data_feed.cc 62.7 KB
Newer Older
W
Wang Guibao 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

D
dongdaxiang 已提交
15 16 17 18 19
#if defined _WIN32 || defined __APPLE__
#else
#define _LINUX
#endif

20
#include "paddle/fluid/framework/data_feed.h"
D
dongdaxiang 已提交
21
#ifdef _LINUX
D
dongdaxiang 已提交
22
#include <stdio_ext.h>
H
hutuxian 已提交
23 24
#include <sys/mman.h>
#include <sys/stat.h>
D
dongdaxiang 已提交
25
#endif
26
#include "io/fs.h"
H
hutuxian 已提交
27
#include "paddle/fluid/platform/monitor.h"
28
#include "paddle/fluid/platform/timer.h"
W
Wang Guibao 已提交
29

H
hutuxian 已提交
30
USE_INT_STAT(STAT_total_feasign_num_in_mem);
W
Wang Guibao 已提交
31 32 33
namespace paddle {
namespace framework {

T
Thunderbrook 已提交
34 35 36 37 38
DLManager& global_dlmanager_pool() {
  static DLManager manager;
  return manager;
}

39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
class BufferedLineFileReader {
  typedef std::function<bool()> SampleFunc;
  static const int MAX_FILE_BUFF_SIZE = 4 * 1024 * 1024;
  class FILEReader {
   public:
    explicit FILEReader(FILE* fp) : fp_(fp) {}
    int read(char* buf, int len) { return fread(buf, sizeof(char), len, fp_); }

   private:
    FILE* fp_;
  };

 public:
  typedef std::function<bool(const std::string&)> LineFunc;

 private:
  template <typename T>
  int read_lines(T* reader, LineFunc func, int skip_lines) {
    int lines = 0;
    size_t ret = 0;
    char* ptr = NULL;
    char* eol = NULL;
    total_len_ = 0;
    error_line_ = 0;

    SampleFunc spfunc = get_sample_func();
    std::string x;
    while (!is_error() && (ret = reader->read(buff_, MAX_FILE_BUFF_SIZE)) > 0) {
      total_len_ += ret;
      ptr = buff_;
      eol = reinterpret_cast<char*>(memchr(ptr, '\n', ret));
      while (eol != NULL) {
        int size = static_cast<int>((eol - ptr) + 1);
        x.append(ptr, size - 1);
        ++lines;
        if (lines > skip_lines && spfunc()) {
          if (!func(x)) {
            ++error_line_;
          }
        }

        x.clear();
        ptr += size;
        ret -= size;
        eol = reinterpret_cast<char*>(memchr(ptr, '\n', ret));
      }
      if (ret > 0) {
        x.append(ptr, ret);
      }
    }
    if (!is_error() && !x.empty()) {
      ++lines;
      if (lines > skip_lines && spfunc()) {
        if (!func(x)) {
          ++error_line_;
        }
      }
    }
    return lines;
  }

 public:
  BufferedLineFileReader()
      : random_engine_(std::random_device()()),
        uniform_distribution_(0.0f, 1.0f) {
    total_len_ = 0;
    sample_line_ = 0;
    buff_ =
        reinterpret_cast<char*>(calloc(MAX_FILE_BUFF_SIZE + 1, sizeof(char)));
  }
  ~BufferedLineFileReader() { free(buff_); }

  int read_file(FILE* fp, LineFunc func, int skip_lines) {
    FILEReader reader(fp);
    return read_lines<FILEReader>(&reader, func, skip_lines);
  }
  uint64_t file_size(void) { return total_len_; }
  void set_sample_rate(float r) { sample_rate_ = r; }
  size_t get_sample_line() { return sample_line_; }
  bool is_error(void) { return (error_line_ > 10); }

 private:
  SampleFunc get_sample_func() {
    if (std::abs(sample_rate_ - 1.0f) < 1e-5f) {
      return [this](void) { return true; };
    }
    return [this](void) {
      return (uniform_distribution_(random_engine_) < sample_rate_);
    };
  }

 private:
  char* buff_ = nullptr;
  uint64_t total_len_ = 0;

  std::default_random_engine random_engine_;
  std::uniform_real_distribution<float> uniform_distribution_;
  float sample_rate_ = 1.0f;
  size_t sample_line_ = 0;
  size_t error_line_ = 0;
};
140
void RecordCandidateList::ReSize(size_t length) {
141 142 143 144 145 146 147 148 149
  mutex_.lock();
  capacity_ = length;
  CHECK(capacity_ > 0);  // NOLINT
  candidate_list_.clear();
  candidate_list_.resize(capacity_);
  full_ = false;
  cur_size_ = 0;
  total_size_ = 0;
  mutex_.unlock();
150 151 152
}

void RecordCandidateList::ReInit() {
153 154 155 156 157
  mutex_.lock();
  full_ = false;
  cur_size_ = 0;
  total_size_ = 0;
  mutex_.unlock();
158 159 160 161
}

void RecordCandidateList::AddAndGet(const Record& record,
                                    RecordCandidate* result) {
162
  mutex_.lock();
163
  size_t index = 0;
164
  ++total_size_;
165
  auto fleet_ptr = FleetWrapper::GetInstance();
166 167 168
  if (!full_) {
    candidate_list_[cur_size_++] = record;
    full_ = (cur_size_ == capacity_);
169
  } else {
170 171 172 173
    CHECK(cur_size_ == capacity_);
    index = fleet_ptr->LocalRandomEngine()() % total_size_;
    if (index < capacity_) {
      candidate_list_[index] = record;
174 175
    }
  }
176 177 178
  index = fleet_ptr->LocalRandomEngine()() % cur_size_;
  *result = candidate_list_[index];
  mutex_.unlock();
179 180
}

W
Wang Guibao 已提交
181 182 183 184
void DataFeed::AddFeedVar(Variable* var, const std::string& name) {
  CheckInit();
  for (size_t i = 0; i < use_slots_.size(); ++i) {
    if (name == use_slots_[i]) {
185 186 187 188 189
      if (var == nullptr) {
        feed_vec_[i] = nullptr;
      } else {
        feed_vec_[i] = var->GetMutable<LoDTensor>();
      }
W
Wang Guibao 已提交
190 191 192 193 194
    }
  }
}

bool DataFeed::SetFileList(const std::vector<std::string>& files) {
195
  std::unique_lock<std::mutex> lock(*mutex_for_pick_file_);
W
Wang Guibao 已提交
196
  CheckInit();
197 198
  // Do not set finish_set_filelist_ flag,
  // since a user may set file many times after init reader
W
Wang Guibao 已提交
199 200 201 202 203 204 205
  filelist_.assign(files.begin(), files.end());

  finish_set_filelist_ = true;
  return true;
}

void DataFeed::SetBatchSize(int batch_size) {
206 207 208
  PADDLE_ENFORCE_GT(batch_size, 0,
                    platform::errors::InvalidArgument(
                        "Batch size %d is illegal.", batch_size));
W
Wang Guibao 已提交
209 210 211 212
  default_batch_size_ = batch_size;
}

bool DataFeed::PickOneFile(std::string* filename) {
213 214 215 216 217 218 219
  PADDLE_ENFORCE_NOT_NULL(
      mutex_for_pick_file_,
      platform::errors::PreconditionNotMet(
          "You should call SetFileListMutex before PickOneFile"));
  PADDLE_ENFORCE_NOT_NULL(
      file_idx_, platform::errors::PreconditionNotMet(
                     "You should call SetFileListIndex before PickOneFile"));
220 221
  std::unique_lock<std::mutex> lock(*mutex_for_pick_file_);
  if (*file_idx_ == filelist_.size()) {
222
    VLOG(3) << "DataFeed::PickOneFile no more file to pick";
W
Wang Guibao 已提交
223 224
    return false;
  }
225 226
  VLOG(3) << "file_idx_=" << *file_idx_;
  *filename = filelist_[(*file_idx_)++];
W
Wang Guibao 已提交
227 228 229 230
  return true;
}

void DataFeed::CheckInit() {
231 232
  PADDLE_ENFORCE_EQ(finish_init_, true, platform::errors::PreconditionNotMet(
                                            "DataFeed initialization failed."));
W
Wang Guibao 已提交
233 234 235
}

void DataFeed::CheckSetFileList() {
236 237 238
  PADDLE_ENFORCE_EQ(
      finish_set_filelist_, true,
      platform::errors::PreconditionNotMet("DataFeed set filelist failed."));
W
Wang Guibao 已提交
239 240 241
}

void DataFeed::CheckStart() {
242 243 244
  PADDLE_ENFORCE_EQ(finish_start_, true,
                    platform::errors::PreconditionNotMet(
                        "Datafeed has not started running yet."));
W
Wang Guibao 已提交
245 246
}

