dims[0] <= 0 || transition_exps_dims[1] <= 0)) {
      check = false;
    }
    if (check) {
      PADDLE_ENFORCE_EQ(
          transition_exps_dims[0] - 2, transition_exps_dims[1],
          "An invalid dimension for the Input(TransitionExps), which should "
          "be a 2-D tensor with shape [(D + 2) x D].");
    }
    PADDLE_INFERSHAPE_ENFORCE_EQ(
        ctx, emission_exps_dims[1], transition_exps_dims[1],
C
caoying03 已提交
235 236
        "The 2nd dimension of the Input(EmissionExps) and the "
        "Input(TransitionExps) should be equal to the tag number.");
C
caoying03 已提交
237 238

    auto label_dims = ctx->GetInputDim("Label");
C
caoying03 已提交
239 240 241
    PADDLE_ENFORCE(label_dims.size() == 2UL && label_dims[1] == 1UL,
                   "The Input(Label) should be a 2-D tensor with the 2nd "
                   "dimensions fixed to 1.");
X
xuezhong 已提交
242 243
    PADDLE_INFERSHAPE_ENFORCE_EQ(
        ctx, emission_exps_dims[0], label_dims[0],
C
caoying03 已提交
244 245 246
        "The height of Input(EmissionExps) and the height of Input(Label) "
        "should be the same.");

C
caoying03 已提交
247 248
    if (ctx->HasOutput(framework::GradVarName("Emission"))) {
      ctx->SetOutputDim(framework::GradVarName("Emission"), emission_exps_dims);
S
sneaxiy 已提交
249
      ctx->ShareLoD("Emission", framework::GradVarName("Emission"));
C
caoying03 已提交
250 251 252 253
    }
    if (ctx->HasOutput(framework::GradVarName("Transition"))) {
      ctx->SetOutputDim(framework::GradVarName("Transition"),
                        transition_exps_dims);
S
sneaxiy 已提交
254
      ctx->ShareLoD("Transition", framework::GradVarName("Transition"));
C
caoying03 已提交
255
    }
C
caoying03 已提交
256
  }
C
caoying03 已提交
257 258 259

 protected:
  // Explicitly set that the data type of output of the linear_chain_crf_grad
C
caoying03 已提交
260
  // operator is determined by its input: gradients of LogLikelihood.
261
  framework::OpKernelType GetExpectedKernelType(
C
caoying03 已提交
262
      const framework::ExecutionContext& ctx) const override {
Y
Yu Yang 已提交
263
    return framework::OpKernelType(
Y
Yu Yang 已提交
264
        ctx.Input<LoDTensor>(framework::GradVarName("LogLikelihood"))->type(),
265
        platform::CPUPlace());
C
caoying03 已提交
266
  }
C
caoying03 已提交
267 268
};

S
sneaxiy 已提交
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
class LinearChainCRFGradDescMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
  std::unique_ptr<framework::OpDesc> Apply() const override {
    std::unique_ptr<framework::OpDesc> op(new framework::OpDesc());
    op->SetType("linear_chain_crf_grad");
    op->SetAttrMap(Attrs());

    op->SetInput("Emission", Input("Emission"));
    op->SetInput("Transition", Input("Transition"));
    op->SetInput("Label", Input("Label"));

    op->SetInput("Alpha", Output("Alpha"));
    op->SetInput("EmissionExps", Output("EmissionExps"));
    op->SetInput("TransitionExps", Output("TransitionExps"));

    op->SetInput(framework::GradVarName("LogLikelihood"),
                 OutputGrad("LogLikelihood"));

    op->SetOutput(framework::GradVarName("Emission"), InputGrad("Emission"));
    op->SetOutput(framework::GradVarName("Transition"),
                  InputGrad("Transition"));

    return op;
  }
};

DECLARE_NO_NEED_BUFFER_VARS_INFERENCE(
    LinearChainCRFGradNoNeedBufferVarsInference, "Transition", "Emission");

C
caoying03 已提交
301 302 303 304
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
Y
Yang Yang 已提交
305
REGISTER_OPERATOR(linear_chain_crf, ops::LinearChainCRFOp,
S
sneaxiy 已提交
306 307 308
                  ops::LinearChainCRFOpMaker, ops::LinearChainCRFGradDescMaker);
REGISTER_OPERATOR(linear_chain_crf_grad, ops::LinearChainCRFGradOp,
                  ops::LinearChainCRFGradNoNeedBufferVarsInference);
309 310
REGISTER_OP_CPU_KERNEL(
    linear_chain_crf,
Q
QI JUN 已提交
311 312
    ops::LinearChainCRFOpKernel<paddle::platform::CPUDeviceContext, float>,
    ops::LinearChainCRFOpKernel<paddle::platform::CPUDeviceContext, double>);
313 314
REGISTER_OP_CPU_KERNEL(
    linear_chain_crf_grad,
Q
QI JUN 已提交
315 316 317
    ops::LinearChainCRFGradOpKernel<paddle::platform::CPUDeviceContext, float>,
    ops::LinearChainCRFGradOpKernel<paddle::platform::CPUDeviceContext,
                                    double>);