/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include #include #include #include #include #include #include "paddle/fluid/framework/data_layout_transform.h" #include "paddle/fluid/framework/operator.h" #include "paddle/fluid/operators/pool_op.h" #include "paddle/fluid/platform/mkldnn_helper.h" #include "paddle/fluid/platform/place.h" #include "paddle/phi/backends/onednn/onednn_reuse.h" namespace paddle { namespace platform { using framework::DataLayout; using framework::Tensor; using user_function = std::function(const float*)>; using memory = dnnl::memory; template using MKLDNNHandlerT = phi::funcs::OneDNNHandlerT; template using MKLDNNHandlerNoCachingT = phi::funcs:: OneDNNHandlerNoCachingT; template using ReductionMKLDNNHandler = phi::funcs::ReductionOneDNNHandler; template using BroadcastDataMKLDNNHandler = phi::funcs::BroadcastDataOneDNNHandler; template using BinaryMKLDNNHandler = phi::funcs::BinaryOneDNNHandler; static void AppendActivation(const framework::ExecutionContext& ctx, dnnl::post_ops& post_ops, // NOLINT float activation_scale = 1.0f) { const auto invalid_attribute = ctx.HasAttr("fuse_activation") ? ctx.Attr("fuse_activation").empty() : true; if (invalid_attribute) return; const auto fuse_activation = ctx.Attr("fuse_activation"); const auto fuse_alpha = ctx.HasAttr("fuse_alpha") ? ctx.Attr("fuse_alpha") : 0.0f; const auto fuse_beta = ctx.HasAttr("fuse_beta") ? ctx.Attr("fuse_beta") : 0.0f; if (fuse_activation == "hard_sigmoid") { post_ops.append_eltwise(activation_scale, dnnl::algorithm::eltwise_linear, fuse_alpha, fuse_beta); post_ops.append_eltwise( activation_scale, dnnl::algorithm::eltwise_clip, 0.0f, 1.0f); } else { const std::unordered_map activation_map = { {"abs", dnnl::algorithm::eltwise_abs}, {"clip", dnnl::algorithm::eltwise_clip}, {"gelu", dnnl::algorithm::eltwise_gelu_erf}, {"gelu_erf", dnnl::algorithm::eltwise_gelu_erf}, {"gelu_tanh", dnnl::algorithm::eltwise_gelu_tanh}, {"hard_swish", dnnl::algorithm::eltwise_hardswish}, {"leaky_relu", dnnl::algorithm::eltwise_relu}, {"mish", dnnl::algorithm::eltwise_mish}, {"relu", dnnl::algorithm::eltwise_relu}, {"relu6", dnnl::algorithm::eltwise_bounded_relu}, {"sigmoid", dnnl::algorithm::eltwise_logistic}, {"sqrt", dnnl::algorithm::eltwise_sqrt}, {"swish", dnnl::algorithm::eltwise_swish}, {"tanh", dnnl::algorithm::eltwise_tanh}}; const auto& activation_type = activation_map.find(fuse_activation); PADDLE_ENFORCE_NE( activation_type, activation_map.end(), platform::errors::InvalidArgument( "Activation '%s' not found in oneDNN algorithms mapper", fuse_activation)); post_ops.append_eltwise( activation_scale, activation_type->second, fuse_alpha, fuse_beta); } } template constexpr bool IsInt8() { return std::is_same::value || std::is_same::value; } template constexpr bool IsBfloat16() { return std::is_same::value; } template class MatMulV2MKLDNNHandler : public paddle::platform::MKLDNNHandlerNoCachingT { public: MatMulV2MKLDNNHandler(const framework::ExecutionContext& ctx, const dnnl::engine engine, paddle::platform::Place cpu_place, const std::vector& x_org_dims, bool trans_x, const std::vector& y_org_dims, bool trans_y, bool is_output_fused, const std::vector& x_strides_override, const std::vector& y_strides_override) : paddle::platform::MKLDNNHandlerNoCachingT(engine, cpu_place) { // M X K * K X N std::vector x_dims(x_org_dims); std::vector y_dims(y_org_dims); const int MB_idx = x_dims.size() - 3; const int H_idx = x_dims.size() - 2; const int W_idx = x_dims.size() - 1; if (trans_x) std::swap(x_dims[H_idx], x_dims[W_idx]); if (trans_y) std::swap(y_dims[H_idx], y_dims[W_idx]); const