H
hutuxian 已提交
247 248 249 250 251 252 253
void DataFeed::AssignFeedVar(const Scope& scope) {
  CheckInit();
  for (size_t i = 0; i < use_slots_.size(); ++i) {
    feed_vec_[i] = scope.FindVar(use_slots_[i])->GetMutable<LoDTensor>();
  }
}

254 255 256 257 258 259
void DataFeed::CopyToFeedTensor(void* dst, const void* src, size_t size) {
  if (platform::is_cpu_place(this->place_)) {
    memcpy(dst, src, size);
  } else {
#ifdef PADDLE_WITH_CUDA
    cudaMemcpy(dst, src, size, cudaMemcpyHostToDevice);
260 261
#elif defined(PADDLE_WITH_HIP)
    hipMemcpy(dst, src, size, hipMemcpyHostToDevice);
262
#else
263
    PADDLE_THROW(platform::errors::Unimplemented(
264 265
        "Not supported GPU/ROCM, please compile with option WITH_GPU=ON or "
        "WITH_ROCM=ON."));
266 267 268 269
#endif
  }
}

W
Wang Guibao 已提交
270 271
template <typename T>
void PrivateQueueDataFeed<T>::SetQueueSize(int queue_size) {
272 273 274 275
  PADDLE_ENFORCE_GT(
      queue_size, 0,
      platform::errors::InvalidArgument(
          "Queue size %d is illegal in PrivateQueueDataFeed.", queue_size));
W
Wang Guibao 已提交
276
  queue_size_ = queue_size;
277
  queue_ = paddle::framework::MakeChannel<T>();
J
jiaqi 已提交
278
  queue_->SetCapacity(queue_size);
W
Wang Guibao 已提交
279 280 281 282 283
}

template <typename T>
bool PrivateQueueDataFeed<T>::Start() {
  CheckSetFileList();
284 285
  read_thread_ = std::thread(&PrivateQueueDataFeed::ReadThread, this);
  read_thread_.detach();
W
Wang Guibao 已提交
286 287 288 289 290 291 292

  finish_start_ = true;
  return true;
}

template <typename T>
void PrivateQueueDataFeed<T>::ReadThread() {
D
dongdaxiang 已提交
293
#ifdef _LINUX
294 295 296 297 298 299 300
  std::string filename;
  while (PickOneFile(&filename)) {
    int err_no = 0;
    fp_ = fs_open_read(filename, &err_no, pipe_command_);
    __fsetlocking(&*fp_, FSETLOCKING_BYCALLER);
    T instance;
    while (ParseOneInstanceFromPipe(&instance)) {
301
      queue_->Put(instance);
302
    }
W
Wang Guibao 已提交
303
  }
304
  queue_->Close();
D
dongdaxiang 已提交
305
#endif
W
Wang Guibao 已提交
306 307 308 309
}

template <typename T>
int PrivateQueueDataFeed<T>::Next() {
X
xjqbest 已提交
310
#ifdef _LINUX
W
Wang Guibao 已提交
311 312 313 314
  CheckStart();
  int index = 0;
  T ins_vec;
  while (index < default_batch_size_) {
315 316
    T instance;
    if (!queue_->Get(instance)) {
W
Wang Guibao 已提交
317 318 319 320 321 322 323 324 325
      break;
    }
    AddInstanceToInsVec(&ins_vec, instance, index++);
  }
  batch_size_ = index;
  if (batch_size_ != 0) {
    PutToFeedVec(ins_vec);
  }
  return batch_size_;
X
xjqbest 已提交
326 327 328
#else
  return 0;
#endif
W
Wang Guibao 已提交
329 330
}

331
// explicit instantiation
W
Wang Guibao 已提交
332 333
template class PrivateQueueDataFeed<std::vector<MultiSlotType>>;

334 335
template <typename T>
InMemoryDataFeed<T>::InMemoryDataFeed() {
336 337
  this->file_idx_ = nullptr;
  this->mutex_for_pick_file_ = nullptr;
J
jiaqi 已提交
338 339 340
  this->fp_ = nullptr;
  this->thread_id_ = 0;
  this->thread_num_ = 1;
341
  this->parse_ins_id_ = false;
342
  this->parse_content_ = false;
343 344 345
  this->parse_logkey_ = false;
  this->enable_pv_merge_ = false;
  this->current_phase_ = 1;  // 1:join ;0:update
J
jiaqi 已提交
346 347 348
  this->input_channel_ = nullptr;
  this->output_channel_ = nullptr;
  this->consume_channel_ = nullptr;
349 350 351 352
}

template <typename T>
bool InMemoryDataFeed<T>::Start() {
X
xjqbest 已提交
353
#ifdef _LINUX
J
jiaqi 已提交
354 355 356 357 358
  this->CheckSetFileList();
  if (output_channel_->Size() == 0 && input_channel_->Size() != 0) {
    std::vector<T> data;
    input_channel_->Read(data);
    output_channel_->Write(std::move(data));
359
  }
X
xjqbest 已提交
360
#endif
Y
yaoxuefeng 已提交
361 362 363 364 365
  if (batch_offsets_.size() > 0) {
    VLOG(3) << "batch_size offsets: " << batch_offsets_.size();
    enable_heterps_ = true;
    this->offset_index_ = 0;
  }
J
jiaqi 已提交
366
  this->finish_start_ = true;
367 368 369 370 371
  return true;
}

