Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
50326563
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
50326563
编写于
6月 04, 2019
作者:
L
Leo Zhao
提交者:
Tao Luo
6月 04, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
enable mkldnn primitive reuse for platform reorder (#17826)
test=develop
上级
7611208a
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
102 addition
and
7 deletion
+102
-7
paddle/fluid/framework/data_layout_transform.cc
paddle/fluid/framework/data_layout_transform.cc
+15
-7
paddle/fluid/platform/mkldnn_reuse.h
paddle/fluid/platform/mkldnn_reuse.h
+87
-0
未找到文件。
paddle/fluid/framework/data_layout_transform.cc
浏览文件 @
50326563
...
...
@@ -13,11 +13,13 @@
// limitations under the License.
#include "paddle/fluid/framework/data_layout_transform.h"
#include <string>
#include <vector>
#include "paddle/fluid/operators/math/math_function.h"
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#include "paddle/fluid/platform/mkldnn_reuse.h"
#endif
namespace
paddle
{
...
...
@@ -145,7 +147,6 @@ void TransDataLayoutFromMKLDNN(const OpKernelType& kernel_type_for_var,
memory
::
data_type
in_type
=
ToMKLDNNDataType
(
in
.
type
());
PADDLE_ENFORCE
(
in_type
!=
memory
::
data_type
::
data_undef
,
"Input tensor type is not supported: %s"
,
in
.
type
());
memory
::
data_type
out_type
=
in_type
;
auto
in_format
=
platform
::
MKLDNNFormatForSize
(
in_tz
.
size
(),
in
.
format
());
auto
out_format
=
...
...
@@ -156,14 +157,21 @@ void TransDataLayoutFromMKLDNN(const OpKernelType& kernel_type_for_var,
if
(
in_format
!=
out_format
)
{
void
*
in_data
=
GetDataFromTensor
(
in
,
in_type
);
auto
out_data
=
out
->
mutable_data
(
expected_kernel_type
.
place_
,
in
.
type
());
const
std
::
string
key
=
platform
::
ReorderMKLDNNHandler
::
GetHash
(
in_tz
,
in_format
,
out_format
,
std
::
to_string
(
in_type
));
auto
in_memory
=
memory
({{{
in_tz
},
in_type
,
in_format
},
cpu_engine
},
in_data
);
auto
out_memory
=
memory
({{{
out_tz
},
out_type
,
out_format
},
cpu_engine
},
out_data
);
platform
::
ReorderMKLDNNHandler
handler
(
in_tz
,
in
.
type
(),
in_type
,
*
dev_ctx
,
cpu_engine
,
key
);
platform
::
Reorder
(
in_memory
,
out_memory
);
auto
reorder_src_memory_p
=
handler
.
AcquireSrcMemory
(
in_format
,
in_data
);
auto
reorder_dst_memory_p
=
handler
.
AcquireDstMemory
(
out
,
out_format
,
expected_kernel_type
.
place_
);
auto
reorder_p
=
handler
.
AcquireReorder
(
reorder_dst_memory_p
,
reorder_src_memory_p
);
std
::
vector
<
mkldnn
::
primitive
>
pipeline
;
pipeline
.
push_back
(
*
reorder_p
);
mkldnn
::
stream
(
mkldnn
::
stream
::
kind
::
eager
).
submit
(
pipeline
).
wait
();
}
else
{
out
->
ShareDataWith
(
in
);
}
...
...
paddle/fluid/platform/mkldnn_reuse.h
浏览文件 @
50326563
...
...
@@ -400,6 +400,93 @@ class TransposeMKLDNNHandler : public MKLDNNHandler {
std
::
vector
<
int
>
logical_axis_
;
};
class
ReorderMKLDNNHandler
:
public
MKLDNNHandler
{
public:
ReorderMKLDNNHandler
(
std
::
vector
<
int
>&
dims
,
// NOLINT
framework
::
proto
::
VarType
::
Type
vtype
,
mkldnn
::
memory
::
data_type
dtype
,
const
platform
::
MKLDNNDeviceContext
&
dev_ctx
,
mkldnn
::
engine
engine
,
const
std
::
string
&
base_key
)
:
platform
::
MKLDNNHandler
(
dev_ctx
,
engine
,
base_key
),
dims_
(
dims
),
vtype_
(
vtype
),
dtype_
(
dtype
)
{}
std
::
shared_ptr
<
mkldnn
::
memory
>
AcquireSrcMemory
(
const
mkldnn
::
memory
::
format
&
fmt
,
void
*
ptr
)
{
auto
local_key
=
key_
+
"@user_src_mem_p"
;
auto
mem_p
=
std
::
static_pointer_cast
<
mkldnn
::
memory
>
(
dev_ctx_
.
