mkldnn_reuse.h 20.6 KB
Newer Older
J
Jacek Czaja 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once

16
#include <algorithm>
17
#include <memory>
18
#include <sstream>
J
Jacek Czaja 已提交
19
#include <string>
20
#include <utility>
J
Jacek Czaja 已提交
21
#include <vector>
22

X
xiaoli.liu@intel.com 已提交
23
#include "paddle/fluid/framework/data_layout_transform.h"
J
Jacek Czaja 已提交
24
#include "paddle/fluid/framework/operator.h"
25
#include "paddle/fluid/operators/pool_op.h"
J
Jacek Czaja 已提交
26 27
#include "paddle/fluid/platform/mkldnn_helper.h"
#include "paddle/fluid/platform/place.h"
28
#include "paddle/phi/backends/onednn/onednn_reuse.h"
J
Jacek Czaja 已提交
29 30 31 32

namespace paddle {
namespace platform {

33 34
using framework::DataLayout;
using framework::Tensor;
J
Jacek Czaja 已提交
35
using user_function = std::function<std::shared_ptr<float>(const float*)>;
36
using memory = dnnl::memory;
J
Jacek Czaja 已提交
37

38 39
template <typename T,
          typename TForward,
40 41
          typename TBackward = mkldnn_dummy_primitive,
          typename TBackward_params = mkldnn_dummy_primitive>
42 43
using MKLDNNHandlerT =
    phi::funcs::OneDNNHandlerT<T, TForward, TBackward, TBackward_params>;
44

45 46
template <typename T,
          typename TForward,
47 48
          typename TBackward = mkldnn_dummy_primitive,
          typename TBackward_params = mkldnn_dummy_primitive>
49 50
using MKLDNNHandlerNoCachingT = phi::funcs::
    OneDNNHandlerNoCachingT<T, TForward, TBackward, TBackward_params>;
51

52
template <typename T>
53
using ReductionMKLDNNHandler = phi::funcs::ReductionOneDNNHandler<T>;
54

55
template <typename T>
56
using BroadcastDataMKLDNNHandler = phi::funcs::BroadcastDataOneDNNHandler<T>;
57

58 59
template <typename T>
using BinaryMKLDNNHandler = phi::funcs::BinaryOneDNNHandler<T>;
60

61
static void AppendActivation(const framework::ExecutionContext& ctx,
62
                             dnnl::post_ops& post_ops,  // NOLINT
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
                             float activation_scale = 1.0f) {
  const auto invalid_attribute =
      ctx.HasAttr("fuse_activation")
          ? ctx.Attr<std::string>("fuse_activation").empty()
          : true;
  if (invalid_attribute) return;

  const auto fuse_activation = ctx.Attr<std::string>("fuse_activation");
  const auto fuse_alpha =
      ctx.HasAttr("fuse_alpha") ? ctx.Attr<float>("fuse_alpha") : 0.0f;
  const auto fuse_beta =
      ctx.HasAttr("fuse_beta") ? ctx.Attr<float>("fuse_beta") : 0.0f;

  if (fuse_activation == "hard_sigmoid") {
    post_ops.append_eltwise(activation_scale,
                            dnnl::algorithm::eltwise_linear,
                            fuse_alpha,
                            fuse_beta);
    post_ops.append_eltwise(
        activation_scale, dnnl::algorithm::eltwise_clip, 0.0f, 1.0f);
  } else {
    const std::unordered_map<std::string, dnnl::algorithm> activation_map = {
        {"abs", dnnl::algorithm::eltwise_abs},
        {"clip", dnnl::algorithm::eltwise_clip},
        {"gelu", dnnl::algorithm::eltwise_gelu_erf},
        {"gelu_erf", dnnl::algorithm::eltwise_gelu_erf},
        {"gelu_tanh", dnnl::algorithm::eltwise_gelu_tanh},
        {"hard_swish", dnnl::algorithm::eltwise_hardswish},
        {"leaky_relu", dnnl::algorithm::eltwise_relu},
        {"mish", dnnl::algorithm::eltwise_mish},
        {"relu", dnnl::algorithm::eltwise_relu},
        {"relu6", dnnl::algorithm::eltwise_bounded_relu},
        {"sigmoid", dnnl::algorithm::eltwise_logistic},
        {"sqrt", dnnl::algorithm::eltwise_sqrt},
        {"swish", dnnl::algorithm::eltwise_swish},
        {"tanh", dnnl::algorithm::eltwise_tanh}};

    const auto& activation_type = activation_map.find(fuse_activation);