memory::dim M = x_dims[H_idx]; const memory::dim K = x_dims[W_idx]; const memory::dim N = y_dims[W_idx]; std::vector x_strides(x_dims.size() - 3, 1); std::vector y_strides(x_dims.size() - 3, 1); std::vector out_strides(x_dims.size() - 3, 1); std::vector out_ddims(x_dims.size() - 3, 1); x_strides.reserve(x_dims.size()); y_strides.reserve(x_dims.size()); out_strides.reserve(x_dims.size()); if (!x_strides_override.empty()) { x_strides = x_strides_override; } else { if (!trans_x) { x_strides.insert(x_strides.end(), {M * K, K, 1}); } else { x_strides.insert(x_strides.end(), {M * K, 1, M}); } } if (!y_strides_override.empty()) { y_strides = y_strides_override; } else { if (!trans_y) { y_strides.insert(y_strides.end(), {N * K, N, 1}); } else { y_strides.insert(y_strides.end(), {N * K, 1, K}); } } out_strides.insert(out_strides.end(), {M * N, N, 1}); out_ddims.insert(out_ddims.end(), {std::max(x_dims[MB_idx], y_dims[MB_idx]), M, N}); for (int i = x_dims.size() - 4; i >= 0; --i) { out_ddims[i] = std::max(x_dims[i], y_dims[i]); if (x_strides_override.empty()) { x_strides[i] = x_dims[i + 1] * x_strides[i + 1]; } if (y_strides_override.empty()) { y_strides[i] = y_dims[i + 1] * y_strides[i + 1]; } out_strides[i] = out_ddims[i + 1] * out_strides[i + 1]; } // TODO(jczaja): Why not for int8?? if (!IsInt8() && is_output_fused) { out_strides = FakeTransposeStrides(out_ddims); } auto x_md = memory::desc(x_dims, MKLDNNGetDataType(), x_strides); auto y_md = memory::desc(y_dims, MKLDNNGetDataType(), y_strides); auto out_md = memory::desc(out_ddims, MKLDNNGetDataType(), out_strides); const dnnl::primitive_attr matmul_attrs = CreateMatmulAttrs(ctx); this->AcquireForwardPrimitiveDescriptor(matmul_attrs, x_md, y_md, out_md); } float ComputeOutputScale(const framework::ExecutionContext& ctx) { float alpha = ctx.HasAttr("alpha") ? ctx.Attr("alpha") : 1.0f; if (ctx.HasAttr("Scale_x") && ctx.HasAttr("Scale_y") && ctx.HasAttr("Scale_out")) { float scale_x = ctx.Attr("Scale_x"); float scale_y = ctx.Attr("Scale_y"); bool force_fp32_out = ctx.HasAttr("force_fp32_output") ? ctx.Attr("force_fp32_output") : false; float scale_out = force_fp32_out ? 1.f : ctx.Attr("Scale_out"); alpha *= scale_out / (scale_x * scale_y); } return alpha; } dnnl::primitive_attr CreateMatmulAttrs( const framework::ExecutionContext& ctx) { dnnl::primitive_attr matmul_attrs; dnnl::post_ops post_operations; float scale_out = ComputeOutputScale(ctx); if (scale_out != 1.0f) { matmul_attrs.set_output_scales(0, {scale_out}); } if (ctx.HasInput("ResidualData")) { auto* residual_data = ctx.Input("ResidualData"); auto residual_data_tz = phi::vectorize(residual_data->dims()); auto residual_data_md = memory::desc(residual_data_tz, MKLDNNGetDataType(), dnnl::memory::format_tag::any); post_operations.append_binary(dnnl::algorithm::binary_add, residual_data_md); if (ctx.HasAttr("Scale_in_eltwise")) { float sum_scale = scale_out / ctx.Attr("Scale_in_eltwise"); post_operations.append_sum(sum_scale); } } AppendActivation(ctx, post_operations); matmul_attrs.set_post_ops(post_operations); return matmul_attrs; } std::vector FakeTransposeStrides( const std::vector& matmul_out_dims) const { // fuse matmul_v2 + transpose + reshape guarantees that output is 4D and // transpose axis are: {0, 2, 1, 3} std::vector transpose_axis = {0, 2, 1, 3}; std::vector fake_strides(transpose_axis.size()); int ndims = static_cast(transpose_axis.size()); int total_stride = 1; for (int i = ndims - 1; i >= 0; --i) { fake_strides[transpose_axis[i]] = total_stride; total_stride *= matmul_out_dims[transpose_axis[i]]; } return fake_strides; } std::shared_ptr