GetBlob
(
local_key
));
PADDLE_ENFORCE
((
mem_p
!=
nullptr
)
||
(
is_reusing_
==
false
),
" find mem primitive in device context"
);
if
(
mem_p
==
nullptr
)
{
auto
src_md
=
platform
::
MKLDNNMemDesc
(
dims_
,
dtype_
,
fmt
);
mem_p
=
std
::
make_shared
<
mkldnn
::
memory
>
(
mkldnn
::
memory
::
primitive_desc
{
src_md
,
engine_
},
ptr
);
dev_ctx_
.
SetBlob
(
local_key
,
mem_p
);
}
else
{
mem_p
->
set_data_handle
(
ptr
);
is_reusing_
=
true
;
}
return
mem_p
;
}
std
::
shared_ptr
<
mkldnn
::
memory
>
AcquireDstMemory
(
framework
::
Tensor
*
output
,
const
mkldnn
::
memory
::
format
&
fmt
,
platform
::
Place
place
)
{
auto
local_key
=
key_
+
"@user_dst_mem_p"
;
auto
mem_p
=
std
::
static_pointer_cast
<
mkldnn
::
memory
>
(
dev_ctx_
.
GetBlob
(
local_key
));
PADDLE_ENFORCE
((
mem_p
!=
nullptr
)
||
(
is_reusing_
==
false
),
" find mem primitive in device context"
);
if
(
mem_p
==
nullptr
)
{
auto
dst_md
=
platform
::
MKLDNNMemDesc
(
dims_
,
dtype_
,
fmt
);
auto
dst_mdp
=
mkldnn
::
memory
::
primitive_desc
{
dst_md
,
engine_
};
auto
dst_data
=
output
->
mutable_data
(
place
,
vtype_
);
mem_p
=
std
::
make_shared
<
mkldnn
::
memory
>
(
dst_mdp
,
dst_data
);
dev_ctx_
.
SetBlob
(
local_key
,
mem_p
);
}
else
{
auto
dst_data
=
output
->
mutable_data
(
place
,
vtype_
);
mem_p
->
set_data_handle
(
dst_data
);
is_reusing_
=
true
;
}
return
mem_p
;
}
std
::
shared_ptr
<
mkldnn
::
reorder
>
AcquireReorder
(
std
::
shared_ptr
<
mkldnn
::
memory
>
dst_memory_p
,
std
::
shared_ptr
<
mkldnn
::
memory
>
src_memory_p
)
{
auto
prim_key
=
key_
+
"@reorder_p"
;
auto
reorder_p
=
std
::
static_pointer_cast
<
mkldnn
::
reorder
>
(
dev_ctx_
.
GetBlob
(
prim_key
));
PADDLE_ENFORCE
((
reorder_p
!=
nullptr
)
||
(
is_reusing_
==
false
),
"Fail to find convolution primitive in device context"
);
if
(
reorder_p
==
nullptr
)
{
reorder_p
=
std
::
make_shared
<
mkldnn
::
reorder
>
(
*
(
src_memory_p
),
*
(
dst_memory_p
));
dev_ctx_
.
SetBlob
(
prim_key
,
reorder_p
);
}
else
{
is_reusing_
=
true
;
}
return
reorder_p
;
}
static
std
::
string
GetHash
(
std
::
vector
<
int
>&
shape
,
// NOLINT
mkldnn
::
memory
::
format
in_fmt
,
mkldnn
::
memory
::
format
out_fmt
,
const
std
::
string
&
suffix
)
{
return
dims2str
(
shape
)
+
std
::
to_string
(
in_fmt
)
+
"->"
+
std
::
to_string
(
out_fmt
)
+
"#"
+
suffix
;
}
private:
std
::
vector
<
int
>
dims_
;
framework
::
proto
::
VarType
::
Type
vtype_
;
mkldnn
::
memory
::
data_type
dtype_
;
};
template
<
typename
T
>
struct
convolutional_algorithm
;
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录