template <typename T>
int InMemoryDataFeed<T>::Next() {
X
xjqbest 已提交
372
#ifdef _LINUX
J
jiaqi 已提交
373
  this->CheckStart();
Y
yaoxuefeng 已提交
374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
  if (!enable_heterps_) {
    CHECK(output_channel_ != nullptr);
    CHECK(consume_channel_ != nullptr);
    VLOG(3) << "output_channel_ size=" << output_channel_->Size()
            << ", consume_channel_ size=" << consume_channel_->Size()
            << ", thread_id=" << thread_id_;
    int index = 0;
    T instance;
    std::vector<T> ins_vec;
    ins_vec.reserve(this->default_batch_size_);
    while (index < this->default_batch_size_) {
      if (output_channel_->Size() == 0) {
        break;
      }
      output_channel_->Get(instance);
      ins_vec.push_back(instance);
      ++index;
      consume_channel_->Put(std::move(instance));
    }
    this->batch_size_ = index;
    VLOG(3) << "batch_size_=" << this->batch_size_
            << ", thread_id=" << thread_id_;
    if (this->batch_size_ != 0) {
      PutToFeedVec(ins_vec);
    } else {
      VLOG(3) << "finish reading, output_channel_ size="
              << output_channel_->Size()
              << ", consume_channel_ size=" << consume_channel_->Size()
              << ", thread_id=" << thread_id_;
403
    }
D
dongdaxiang 已提交
404
  } else {
405
    VLOG(3) << "enable heter next: " << offset_index_
Y
yaoxuefeng 已提交
406 407 408 409 410 411 412 413 414
            << " batch_offsets: " << batch_offsets_.size();
    if (offset_index_ >= batch_offsets_.size()) {
      VLOG(3) << "offset_index: " << offset_index_
              << " batch_offsets: " << batch_offsets_.size();
      return 0;
    }
    auto& batch = batch_offsets_[offset_index_++];
    this->batch_size_ = batch.second;
    VLOG(3) << "batch_size_=" << this->batch_size_
J
jiaqi 已提交
415
            << ", thread_id=" << thread_id_;
Y
yaoxuefeng 已提交
416 417 418 419 420 421
    if (this->batch_size_ != 0) {
      PutToFeedVec(&records_[batch.first], this->batch_size_);
    } else {
      VLOG(3) << "finish reading for heterps, batch size zero, thread_id="
              << thread_id_;
    }
422
    VLOG(3) << "enable heter next: " << offset_index_
Y
yaoxuefeng 已提交
423 424
            << " batch_offsets: " << batch_offsets_.size()
            << " baych_size: " << this->batch_size_;
D
dongdaxiang 已提交
425
  }
J
jiaqi 已提交
426
  return this->batch_size_;
X
xjqbest 已提交
427 428 429
#else
  return 0;
#endif
430 431
}

432
template <typename T>
J
jiaqi 已提交
433 434 435 436 437 438 439
void InMemoryDataFeed<T>::SetInputChannel(void* channel) {
  input_channel_ = static_cast<paddle::framework::ChannelObject<T>*>(channel);
}

template <typename T>
void InMemoryDataFeed<T>::SetOutputChannel(void* channel) {
  output_channel_ = static_cast<paddle::framework::ChannelObject<T>*>(channel);
440 441 442
}

template <typename T>
J
jiaqi 已提交
443 444
void InMemoryDataFeed<T>::SetConsumeChannel(void* channel) {
  consume_channel_ = static_cast<paddle::framework::ChannelObject<T>*>(channel);
445 446
}

447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
template <typename T>
void InMemoryDataFeed<T>::SetInputPvChannel(void* channel) {
  input_pv_channel_ =
      static_cast<paddle::framework::ChannelObject<PvInstance>*>(channel);
}

template <typename T>
void InMemoryDataFeed<T>::SetOutputPvChannel(void* channel) {
  output_pv_channel_ =
      static_cast<paddle::framework::ChannelObject<PvInstance>*>(channel);
}

template <typename T>
void InMemoryDataFeed<T>::SetConsumePvChannel(void* channel) {
  consume_pv_channel_ =
      static_cast<paddle::framework::ChannelObject<PvInstance>*>(channel);
}

465 466 467 468 469 470 471 472 473 474
template <typename T>
void InMemoryDataFeed<T>::SetThreadId(int thread_id) {
  thread_id_ = thread_id;
}

template <typename T>
void InMemoryDataFeed<T>::SetThreadNum(int thread_num) {
  thread_num_ = thread_num;
}

475 476 477 478 479
template <typename T>
void InMemoryDataFeed<T>::SetParseContent(bool parse_content) {
  parse_content_ = parse_content;
}

480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
template <typename T>
void InMemoryDataFeed<T>::SetParseLogKey(bool parse_logkey) {
  parse_logkey_ = parse_logkey;
}

template <typename T>
void InMemoryDataFeed<T>::SetEnablePvMerge(bool enable_pv_merge) {
  enable_pv_merge_ = enable_pv_merge;
}

template <typename T>
void InMemoryDataFeed<T>::SetCurrentPhase(int current_phase) {
  current_phase_ = current_phase;
}

495 496 497 498 499
template <typename T>
void InMemoryDataFeed<T>::SetParseInsId(bool parse_ins_id) {
  parse_ins_id_ = parse_ins_id;
}

500 501
template <typename T>
void InMemoryDataFeed<T>::LoadIntoMemory() {
D
dongdaxiang 已提交
502
#ifdef _LINUX
T
Thunderbrook 已提交
503 504 505 506
  if (!so_parser_name_.empty()) {
    LoadIntoMemoryFromSo();
    return;
  }
X
xujiaqi01 已提交
507
  VLOG(3) << "LoadIntoMemory() begin, thread_id=" << thread_id_;
508
  std::string filename;
J
jiaqi 已提交
509
  while (this->PickOneFile(&filename)) {
X
xujiaqi01 已提交
510 511
    VLOG(3) << "PickOneFile, filename=" << filename
            << ", thread_id=" << thread_id_;
H
hutuxian 已提交
512 513 514 515 516 517 518 519 520 521 522
#ifdef PADDLE_WITH_BOX_PS
    if (BoxWrapper::GetInstance()->UseAfsApi()) {
      this->fp_ = BoxWrapper::GetInstance()->afs_manager->GetFile(
          filename, this->pipe_command_);
    } else {
#endif
      int err_no = 0;
      this->fp_ = fs_open_read(filename, &err_no, this->pipe_command_);
#ifdef PADDLE_WITH_BOX_PS
    }
#endif
J
jiaqi 已提交
523 524 525
    CHECK(this->fp_ != nullptr);
    __fsetlocking(&*(this->fp_), FSETLOCKING_BYCALLER);
    paddle::framework::ChannelWriter<T> writer(input_channel_);
526
    T instance;
527 528
    platform::Timer timeline;
    timeline.Start();
D
dongdaxiang 已提交
529
    while (ParseOneInstanceFromPipe(&instance)) {
J
jiaqi 已提交
530 531
      writer << std::move(instance);
      instance = T();
532
    }
H
hutuxian 已提交
533 534 535 536 537 538
    STAT_ADD(STAT_total_feasign_num_in_mem, fea_num_);
    {
      std::lock_guard<std::mutex> flock(*mutex_for_fea_num_);
      *total_fea_num_ += fea_num_;
      fea_num_ = 0;
    }
J
jiaqi 已提交
539
    writer.Flush();
540
    timeline.Pause();
541 542
    VLOG(3) << "LoadIntoMemory() read all lines, file=" << filename
            << ", cost time=" << timeline.ElapsedSec()
543
            << " seconds, thread_id=" << thread_id_;
544
  }
X
xujiaqi01 已提交
545
  VLOG(3) << "LoadIntoMemory() end, thread_id=" << thread_id_;
D
dongdaxiang 已提交
546
#endif
547 548
}

T
Thunderbrook 已提交
549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
template <typename T>
void InMemoryDataFeed<T>::LoadIntoMemoryFromSo() {
#ifdef _LINUX
  VLOG(3) << "LoadIntoMemoryFromSo() begin, thread_id=" << thread_id_;

  string::LineFileReader reader;
  paddle::framework::CustomParser* parser =
      global_dlmanager_pool().Load(so_parser_name_, slot_conf_);

  std::string filename;
  while (this->PickOneFile(&filename)) {
    VLOG(3) << "PickOneFile, filename=" << filename
            << ", thread_id=" << thread_id_;
    int err_no = 0;
    this->fp_ = fs_open_read(filename, &err_no, this->pipe_command_);
    CHECK(this->fp_ != nullptr);
    __fsetlocking(&*(this->fp_), FSETLOCKING_BYCALLER);

    paddle::framework::ChannelWriter<T> writer(input_channel_);
    T instance;
    platform::Timer timeline;
    timeline.Start();

    while (1) {
      if (!reader.getline(&*(fp_.get()))) {
        break;
      } else {
        const char* str = reader.get();
        ParseOneInstanceFromSo(str, &instance, parser);
      }

      writer << std::move(instance);
      instance = T();
    }

    writer.Flush();
    timeline.Pause();
    VLOG(3) << "LoadIntoMemoryFromSo() read all lines, file=" << filename
            << ", cost time=" << timeline.ElapsedSec()
            << " seconds, thread_id=" << thread_id_;
  }
  VLOG(3) << "LoadIntoMemoryFromSo() end, thread_id=" << thread_id_;
#endif
}