    PADDLE_ENFORCE_NE(
        activation_type,
        activation_map.end(),
        platform::errors::InvalidArgument(
            "Activation '%s' not found in oneDNN algorithms mapper",
            fuse_activation));

    post_ops.append_eltwise(
        activation_scale, activation_type->second, fuse_alpha, fuse_beta);
  }
}

114
template <typename T>
115 116 117 118 119 120 121 122 123 124
constexpr bool IsInt8() {
  return std::is_same<T, int8_t>::value || std::is_same<T, uint8_t>::value;
}

template <typename T>
constexpr bool IsBfloat16() {
  return std::is_same<T, paddle::platform::bfloat16>::value;
}

template <typename XT, typename YT, typename OT>
125
class MatMulV2MKLDNNHandler
126
    : public paddle::platform::MKLDNNHandlerNoCachingT<XT, dnnl::matmul> {
127
 public:
128 129
  MatMulV2MKLDNNHandler(const framework::ExecutionContext& ctx,
                        const dnnl::engine engine,
130
                        paddle::platform::Place cpu_place,
131 132 133 134
                        const std::vector<int64_t>& x_org_dims,
                        bool trans_x,
                        const std::vector<int64_t>& y_org_dims,
                        bool trans_y,
135 136 137
                        bool is_output_fused,
                        const std::vector<int64_t>& x_strides_override,
                        const std::vector<int64_t>& y_strides_override)
138 139
      : paddle::platform::MKLDNNHandlerNoCachingT<XT, dnnl::matmul>(engine,
                                                                    cpu_place) {
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
    // M X K * K X N
    std::vector<int64_t> x_dims(x_org_dims);
    std::vector<int64_t> y_dims(y_org_dims);

    const int MB_idx = x_dims.size() - 3;
    const int H_idx = x_dims.size() - 2;
    const int W_idx = x_dims.size() - 1;

    if (trans_x) std::swap(x_dims[H_idx], x_dims[W_idx]);
    if (trans_y) std::swap(y_dims[H_idx], y_dims[W_idx]);

    const memory::dim M = x_dims[H_idx];
    const memory::dim K = x_dims[W_idx];
    const memory::dim N = y_dims[W_idx];

    std::vector<int64_t> x_strides(x_dims.size() - 3, 1);
    std::vector<int64_t> y_strides(x_dims.size() - 3, 1);
    std::vector<int64_t> out_strides(x_dims.size() - 3, 1);
    std::vector<int64_t> out_ddims(x_dims.size() - 3, 1);

    x_strides.reserve(x_dims.size());
    y_strides.reserve(x_dims.size());
    out_strides.reserve(x_dims.size());

    if (!x_strides_override.empty()) {
      x_strides = x_strides_override;
    } else {
      if (!trans_x) {
        x_strides.insert(x_strides.end(), {M * K, K, 1});
      } else {
        x_strides.insert(x_strides.end(), {M * K, 1, M});
      }
    }

    if (!y_strides_override.empty()) {
      y_strides = y_strides_override;
    } else {
      if (!trans_y) {
        y_strides.insert(y_strides.end(), {N * K, N, 1});
      } else {
        y_strides.insert(y_strides.end(), {N * K, 1, K});
      }
    }

    out_strides.insert(out_strides.end(), {M * N, N, 1});
    out_ddims.insert(out_ddims.end(),
                     {std::max(x_dims[MB_idx], y_dims[MB_idx]), M, N});

    for (int i = x_dims.size() - 4; i >= 0; --i) {
      out_ddims[i] = std::max(x_dims[i], y_dims[i]);
      if (x_strides_override.empty()) {
        x_strides[i] = x_dims[i + 1] * x_strides[i + 1];
      }
      if (y_strides_override.empty()) {
        y_strides[i] = y_dims[i + 1] * y_strides[i + 1];
      }
      out_strides[i] = out_ddims[i + 1] * out_strides[i + 1];
    }