AcquireWeightsMemory(const Tensor* input) { const YT* input_data = input->data(); return this->AcquireMemoryFromPrimitive(this->fwd_pd_->weights_desc(), to_void_cast(input_data)); } std::shared_ptr AcquireDstMemory( paddle::framework::Tensor* output) { // We cannot use base AcquireDstMemory as it makes an allocation request // base on DST memory primitive size. This is fine in general, but in MatMul // we have primitive that covers only one batch of Data and then shift // pointer for every new batch. Hence Tensor size is bigger that dst memory // primitive size. So would we request less memory that is there and it // triggers an // assertion. So as there is no 'any' format here we can leave default size // of Tensor as computed in ComputeInferShape OT* ptr = output->mutable_data(this->place_); return this->AcquireMemoryFromPrimitive(this->fwd_pd_->dst_desc(), ptr); } }; template class ActivationMKLDNNHandler : public MKLDNNHandlerNoCachingT { public: ActivationMKLDNNHandler(dnnl::algorithm algorithm, const framework::ExecutionContext& ctx, const dnnl::engine engine, Place cpu_place, const framework::Tensor* x) : platform::MKLDNNHandlerNoCachingT(engine, cpu_place) { float alpha = ctx.HasAttr("alpha") ? ctx.Attr("alpha") : 0; float beta = ctx.HasAttr("beta") ? ctx.Attr("beta") : 0; if (ctx.Type() == "scale") { bool bias_after_scale = ctx.Attr("bias_after_scale"); auto* scale_tensor = ctx.Input("ScaleTensor"); alpha = (scale_tensor == nullptr) ? ctx.Attr("scale") : static_cast(*(scale_tensor->data())); beta = ctx.Attr("bias"); // if bias_after_scale == true // out = scale*X + bias // else // out = scale*(X + bias) = scale*X + scale*bias if (!bias_after_scale) { beta *= alpha; } } else if (ctx.Type() == "clip") { alpha = ctx.HasInput("Min") ? ctx.Input("Min")->data()[0] : ctx.Attr("min"); beta = ctx.HasInput("Max") ? ctx.Input("Max")->data()[0] : ctx.Attr("max"); } else { // paddle uses beta but mkldnn uses alpha for swish if (algorithm == dnnl::algorithm::eltwise_swish) { std::swap(alpha, beta); } else if (algorithm == dnnl::algorithm::eltwise_bounded_relu) { alpha = ctx.Attr("threshold"); } } this->AcquireForwardPrimitiveDescriptor(dnnl::prop_kind::forward_training, algorithm, x->mem_desc(), alpha, beta); } ActivationMKLDNNHandler(dnnl::algorithm algorithm, const framework::ExecutionContext& ctx, const dnnl::engine engine, Place cpu_place, const framework::Tensor* x, const Tensor* dout) : platform::MKLDNNHandlerNoCachingT(engine, cpu_place) { float alpha = ctx.HasAttr("alpha") ? ctx.Attr("alpha") : 0; float beta = ctx.HasAttr("beta") ? ctx.Attr("beta") : 0; // paddle uses beta but mkldnn uses alpha for swish if (algorithm == dnnl::algorithm::eltwise_swish) { std::swap(alpha, beta); } else if (algorithm == dnnl::algorithm::eltwise_bounded_relu) { alpha = ctx.Attr("threshold"); } if (ctx.Type() == "clip_grad") { alpha = ctx.HasInput("Min") ? ctx.Input("Min")->data()[0] : ctx.Attr("min"); beta = ctx.HasInput("Max") ? ctx.Input("Max")->data()[0] : ctx.Attr("max"); } this->AcquireForwardPrimitiveDescriptor(dnnl::prop_kind::forward_training, algorithm, x->mem_desc(), alpha, beta); this->AcquireBackwardPrimitiveDescriptor( algorithm, dout->mem_desc(), x->mem_desc(), alpha, beta); } std::shared_ptr AcquireBackwardSrcMemory( const framework::Tensor* input) { const T* input_data = input->data(); return this->AcquireMemoryFromPrimitive(this->bwd_pd_->src_desc(), to_void_cast(input_data)); } }; static std::unordered_map GetAttributeMap( std::string act_type) { std::unordered_map attr_map; if (act_type == "swish") { attr_map.emplace("beta", "fuse_alpha"); } else