594
// explicit instantiation
J
jiaqi 已提交
595
template class InMemoryDataFeed<Record>;
596

W
Wang Guibao 已提交
597 598 599 600 601 602
void MultiSlotDataFeed::Init(
    const paddle::framework::DataFeedDesc& data_feed_desc) {
  finish_init_ = false;
  finish_set_filelist_ = false;
  finish_start_ = false;

603 604 605 606
  PADDLE_ENFORCE_EQ(
      data_feed_desc.has_multi_slot_desc(), true,
      platform::errors::PreconditionNotMet(
          "Multi_slot_desc has not been set in MultiSlotDataFeed."));
W
Wang Guibao 已提交
607 608 609
  paddle::framework::MultiSlotDesc multi_slot_desc =
      data_feed_desc.multi_slot_desc();
  SetBatchSize(data_feed_desc.batch_size());
J
jiaqi 已提交
610 611
  // temporarily set queue size = batch size * 100
  SetQueueSize(data_feed_desc.batch_size() * 100);
W
Wang Guibao 已提交
612 613 614 615
  size_t all_slot_num = multi_slot_desc.slots_size();
  all_slots_.resize(all_slot_num);
  all_slots_type_.resize(all_slot_num);
  use_slots_index_.resize(all_slot_num);
616 617
  total_dims_without_inductive_.resize(all_slot_num);
  inductive_shape_index_.resize(all_slot_num);
W
Wang Guibao 已提交
618 619 620 621 622 623 624
  use_slots_.clear();
  use_slots_is_dense_.clear();
  for (size_t i = 0; i < all_slot_num; ++i) {
    const auto& slot = multi_slot_desc.slots(i);
    all_slots_[i] = slot.name();
    all_slots_type_[i] = slot.type();
    use_slots_index_[i] = slot.is_used() ? use_slots_.size() : -1;
625 626
    total_dims_without_inductive_[i] = 1;
    inductive_shape_index_[i] = -1;
W
Wang Guibao 已提交
627 628 629
    if (slot.is_used()) {
      use_slots_.push_back(all_slots_[i]);
      use_slots_is_dense_.push_back(slot.is_dense());
630 631
      std::vector<int> local_shape;
      if (slot.is_dense()) {
632
        for (int j = 0; j < slot.shape_size(); ++j) {
633 634
          if (slot.shape(j) > 0) {
            total_dims_without_inductive_[i] *= slot.shape(j);
635
          }
636 637
          if (slot.shape(j) == -1) {
            inductive_shape_index_[i] = j;
638
          }
639 640
        }
      }
641
      for (int j = 0; j < slot.shape_size(); ++j) {
642
        local_shape.push_back(slot.shape(j));
643 644
      }
      use_slots_shape_.push_back(local_shape);
W
Wang Guibao 已提交
645 646 647
    }
  }
  feed_vec_.resize(use_slots_.size());
648
  pipe_command_ = data_feed_desc.pipe_command();
W
Wang Guibao 已提交
649 650 651
  finish_init_ = true;
}

D
dongdaxiang 已提交
652
void MultiSlotDataFeed::ReadThread() {
653
#ifdef _LINUX
654 655 656 657
  std::string filename;
  while (PickOneFile(&filename)) {
    int err_no = 0;
    fp_ = fs_open_read(filename, &err_no, pipe_command_);
D
dongdaxiang 已提交
658
    CHECK(fp_ != nullptr);
659 660 661 662 663
    __fsetlocking(&*fp_, FSETLOCKING_BYCALLER);
    std::vector<MultiSlotType> instance;
    int ins_num = 0;
    while (ParseOneInstanceFromPipe(&instance)) {
      ins_num++;
664
      queue_->Put(instance);
665
    }
D
dongdaxiang 已提交
666
    VLOG(3) << "filename: " << filename << " inst num: " << ins_num;
D
dongdaxiang 已提交
667
  }
668
  queue_->Close();
669
#endif
D
dongdaxiang 已提交
670 671
}