199 200
    // TODO(jczaja): Why not for int8??
    if (!IsInt8<OT>() && is_output_fused) {
201 202 203
      out_strides = FakeTransposeStrides(out_ddims);
    }

204 205 206
    auto x_md = memory::desc(x_dims, MKLDNNGetDataType<XT>(), x_strides);
    auto y_md = memory::desc(y_dims, MKLDNNGetDataType<YT>(), y_strides);
    auto out_md = memory::desc(out_ddims, MKLDNNGetDataType<OT>(), out_strides);
207

208 209 210 211 212
    const dnnl::primitive_attr matmul_attrs = CreateMatmulAttrs(ctx);

    this->AcquireForwardPrimitiveDescriptor(matmul_attrs, x_md, y_md, out_md);
  }

213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
  float ComputeOutputScale(const framework::ExecutionContext& ctx) {
    float alpha = ctx.HasAttr("alpha") ? ctx.Attr<float>("alpha") : 1.0f;
    if (ctx.HasAttr("Scale_x") && ctx.HasAttr("Scale_y") &&
        ctx.HasAttr("Scale_out")) {
      float scale_x = ctx.Attr<float>("Scale_x");
      float scale_y = ctx.Attr<float>("Scale_y");
      bool force_fp32_out = ctx.HasAttr("force_fp32_output")
                                ? ctx.Attr<bool>("force_fp32_output")
                                : false;
      float scale_out = force_fp32_out ? 1.f : ctx.Attr<float>("Scale_out");
      alpha *= scale_out / (scale_x * scale_y);
    }
    return alpha;
  }

228 229 230 231 232
  dnnl::primitive_attr CreateMatmulAttrs(
      const framework::ExecutionContext& ctx) {
    dnnl::primitive_attr matmul_attrs;
    dnnl::post_ops post_operations;

233 234 235
    float scale_out = ComputeOutputScale(ctx);
    if (scale_out != 1.0f) {
      matmul_attrs.set_output_scales(0, {scale_out});
236 237
    }

238 239 240 241
    if (ctx.HasInput("ResidualData")) {
      auto* residual_data = ctx.Input<Tensor>("ResidualData");
      auto residual_data_tz = phi::vectorize(residual_data->dims());
      auto residual_data_md = memory::desc(residual_data_tz,
242 243
                                           MKLDNNGetDataType<OT>(),
                                           dnnl::memory::format_tag::any);
244 245
      post_operations.append_binary(dnnl::algorithm::binary_add,
                                    residual_data_md);
246 247 248 249
      if (ctx.HasAttr("Scale_in_eltwise")) {
        float sum_scale = scale_out / ctx.Attr<float>("Scale_in_eltwise");
        post_operations.append_sum(sum_scale);
      }
250 251
    }

252 253 254 255
    AppendActivation(ctx, post_operations);

    matmul_attrs.set_post_ops(post_operations);
    return matmul_attrs;
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
  }

  std::vector<int64_t> FakeTransposeStrides(
      const std::vector<int64_t>& matmul_out_dims) const {
    // fuse matmul_v2 + transpose + reshape guarantees that output is 4D and
    // transpose axis are: {0, 2, 1, 3}
    std::vector<int64_t> transpose_axis = {0, 2, 1, 3};
    std::vector<int64_t> fake_strides(transpose_axis.size());
    int ndims = static_cast<int>(transpose_axis.size());

    int total_stride = 1;

    for (int i = ndims - 1; i >= 0; --i) {
      fake_strides[transpose_axis[i]] = total_stride;
      total_stride *= matmul_out_dims[transpose_axis[i]];
    }

    return fake_strides;
  }

  std::shared_ptr<memory> AcquireWeightsMemory(const Tensor* input) {
277
    const YT* input_data = input->data<YT>();
278
    return this->AcquireMemoryFromPrimitive(this->fwd_pd_->weights_desc(),
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
                                            to_void_cast<YT>(input_data));
  }