if (act_type == "relu6") { attr_map.emplace("threshold", "fuse_alpha"); } else if (act_type == "hard_sigmoid") { attr_map.emplace("slope", "fuse_alpha"); attr_map.emplace("offset", "fuse_beta"); } else if (act_type == "clip") { attr_map.emplace("min", "fuse_alpha"); attr_map.emplace("max", "fuse_beta"); } else { attr_map.emplace("alpha", "fuse_alpha"); attr_map.emplace("beta", "fuse_beta"); } return attr_map; } static std::vector GetSupportedActivations() { return std::vector{"abs", "clip", "gelu", "hard_sigmoid", "hard_swish", "leaky_relu", "mish", "relu", "relu6", "sigmoid", "sqrt", "swish", "tanh"}; } class ReorderMKLDNNHandler { public: ReorderMKLDNNHandler(std::vector& dims, // NOLINT framework::proto::VarType::Type vtype, dnnl::memory::data_type dtype, dnnl::engine engine) : dims_(dims), vtype_(vtype), vtype_dst_(vtype), dtype_(dtype), dtype_dst_(dtype), engine_(engine) {} ReorderMKLDNNHandler(std::vector& dims, // NOLINT framework::proto::VarType::Type vtype, dnnl::memory::data_type dtype, framework::proto::VarType::Type vtype_dst, dnnl::memory::data_type dtype_dst, dnnl::engine engine) : dims_(dims), vtype_(vtype), vtype_dst_(vtype_dst), dtype_(dtype), dtype_dst_(dtype_dst), engine_(engine) {} std::shared_ptr AcquireSrcMemory(const dnnl::memory::desc& md, void* ptr) { return std::make_shared(md, engine_, ptr); } std::shared_ptr AcquireSrcMemory(const MKLDNNMemoryFormat& fmt, void* ptr) { auto md = dnnl::memory::desc(dims_, dtype_, fmt); return std::make_shared(md, engine_, ptr); } std::shared_ptr AcquireSubmemory( const std::vector& dims, const std::vector& offset, const std::shared_ptr& mem_p) { auto sub_md = mem_p->get_desc().submemory_desc(dims, {offset}); auto sub_mem_p = std::make_shared( sub_md, engine_, mem_p->get_data_handle()); return sub_mem_p; } std::shared_ptr AcquireDstMemory(framework::Tensor* output, const MKLDNNMemoryFormat& fmt, platform::Place place) { auto dst_md = platform::MKLDNNMemDesc(dims_, dtype_dst_, fmt); auto dst_data = output->mutable_data( place, framework::TransToPhiDataType(vtype_dst_), dst_md.get_size()); return std::make_shared(dst_md, engine_, dst_data); } std::shared_ptr AcquireDstMemory( framework::Tensor* output, const dnnl::memory::desc& src_md, platform::Place place) { if (vtype_dst_ == vtype_) { auto dst_data = output->mutable_data( place, framework::TransToPhiDataType(vtype_dst_), src_md.get_size()); return std::make_shared(src_md, engine_, dst_data); } else { auto dst_md = src_md; dst_md.data.data_type = static_cast(dtype_dst_); auto dst_data = output->mutable_data( place, framework::TransToPhiDataType(vtype_dst_), dst_md.get_size()); return std::make_shared(dst_md, engine_, dst_data); } } std::shared_ptr AcquireDstMemory( framework::Tensor* output, const std::vector& dims, const MKLDNNMemoryFormat& fmt, platform::Place place) { auto dst_md = platform::MKLDNNMemDesc(dims, dtype_dst_, fmt); auto dst_data = output->mutable_data( place, framework::TransToPhiDataType(vtype_dst_), dst_md.get_size()); return std::make_shared(dst_md, engine_, dst_data); } std::shared_ptr AcquireReorder( std::shared_ptr dst_memory_p, std::shared_ptr src_memory_p) { return std::make_shared(*(src_memory_p), *(dst_memory_p)); } std::shared_ptr AcquireReorder( std::shared_ptr dst_memory_p, std::shared_ptr src_memory_p, const dnnl::primitive_attr& attrs) { return std::make_shared( *(src_memory_p), *(dst_memory_p), attrs); } private: std::vector dims_; framework::proto::VarType::Type vtype_, vtype_dst_; dnnl::memory::data_type dtype_, dtype_dst_; dnnl::engine engine_; }; } // namespace platform } // namespace paddle