W
Wang Guibao 已提交
672
bool MultiSlotDataFeed::CheckFile(const char* filename) {
673
#ifdef _LINUX
W
Wang Guibao 已提交
674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699
  CheckInit();  // get info of slots
  std::ifstream fin(filename);
  if (!fin.good()) {
    VLOG(1) << "error: open file<" << filename << "> fail";
    return false;
  }
  std::string line;
  int instance_cout = 0;
  std::string all_slots_alias = "";
  for (const auto& alias : all_slots_) {
    all_slots_alias += alias + " ";
  }
  std::string use_slots_alias = "";
  for (const auto& alias : use_slots_) {
    use_slots_alias += alias + " ";
  }
  VLOG(3) << "total slots num: " << all_slots_.size();
  VLOG(3) << "total slots alias: " << all_slots_alias;
  VLOG(3) << "used slots num: " << use_slots_.size();
  VLOG(3) << "used slots alias: " << use_slots_alias;
  while (getline(fin, line)) {
    ++instance_cout;
    const char* str = line.c_str();
    char* endptr = const_cast<char*>(str);
    int len = line.length();
    for (size_t i = 0; i < all_slots_.size(); ++i) {
X
xjqbest 已提交
700
      auto num = strtol(endptr, &endptr, 10);
W
Wang Guibao 已提交
701
      if (num < 0) {
702 703
        VLOG(0) << "error: the number of ids is a negative number: " << num;
        VLOG(0) << "please check line<" << instance_cout << "> in file<"
W
Wang Guibao 已提交
704
                << filename << ">";
705
        VLOG(0) << "Error occurred when parsing " << i
Y
yaoxuefeng 已提交
706
                << " th slot with total slots number: " << all_slots_.size();
W
Wang Guibao 已提交
707 708
        return false;
      } else if (num == 0) {
709
        VLOG(0)
W
Wang Guibao 已提交
710 711 712 713
            << "error: the number of ids can not be zero, you need "
               "padding it in data generator; or if there is something wrong"
               " with the data, please check if the data contains unresolvable "
               "characters.";
714
        VLOG(0) << "please check line<" << instance_cout << "> in file<"
W
Wang Guibao 已提交
715
                << filename << ">";
716
        VLOG(0) << "Error occurred when parsing " << i
Y
yaoxuefeng 已提交
717
                << " th slot with total slots number: " << all_slots_.size();
W
Wang Guibao 已提交
718
        return false;
X
xjqbest 已提交
719
      } else if (errno == ERANGE || num > INT_MAX) {
720 721
        VLOG(0) << "error: the number of ids greater than INT_MAX";
        VLOG(0) << "please check line<" << instance_cout << "> in file<"
W
Wang Guibao 已提交
722
                << filename << ">";
723
        VLOG(0) << "Error occurred when parsing " << i
Y
yaoxuefeng 已提交
724
                << " th slot with total slots number: " << all_slots_.size();
W
Wang Guibao 已提交
725 726 727
        return false;
      }
      if (all_slots_type_[i] == "float") {
Y
yaoxuefeng 已提交
728
        for (int j = 0; j < num; ++j) {
W
Wang Guibao 已提交
729 730
          strtof(endptr, &endptr);
          if (errno == ERANGE) {
731
            VLOG(0) << "error: the value is out of the range of "
W
Wang Guibao 已提交
732
                       "representable values for float";
733
            VLOG(0) << "please check line<" << instance_cout << "> in file<"
W
Wang Guibao 已提交
734
                    << filename << ">";
735
            VLOG(0) << "Error occurred when parsing " << i
Y
yaoxuefeng 已提交
736 737 738 739
                    << " th slot with total slots number: "
                    << all_slots_.size();
            VLOG(0) << "and in this slot: " << j
                    << " th id with total id number: " << num;
W
Wang Guibao 已提交
740 741
            return false;
          }
Y
yaoxuefeng 已提交
742
          if (j + 1 != num && endptr - str == len) {
743
            VLOG(0) << "error: there is a wrong with the number of ids.";
744
            VLOG(0) << "Error occurred when parsing " << i
Y
yaoxuefeng 已提交
745 746 747 748
                    << " th slot with total slots number: "
                    << all_slots_.size();
            VLOG(0) << "and in this slot: " << j
                    << " th id with total id number: " << num;
749
            VLOG(0) << "please check line<" << instance_cout << "> in file<"
W
Wang Guibao 已提交
750 751 752 753 754
                    << filename << ">";
            return false;
          }
        }
      } else if (all_slots_type_[i] == "uint64") {
Y
yaoxuefeng 已提交
755
        for (int j = 0; j < num; ++j) {
W
Wang Guibao 已提交
756 757
          strtoull(endptr, &endptr, 10);
          if (errno == ERANGE) {
758
            VLOG(0) << "error: the value is out of the range of "
W
Wang Guibao 已提交
759
                       "representable values for uint64_t";
760
            VLOG(0) << "Error occurred when parsing " << i
Y
yaoxuefeng 已提交
761 762 763 764
                    << " th slot with total slots number: "
                    << all_slots_.size();
            VLOG(0) << "and in this slot: " << j
                    << " th id with total id number: " << num;
765
            VLOG(0) << "please check line<" << instance_cout << "> in file<"
W
Wang Guibao 已提交
766 767 768
                    << filename << ">";
            return false;
          }
Y
yaoxuefeng 已提交
769
          if (j + 1 != num && endptr - str == len) {
770
            VLOG(0) << "error: there is a wrong with the number of ids.";
771
            VLOG(0) << "Error occurred when parsing " << i
Y
yaoxuefeng 已提交
772 773 774 775
                    << " th slot with total slots number: "
                    << all_slots_.size();
            VLOG(0) << "and in this slot: " << j
                    << " th id with total id number: " << num;
776
            VLOG(0) << "please check line<" << instance_cout << "> in file<"
W
Wang Guibao 已提交
777 778 779 780 781
                    << filename << ">";
            return false;
          }
        }
      } else {
782
        VLOG(0) << "error: this type<" << all_slots_type_[i]
W
Wang Guibao 已提交
783 784 785 786
                << "> is not supported";
        return false;
      }
    }
787 788 789
    // It may be added '\t' character to the end of the output of reduce
    // task when processes data by Hadoop(when the output of the reduce
    // task of Hadoop has only one field, it will add a '\t' at the end
790 791 792 793 794
    // of the line by default, and you can use this option to avoid it:
    // `-D mapred.textoutputformat.ignoreseparator=true`), which does
    // not affect the correctness of the data. Therefore, it should be
    // judged that the data is not normal when the end of each line of
    // data contains characters which are not spaces.
795 796 797 798 799 800 801 802
    while (endptr - str != len) {
      if (!isspace(*(endptr++))) {
        VLOG(0)
            << "error: there is some extra characters at the end of the line.";
        VLOG(0) << "please check line<" << instance_cout << "> in file<"
                << filename << ">";
        return false;
      }
W
Wang Guibao 已提交
803 804 805 806
    }
  }
  VLOG(3) << "instances cout: " << instance_cout;
  VLOG(3) << "The file format is correct";
807
#endif
W
Wang Guibao 已提交
808 809 810
  return true;
}

D
dongdaxiang 已提交
811 812
bool MultiSlotDataFeed::ParseOneInstanceFromPipe(
    std::vector<MultiSlotType>* instance) {
813
#ifdef _LINUX
814 815 816
  thread_local string::LineFileReader reader;

  if (!reader.getline(&*(fp_.get()))) {
D
dongdaxiang 已提交
817 818
    return false;
  } else {
819 820 821
    int use_slots_num = use_slots_.size();
    instance->resize(use_slots_num);

D
dongdaxiang 已提交
822 823
    const char* str = reader.get();
    std::string line = std::string(str);
T
tangwei12 已提交
824

D
dongdaxiang 已提交
825 826 827 828 829
    char* endptr = const_cast<char*>(str);
    int pos = 0;
    for (size_t i = 0; i < use_slots_index_.size(); ++i) {
      int idx = use_slots_index_[i];
      int num = strtol(&str[pos], &endptr, 10);
T
tangwei12 已提交
830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851

      if (num <= 0) {
        std::stringstream ss;
        ss << "\n\nGot unexpected input, maybe something wrong with it.\n";
        ss << "\n----------------------\n";
        ss << "The Origin Input Data:\n";
        ss << "----------------------\n";

        ss << line << "\n";

        ss << "\n----------------------\n";
        ss << "Some Possible Errors:\n";
        ss << "----------------------\n";
        ss << "1. The number of ids can not be zero, you need padding.\n";
        ss << "2. The input data contains unresolvable characters.\n";
        ss << "3. We detect the slot " << i << "'s feasign number is " << num
           << " which is illegal.\n";
        ss << "\n";

        PADDLE_THROW(platform::errors::InvalidArgument(ss.str()));
      }

D
dongdaxiang 已提交
852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867
      if (idx != -1) {
        (*instance)[idx].Init(all_slots_type_[i]);
        if ((*instance)[idx].GetType()[0] == 'f') {  // float
          for (int j = 0; j < num; ++j) {
            float feasign = strtof(endptr, &endptr);
            (*instance)[idx].AddValue(feasign);
          }
        } else if ((*instance)[idx].GetType()[0] == 'u') {  // uint64
          for (int j = 0; j < num; ++j) {
            uint64_t feasign = (uint64_t)strtoull(endptr, &endptr, 10);
            (*instance)[idx].AddValue(feasign);
          }
        }
        pos = endptr - str;
      } else {
        for (int j = 0; j <= num; ++j) {
D
dongdaxiang 已提交
868 869 870 871
          // pos = line.find_first_of(' ', pos + 1);
          while (line[pos + 1] != ' ') {
            pos++;
          }
D
dongdaxiang 已提交
872 873 874 875 876
        }
      }
    }
    return true;
  }
877 878 879
#else
  return true;
#endif
D
dongdaxiang 已提交
880 881
}

W
Wang Guibao 已提交
882
bool MultiSlotDataFeed::ParseOneInstance(std::vector<MultiSlotType>* instance) {
X
xjqbest 已提交
883
#ifdef _LINUX
W
Wang Guibao 已提交
884 885 886 887 888 889 890 891 892 893 894
  std::string line;
  if (getline(file_, line)) {
    int use_slots_num = use_slots_.size();
    instance->resize(use_slots_num);
    // parse line
    const char* str = line.c_str();
    char* endptr = const_cast<char*>(str);
    int pos = 0;
    for (size_t i = 0; i < use_slots_index_.size(); ++i) {
      int idx = use_slots_index_[i];
      int num = strtol(&str[pos], &endptr, 10);
895 896 897 898 899 900
      PADDLE_ENFORCE_NE(
          num, 0,
          platform::errors::InvalidArgument(
              "The number of ids can not be zero, you need padding "
              "it in data generator; or if there is something wrong with "
              "the data, please check if the data contains unresolvable "
Y
yaoxuefeng 已提交
901 902 903
              "characters.\nplease check this error line: %s, \n Specifically, "
              "something wrong happened(the length of this slot's feasign is 0)"
              "when we parse the %d th slots."
Y
yaoxuefeng 已提交
904
              "Maybe something wrong around this slot"
Y
yaoxuefeng 已提交
905 906 907
              "\nWe detect the feasign number of this slot is %d, "
              "which is illegal.",
              str, i, num));
908