  std::shared_ptr<dnnl::memory> AcquireDstMemory(
      paddle::framework::Tensor* output) {
    // We cannot use base AcquireDstMemory as it makes an allocation request
    // base on DST memory primitive size. This is fine in general, but in MatMul
    // we have primitive that covers only one batch of Data and then shift
    // pointer for every new batch. Hence Tensor size is bigger that dst memory
    // primitive size. So would we request less memory that is there and it
    // triggers an
    // assertion.  So as there is no 'any' format here we can leave default size
    // of Tensor as computed in ComputeInferShape
    OT* ptr = output->mutable_data<OT>(this->place_);
    return this->AcquireMemoryFromPrimitive(this->fwd_pd_->dst_desc(), ptr);
294 295 296
  }
};

297
template <typename T>
298
class ActivationMKLDNNHandler
299 300
    : public MKLDNNHandlerNoCachingT<T,
                                     dnnl::eltwise_forward,
301
                                     dnnl::eltwise_backward> {
302
 public:
303
  ActivationMKLDNNHandler(dnnl::algorithm algorithm,
304
                          const framework::ExecutionContext& ctx,
305 306
                          const dnnl::engine engine,
                          Place cpu_place,
307
                          const framework::Tensor* x)
308 309
      : platform::MKLDNNHandlerNoCachingT<T,
                                          dnnl::eltwise_forward,
310 311
                                          dnnl::eltwise_backward>(engine,
                                                                  cpu_place) {
312 313
    float alpha = ctx.HasAttr("alpha") ? ctx.Attr<float>("alpha") : 0;
    float beta = ctx.HasAttr("beta") ? ctx.Attr<float>("beta") : 0;
314 315

    if (ctx.Type() == "scale") {
316 317
      bool bias_after_scale = ctx.Attr<bool>("bias_after_scale");
      auto* scale_tensor = ctx.Input<Tensor>("ScaleTensor");
318 319 320
      alpha = (scale_tensor == nullptr)
                  ? ctx.Attr<float>("scale")
                  : static_cast<float>(*(scale_tensor->data<T>()));
321 322 323 324 325
      beta = ctx.Attr<float>("bias");
      // if bias_after_scale == true
      //   out = scale*X + bias
      // else
      //   out = scale*(X + bias) = scale*X + scale*bias
326 327 328 329 330 331 332 333
      if (!bias_after_scale) {
        beta *= alpha;
      }
    } else if (ctx.Type() == "clip") {
      alpha = ctx.HasInput("Min") ? ctx.Input<Tensor>("Min")->data<float>()[0]
                                  : ctx.Attr<float>("min");
      beta = ctx.HasInput("Max") ? ctx.Input<Tensor>("Max")->data<float>()[0]
                                 : ctx.Attr<float>("max");
334 335
    } else {
      // paddle uses beta but mkldnn uses alpha for swish
336
      if (algorithm == dnnl::algorithm::eltwise_swish) {
337 338 339
        std::swap(alpha, beta);
      } else if (algorithm == dnnl::algorithm::eltwise_bounded_relu) {
        alpha = ctx.Attr<float>("threshold");
340
      }
341
    }
342

343
    this->AcquireForwardPrimitiveDescriptor(dnnl::prop_kind::forward_training,
344 345 346
                                            algorithm,
                                            x->mem_desc(),
                                            alpha,
347
                                            beta);
348 349
  }

350
  ActivationMKLDNNHandler(dnnl::algorithm algorithm,
351
                          const framework::ExecutionContext& ctx,
352 353 354 355 356 357
                          const dnnl::engine engine,
                          Place cpu_place,
                          const framework::Tensor* x,
                          const Tensor* dout)
      : platform::MKLDNNHandlerNoCachingT<T,
                                          dnnl::eltwise_forward,
358 359
                                          dnnl::eltwise_backward>(engine,
                                                                  cpu_place) {
360 361 362 363
    float alpha = ctx.HasAttr("alpha") ? ctx.Attr<float>("alpha") : 0;
    float beta = ctx.HasAttr("beta") ? ctx.Attr<float>("beta") : 0;