W
Wang Guibao 已提交
909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931
      if (idx != -1) {
        (*instance)[idx].Init(all_slots_type_[i]);
        if ((*instance)[idx].GetType()[0] == 'f') {  // float
          for (int j = 0; j < num; ++j) {
            float feasign = strtof(endptr, &endptr);
            (*instance)[idx].AddValue(feasign);
          }
        } else if ((*instance)[idx].GetType()[0] == 'u') {  // uint64
          for (int j = 0; j < num; ++j) {
            uint64_t feasign = (uint64_t)strtoull(endptr, &endptr, 10);
            (*instance)[idx].AddValue(feasign);
          }
        }
        pos = endptr - str;
      } else {
        for (int j = 0; j <= num; ++j) {
          pos = line.find_first_of(' ', pos + 1);
        }
      }
    }
  } else {
    return false;
  }
X
xjqbest 已提交
932 933
#endif
  return false;
W
Wang Guibao 已提交
934 935 936 937 938
}

void MultiSlotDataFeed::AddInstanceToInsVec(
    std::vector<MultiSlotType>* ins_vec,
    const std::vector<MultiSlotType>& instance, int index) {
X
xjqbest 已提交
939
#ifdef _LINUX
W
Wang Guibao 已提交
940 941 942 943 944 945 946
  if (index == 0) {
    ins_vec->resize(instance.size());
    for (size_t i = 0; i < instance.size(); ++i) {
      (*ins_vec)[i].Init(instance[i].GetType());
      (*ins_vec)[i].InitOffset();
    }
  }
947

W
Wang Guibao 已提交
948 949 950
  for (size_t i = 0; i < instance.size(); ++i) {
    (*ins_vec)[i].AddIns(instance[i]);
  }
X
xjqbest 已提交
951
#endif
W
Wang Guibao 已提交
952 953 954 955
}

void MultiSlotDataFeed::PutToFeedVec(
    const std::vector<MultiSlotType>& ins_vec) {
X
xjqbest 已提交
956
#ifdef _LINUX
W
Wang Guibao 已提交
957
  for (size_t i = 0; i < use_slots_.size(); ++i) {
958 959 960
    if (feed_vec_[i] == nullptr) {
      continue;
    }
W
Wang Guibao 已提交
961 962 963
    const auto& type = ins_vec[i].GetType();
    const auto& offset = ins_vec[i].GetOffset();
    int total_instance = static_cast<int>(offset.back());
964

W
Wang Guibao 已提交
965 966
    if (type[0] == 'f') {  // float
      const auto& feasign = ins_vec[i].GetFloatData();
967 968 969
      float* tensor_ptr =
          feed_vec_[i]->mutable_data<float>({total_instance, 1}, this->place_);
      CopyToFeedTensor(tensor_ptr, &feasign[0], total_instance * sizeof(float));
W
Wang Guibao 已提交
970 971 972
    } else if (type[0] == 'u') {  // uint64
      // no uint64_t type in paddlepaddle
      const auto& feasign = ins_vec[i].GetUint64Data();
973
      int64_t* tensor_ptr = feed_vec_[i]->mutable_data<int64_t>(
974 975 976
          {total_instance, 1}, this->place_);
      CopyToFeedTensor(tensor_ptr, &feasign[0],
                       total_instance * sizeof(int64_t));
977
    }
978

W
wangguanqun 已提交
979 980 981 982
    if (!use_slots_is_dense_[i]) {
      LoD data_lod{offset};
      feed_vec_[i]->set_lod(data_lod);
    }
983
    if (use_slots_is_dense_[i]) {
984 985 986 987
      if (inductive_shape_index_[i] != -1) {
        use_slots_shape_[i][inductive_shape_index_[i]] =
            total_instance / total_dims_without_inductive_[i];
      }
988
      feed_vec_[i]->Resize(framework::make_ddim(use_slots_shape_[i]));
W
Wang Guibao 已提交
989 990
    }
  }
X
xjqbest 已提交
991
#endif
W
Wang Guibao 已提交
992 993
}

994 995 996 997 998 999
void MultiSlotInMemoryDataFeed::Init(
    const paddle::framework::DataFeedDesc& data_feed_desc) {
  finish_init_ = false;
  finish_set_filelist_ = false;
  finish_start_ = false;

1000 1001 1002 1003
  PADDLE_ENFORCE_EQ(
      data_feed_desc.has_multi_slot_desc(), true,
      platform::errors::PreconditionNotMet(
          "Multi_slot_desc has not been set in MultiSlotInMemoryDataFeed."));
1004 1005 1006 1007 1008 1009 1010
  paddle::framework::MultiSlotDesc multi_slot_desc =
      data_feed_desc.multi_slot_desc();
  SetBatchSize(data_feed_desc.batch_size());
  size_t all_slot_num = multi_slot_desc.slots_size();
  all_slots_.resize(all_slot_num);
  all_slots_type_.resize(all_slot_num);
  use_slots_index_.resize(all_slot_num);
1011 1012
  total_dims_without_inductive_.resize(all_slot_num);
  inductive_shape_index_.resize(all_slot_num);
1013 1014
  use_slots_.clear();
  use_slots_is_dense_.clear();
T
Thunderbrook 已提交
1015
  slot_conf_.resize(all_slot_num);
1016 1017 1018 1019 1020
  for (size_t i = 0; i < all_slot_num; ++i) {
    const auto& slot = multi_slot_desc.slots(i);
    all_slots_[i] = slot.name();
    all_slots_type_[i] = slot.type();
    use_slots_index_[i] = slot.is_used() ? use_slots_.size() : -1;
T
Thunderbrook 已提交
1021 1022 1023 1024 1025

    slot_conf_[i].name = slot.name();
    slot_conf_[i].type = slot.type();
    slot_conf_[i].use_slots_index = use_slots_index_[i];

1026 1027
    total_dims_without_inductive_[i] = 1;
    inductive_shape_index_[i] = -1;
1028 1029 1030
    if (slot.is_used()) {
      use_slots_.push_back(all_slots_[i]);
      use_slots_is_dense_.push_back(slot.is_dense());
T
Thunderbrook 已提交
1031
      slot_conf_[i].use_slots_is_dense = slot.is_dense();
1032 1033
      std::vector<int> local_shape;
      if (slot.is_dense()) {
1034
        for (int j = 0; j < slot.shape_size(); ++j) {
1035 1036
          if (slot.shape(j) > 0) {
            total_dims_without_inductive_[i] *= slot.shape(j);
1037
          }
1038 1039
          if (slot.shape(j) == -1) {
            inductive_shape_index_[i] = j;
1040
          }
1041 1042
        }
      }
1043
      for (int j = 0; j < slot.shape_size(); ++j) {
1044
        local_shape.push_back(slot.shape(j));
1045 1046
      }
      use_slots_shape_.push_back(local_shape);
1047 1048 1049
    }
  }
  feed_vec_.resize(use_slots_.size());
H
hutuxian 已提交
1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
  const int kEstimatedFeasignNumPerSlot = 5;  // Magic Number
  for (size_t i = 0; i < all_slot_num; i++) {
    batch_float_feasigns_.push_back(std::vector<float>());
    batch_uint64_feasigns_.push_back(std::vector<uint64_t>());
    batch_float_feasigns_[i].reserve(default_batch_size_ *
                                     kEstimatedFeasignNumPerSlot);
    batch_uint64_feasigns_[i].reserve(default_batch_size_ *
                                      kEstimatedFeasignNumPerSlot);
    offset_.push_back(std::vector<size_t>());
    offset_[i].reserve(default_batch_size_ +
                       1);  // Each lod info will prepend a zero
  }
  visit_.resize(all_slot_num, false);
1063
  pipe_command_ = data_feed_desc.pipe_command();
T
Thunderbrook 已提交
1064
  so_parser_name_ = data_feed_desc.so_parser_name();
1065
  finish_init_ = true;
1066
  input_type_ = data_feed_desc.input_type();
1067 1068
}

1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
void MultiSlotInMemoryDataFeed::GetMsgFromLogKey(const std::string& log_key,
                                                 uint64_t* search_id,
                                                 uint32_t* cmatch,
                                                 uint32_t* rank) {
  std::string searchid_str = log_key.substr(16, 16);
  *search_id = (uint64_t)strtoull(searchid_str.c_str(), NULL, 16);

  std::string cmatch_str = log_key.substr(11, 3);
  *cmatch = (uint32_t)strtoul(cmatch_str.c_str(), NULL, 16);

  std::string rank_str = log_key.substr(14, 2);
  *rank = (uint32_t)strtoul(rank_str.c_str(), NULL, 16);
}

T
Thunderbrook 已提交
1083 1084 1085 1086 1087 1088
void MultiSlotInMemoryDataFeed::ParseOneInstanceFromSo(const char* str,
                                                       Record* instance,
                                                       CustomParser* parser) {
  parser->ParseOneInstance(str, instance);
}

J
jiaqi 已提交
1089
bool MultiSlotInMemoryDataFeed::ParseOneInstanceFromPipe(Record* instance) {
X
xjqbest 已提交
1090
#ifdef _LINUX
1091 1092 1093 1094 1095 1096 1097
  thread_local string::LineFileReader reader;

  if (!reader.getline(&*(fp_.get()))) {
    return false;
  } else {
    const char* str = reader.get();
    std::string line = std::string(str);
1098
    // VLOG(3) << line;
1099 1100
    char* endptr = const_cast<char*>(str);
    int pos = 0;
1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
    if (parse_ins_id_) {
      int num = strtol(&str[pos], &endptr, 10);
      CHECK(num == 1);  // NOLINT
      pos = endptr - str + 1;
      size_t len = 0;
      while (str[pos + len] != ' ') {
        ++len;
      }
      instance->ins_id_ = std::string(str + pos, len);
      pos += len + 1;
      VLOG(3) << "ins_id " << instance->ins_id_;
    }
1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124
    if (parse_content_) {
      int num = strtol(&str[pos], &endptr, 10);
      CHECK(num == 1);  // NOLINT
      pos = endptr - str + 1;
      size_t len = 0;
      while (str[pos + len] != ' ') {
        ++len;
      }
      instance->content_ = std::string(str + pos, len);
      pos += len + 1;
      VLOG(3) << "content " << instance->content_;
    }
1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
    if (parse_logkey_) {
      int num = strtol(&str[pos], &endptr, 10);
      CHECK(num == 1);  // NOLINT
      pos = endptr - str + 1;
      size_t len = 0;
      while (str[pos + len] != ' ') {
        ++len;
      }
      // parse_logkey
      std::string log_key = std::string(str + pos, len);
      uint64_t search_id;
      uint32_t cmatch;
      uint32_t rank;
      GetMsgFromLogKey(log_key, &search_id, &cmatch, &rank);

H
hutuxian 已提交
1140
      instance->ins_id_ = log_key;
1141 1142 1143 1144 1145
      instance->search_id = search_id;
      instance->cmatch = cmatch;
      instance->rank = rank;
      pos += len + 1;
    }
1146 1147 1148
    for (size_t i = 0; i < use_slots_index_.size(); ++i) {
      int idx = use_slots_index_[i];
      int num = strtol(&str[pos], &endptr, 10);
1149 1150 1151 1152 1153 1154
      PADDLE_ENFORCE_NE(
          num, 0,
          platform::errors::InvalidArgument(
              "The number of ids can not be zero, you need padding "
              "it in data generator; or if there is something wrong with "
              "the data, please check if the data contains unresolvable "
Y
yaoxuefeng 已提交
1155 1156 1157
              "characters.\nplease check this error line: %s, \n Specifically, "
              "something wrong happened(the length of this slot's feasign is 0)"
              "when we parse the %d th slots."
Y
yaoxuefeng 已提交
1158
              "Maybe something wrong around this slot"
Y
yaoxuefeng 已提交
1159 1160 1161
              "\nWe detect the feasign number of this slot is %d, "
              "which is illegal.",
              str, i, num));
1162
      if (idx != -1) {
J
jiaqi 已提交
1163
        if (all_slots_type_[i][0] == 'f') {  // float
1164 1165
          for (int j = 0; j < num; ++j) {
            float feasign = strtof(endptr, &endptr);
J
jiaqi 已提交
1166
            // if float feasign is equal to zero, ignore it
1167 1168
            // except when slot is dense
            if (fabs(feasign) < 1e-6 && !use_slots_is_dense_[i]) {
J
jiaqi 已提交
1169 1170
              continue;
            }
T
Thunderbrook 已提交
1171
            FeatureFeasign f;
J
jiaqi 已提交
1172 1173
            f.float_feasign_ = feasign;
            instance->float_feasigns_.push_back(FeatureItem(f, idx));
1174
          }
J
jiaqi 已提交
1175
        } else if (all_slots_type_[i][0] == 'u') {  // uint64
1176 1177
          for (int j = 0; j < num; ++j) {
            uint64_t feasign = (uint64_t)strtoull(endptr, &endptr, 10);
J
jiaqi 已提交
1178
            // if uint64 feasign is equal to zero, ignore it
1179 1180
            // except when slot is dense
            if (feasign == 0 && !use_slots_is_dense_[i]) {
J
jiaqi 已提交
1181 1182
              continue;
            }
T
Thunderbrook 已提交
1183
            FeatureFeasign f;
J
jiaqi 已提交
1184 1185
            f.uint64_feasign_ = feasign;
            instance->uint64_feasigns_.push_back(FeatureItem(f, idx));
1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
          }
        }
        pos = endptr - str;
      } else {
        for (int j = 0; j <= num; ++j) {
          // pos = line.find_first_of(' ', pos + 1);
          while (line[pos + 1] != ' ') {
            pos++;
          }
        }
      }
    }
J
jiaqi 已提交
1198 1199
    instance->float_feasigns_.shrink_to_fit();
    instance->uint64_feasigns_.shrink_to_fit();
H
hutuxian 已提交
1200
    fea_num_ += instance->uint64_feasigns_.size();
1201 1202
    return true;
  }
X
xjqbest 已提交
1203 1204 1205
#else
  return false;
#endif
1206 1207
}