    // paddle uses beta but mkldnn uses alpha for swish
364
    if (algorithm == dnnl::algorithm::eltwise_swish) {
365 366 367 368
      std::swap(alpha, beta);
    } else if (algorithm == dnnl::algorithm::eltwise_bounded_relu) {
      alpha = ctx.Attr<float>("threshold");
    }
369

370 371 372 373 374 375 376
    if (ctx.Type() == "clip_grad") {
      alpha = ctx.HasInput("Min") ? ctx.Input<Tensor>("Min")->data<float>()[0]
                                  : ctx.Attr<float>("min");
      beta = ctx.HasInput("Max") ? ctx.Input<Tensor>("Max")->data<float>()[0]
                                 : ctx.Attr<float>("max");
    }

377
    this->AcquireForwardPrimitiveDescriptor(dnnl::prop_kind::forward_training,
378 379 380
                                            algorithm,
                                            x->mem_desc(),
                                            alpha,
381
                                            beta);
382 383
    this->AcquireBackwardPrimitiveDescriptor(
        algorithm, dout->mem_desc(), x->mem_desc(), alpha, beta);
384
  }
385

386
  std::shared_ptr<dnnl::memory> AcquireBackwardSrcMemory(
387 388
      const framework::Tensor* input) {
    const T* input_data = input->data<T>();
A
Adam 已提交
389
    return this->AcquireMemoryFromPrimitive(this->bwd_pd_->src_desc(),
390
                                            to_void_cast<T>(input_data));
391 392 393
  }
};

394 395 396
static std::unordered_map<std::string, std::string> GetAttributeMap(
    std::string act_type) {
  std::unordered_map<std::string, std::string> attr_map;
397
  if (act_type == "swish") {
398
    attr_map.emplace("beta", "fuse_alpha");
399
  } else if (act_type == "relu6") {
400
    attr_map.emplace("threshold", "fuse_alpha");
401
  } else if (act_type == "hard_sigmoid") {
402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
    attr_map.emplace("slope", "fuse_alpha");
    attr_map.emplace("offset", "fuse_beta");
  } else if (act_type == "clip") {
    attr_map.emplace("min", "fuse_alpha");
    attr_map.emplace("max", "fuse_beta");
  } else {
    attr_map.emplace("alpha", "fuse_alpha");
    attr_map.emplace("beta", "fuse_beta");
  }
  return attr_map;
}

static std::vector<std::string> GetSupportedActivations() {
  return std::vector<std::string>{"abs",
                                  "clip",
                                  "gelu",
                                  "hard_sigmoid",
                                  "hard_swish",
                                  "leaky_relu",
                                  "mish",
                                  "relu",
                                  "relu6",
                                  "sigmoid",
                                  "sqrt",
                                  "swish",
                                  "tanh"};
428 429
}

430
class ReorderMKLDNNHandler {
431
 public:
A
Adam 已提交
432
  ReorderMKLDNNHandler(std::vector<int64_t>& dims,  // NOLINT
433
                       framework::proto::VarType::Type vtype,
434 435
                       dnnl::memory::data_type dtype,
                       dnnl::engine engine)
436
      : dims_(dims),
437
        vtype_(vtype),
438 439
        vtype_dst_(vtype),
        dtype_(dtype),
440 441
        dtype_dst_(dtype),
        engine_(engine) {}
442 443 444

  ReorderMKLDNNHandler(std::vector<int64_t>& dims,  // NOLINT
                       framework::proto::VarType::Type vtype,
445
                       dnnl::memory::data_type dtype,
446
                       framework::proto::VarType::Type vtype_dst,
447 448
                       dnnl::memory::data_type dtype_dst,
                       dnnl::engine engine)
449
      : dims_(dims),
450 451 452
        vtype_(vtype),
        vtype_dst_(vtype_dst),
        dtype_(dtype),
453 454
        dtype_dst_(dtype_dst),
        engine_(engine) {}
455

456 457 458 459 460
  std::shared_ptr<dnnl::memory> AcquireSrcMemory(const dnnl::memory::desc& md,
                                                 void* ptr) {
    return std::make_shared<dnnl::memory>(md, engine_, ptr);
  }

461 462 463 464
  std::shared_ptr<dnnl::memory> AcquireSrcMemory(const MKLDNNMemoryFormat& fmt,
                                                 void* ptr) {
    auto md = dnnl::memory::desc(dims_, dtype_, fmt);
    return std::make_shared<dnnl::memory>(md, engine_, ptr);
465 466
  }

467
  std::shared_ptr<dnnl::memory> AcquireSubmemory(
468 469
      const std::vector<int64_t>& dims,
      const std::vector<int64_t>& offset,
470
      const std::shared_ptr<dnnl::memory>& mem_p) {
471
    auto sub_md = mem_p->get_desc().submemory_desc(dims, {offset});
472 473
    auto sub_mem_p = std::make_shared<dnnl::memory>(
        sub_md, engine_, mem_p->get_data_handle());
474 475 476
    return sub_mem_p;
  }

477 478 479
  std::shared_ptr<dnnl::memory> AcquireDstMemory(framework::Tensor* output,
                                                 const MKLDNNMemoryFormat& fmt,
                                                 platform::Place place) {
480
    auto dst_md = platform::MKLDNNMemDesc(dims_, dtype_dst_, fmt);
481
    auto dst_data = output->mutable_data(
482
        place, framework::TransToPhiDataType(vtype_dst_), dst_md.get_size());
483
    return std::make_shared<dnnl::memory>(dst_md, engine_, dst_data);
484 485
  }

486
  std::shared_ptr<dnnl::memory> AcquireDstMemory(
487 488
      framework::Tensor* output,
      const dnnl::memory::desc& src_md,
489 490 491 492 493 494 495 496 497 498 499 500 501 502
      platform::Place place) {
    if (vtype_dst_ == vtype_) {
      auto dst_data = output->mutable_data(
          place, framework::TransToPhiDataType(vtype_dst_), src_md.get_size());
      return std::make_shared<dnnl::memory>(src_md, engine_, dst_data);
    } else {
      auto dst_md = src_md;
      dst_md.data.data_type = static_cast<dnnl_data_type_t>(dtype_dst_);
      auto dst_data = output->mutable_data(
          place, framework::TransToPhiDataType(vtype_dst_), dst_md.get_size());
      return std::make_shared<dnnl::memory>(dst_md, engine_, dst_data);
    }
  }

503
  std::shared_ptr<dnnl::memory> AcquireDstMemory(
504 505 506 507
      framework::Tensor* output,
      const std::vector<int64_t>& dims,
      const MKLDNNMemoryFormat& fmt,
      platform::Place place) {
508
    auto dst_md = platform::MKLDNNMemDesc(dims, dtype_dst_, fmt);
509
    auto dst_data = output->mutable_data(
510
        place, framework::TransToPhiDataType(vtype_dst_), dst_md.get_size());
511
    return std::make_shared<dnnl::memory>(dst_md, engine_, dst_data);
512 513
  }

514 515 516 517
  std::shared_ptr<dnnl::reorder> AcquireReorder(
      std::shared_ptr<dnnl::memory> dst_memory_p,
      std::shared_ptr<dnnl::memory> src_memory_p) {
    return std::make_shared<dnnl::reorder>(*(src_memory_p), *(dst_memory_p));
518 519
  }

520 521 522 523
  std::shared_ptr<dnnl::reorder> AcquireReorder(
      std::shared_ptr<dnnl::memory> dst_memory_p,
      std::shared_ptr<dnnl::memory> src_memory_p,
      const dnnl::primitive_attr& attrs) {
524 525
    return std::make_shared<dnnl::reorder>(
        *(src_memory_p), *(dst_memory_p), attrs);
526 527
  }

528
 private:
A
Adam 已提交
529
  std::vector<int64_t> dims_;
530
  framework::proto::VarType::Type vtype_, vtype_dst_;
531 532
  dnnl::memory::data_type dtype_, dtype_dst_;
  dnnl::engine engine_;
533
};
J
Jacek Czaja 已提交
534 535
}  // namespace platform
}  // namespace paddle