J
jiaqi 已提交
1208
bool MultiSlotInMemoryDataFeed::ParseOneInstance(Record* instance) {
X
xjqbest 已提交
1209
#ifdef _LINUX
1210 1211
  std::string line;
  if (getline(file_, line)) {
1212
    VLOG(3) << line;
1213 1214 1215 1216 1217 1218 1219
    // parse line
    const char* str = line.c_str();
    char* endptr = const_cast<char*>(str);
    int pos = 0;
    for (size_t i = 0; i < use_slots_index_.size(); ++i) {
      int idx = use_slots_index_[i];
      int num = strtol(&str[pos], &endptr, 10);
1220 1221 1222 1223 1224 1225
      PADDLE_ENFORCE_NE(
          num, 0,
          platform::errors::InvalidArgument(
              "The number of ids can not be zero, you need padding "
              "it in data generator; or if there is something wrong with "
              "the data, please check if the data contains unresolvable "
Y
yaoxuefeng 已提交
1226 1227 1228
              "characters.\nplease check this error line: %s, \n Specifically, "
              "something wrong happened(the length of this slot's feasign is 0)"
              "when we parse the %d th slots."
Y
yaoxuefeng 已提交
1229
              "Maybe something wrong around this slot"
Y
yaoxuefeng 已提交
1230 1231 1232
              "\nWe detect the feasign number of this slot is %d, "
              "which is illegal.",
              str, i, num));
1233 1234

      if (idx != -1) {
J
jiaqi 已提交
1235
        if (all_slots_type_[i][0] == 'f') {  // float
1236 1237
          for (int j = 0; j < num; ++j) {
            float feasign = strtof(endptr, &endptr);
J
jiaqi 已提交
1238 1239 1240
            if (fabs(feasign) < 1e-6) {
              continue;
            }
T
Thunderbrook 已提交
1241
            FeatureFeasign f;
J
jiaqi 已提交
1242 1243
            f.float_feasign_ = feasign;
            instance->float_feasigns_.push_back(FeatureItem(f, idx));
1244
          }
J
jiaqi 已提交
1245
        } else if (all_slots_type_[i][0] == 'u') {  // uint64
1246 1247
          for (int j = 0; j < num; ++j) {
            uint64_t feasign = (uint64_t)strtoull(endptr, &endptr, 10);
J
jiaqi 已提交
1248 1249 1250
            if (feasign == 0) {
              continue;
            }
T
Thunderbrook 已提交
1251
            FeatureFeasign f;
J
jiaqi 已提交
1252 1253
            f.uint64_feasign_ = feasign;
            instance->uint64_feasigns_.push_back(FeatureItem(f, idx));
1254 1255 1256 1257 1258 1259 1260 1261 1262
          }
        }
        pos = endptr - str;
      } else {
        for (int j = 0; j <= num; ++j) {
          pos = line.find_first_of(' ', pos + 1);
        }
      }
    }
J
jiaqi 已提交
1263 1264 1265
    instance->float_feasigns_.shrink_to_fit();
    instance->uint64_feasigns_.shrink_to_fit();
    return true;
1266 1267 1268
  } else {
    return false;
  }
X
xjqbest 已提交
1269 1270
#endif
  return false;
1271 1272
}

Y
yaoxuefeng 已提交
1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
void MultiSlotInMemoryDataFeed::PutToFeedVec(const Record* ins_vec, int num) {
#ifdef _LINUX
  for (size_t i = 0; i < batch_float_feasigns_.size(); ++i) {
    batch_float_feasigns_[i].clear();
    batch_uint64_feasigns_[i].clear();
    offset_[i].clear();
    offset_[i].push_back(0);
  }
  ins_content_vec_.clear();
  ins_content_vec_.reserve(num);
  ins_id_vec_.clear();
  ins_id_vec_.reserve(num);
  for (int i = 0; i < num; ++i) {
    auto& r = ins_vec[i];
    ins_id_vec_.push_back(r.ins_id_);
    ins_content_vec_.push_back(r.content_);
    for (auto& item : r.float_feasigns_) {
      batch_float_feasigns_[item.slot()].push_back(item.sign().float_feasign_);
      visit_[item.slot()] = true;
    }
    for (auto& item : r.uint64_feasigns_) {
      batch_uint64_feasigns_[item.slot()].push_back(
          item.sign().uint64_feasign_);
      visit_[item.slot()] = true;
    }
    for (size_t j = 0; j < use_slots_.size(); ++j) {
      const auto& type = all_slots_type_[j];
      if (visit_[j]) {
        visit_[j] = false;
      } else {
        // fill slot value with default value 0
        if (type[0] == 'f') {  // float
          batch_float_feasigns_[j].push_back(0.0);
        } else if (type[0] == 'u') {  // uint64
          batch_uint64_feasigns_[j].push_back(0);
        }
      }
      // get offset of this ins in this slot
      if (type[0] == 'f') {  // float
        offset_[j].push_back(batch_float_feasigns_[j].size());
      } else if (type[0] == 'u') {  // uint64
        offset_[j].push_back(batch_uint64_feasigns_[j].size());
      }
    }
  }

  for (size_t i = 0; i < use_slots_.size(); ++i) {
    if (feed_vec_[i] == nullptr) {
      continue;
    }
    int total_instance = offset_[i].back();
    const auto& type = all_slots_type_[i];
    if (type[0] == 'f') {  // float
      float* feasign = batch_float_feasigns_[i].data();
      float* tensor_ptr =
          feed_vec_[i]->mutable_data<float>({total_instance, 1}, this->place_);
      CopyToFeedTensor(tensor_ptr, feasign, total_instance * sizeof(float));
    } else if (type[0] == 'u') {  // uint64
      // no uint64_t type in paddlepaddle
      uint64_t* feasign = batch_uint64_feasigns_[i].data();
      int64_t* tensor_ptr = feed_vec_[i]->mutable_data<int64_t>(
          {total_instance, 1}, this->place_);
      CopyToFeedTensor(tensor_ptr, feasign, total_instance * sizeof(int64_t));
    }
    auto& slot_offset = offset_[i];
    if (this->input_type_ == 0) {
      LoD data_lod{slot_offset};
      feed_vec_[i]->set_lod(data_lod);
    } else if (this->input_type_ == 1) {
      if (!use_slots_is_dense_[i]) {
        std::vector<size_t> tmp_offset;
        PADDLE_ENFORCE_EQ(slot_offset.size(), 2,
                          platform::errors::InvalidArgument(
                              "In batch reader, the sparse tensor lod size "
                              "must be 2, but received %d.",
                              slot_offset.size()));
        const auto& max_size = slot_offset[1];
        tmp_offset.reserve(max_size + 1);
        for (unsigned int k = 0; k <= max_size; k++) {
          tmp_offset.emplace_back(k);
        }
        slot_offset = tmp_offset;
        LoD data_lod{slot_offset};
        feed_vec_[i]->set_lod(data_lod);
      }
    }
    if (use_slots_is_dense_[i]) {
      if (inductive_shape_index_[i] != -1) {
        use_slots_shape_[i][inductive_shape_index_[i]] =
            total_instance / total_dims_without_inductive_[i];
      }
      feed_vec_[i]->Resize(framework::make_ddim(use_slots_shape_[i]));
    }
  }
#endif
}

J
jiaqi 已提交
1370 1371
void MultiSlotInMemoryDataFeed::PutToFeedVec(
    const std::vector<Record>& ins_vec) {
X
xjqbest 已提交
1372
#ifdef _LINUX
H
hutuxian 已提交
1373 1374 1375 1376 1377 1378
  for (size_t i = 0; i < batch_float_feasigns_.size(); ++i) {
    batch_float_feasigns_[i].clear();
    batch_uint64_feasigns_[i].clear();
    offset_[i].clear();
    offset_[i].push_back(0);
  }
1379 1380 1381 1382
  ins_content_vec_.clear();
  ins_content_vec_.reserve(ins_vec.size());
  ins_id_vec_.clear();
  ins_id_vec_.reserve(ins_vec.size());
J
jiaqi 已提交
1383 1384
  for (size_t i = 0; i < ins_vec.size(); ++i) {
    auto& r = ins_vec[i];
1385 1386
    ins_id_vec_.push_back(r.ins_id_);
    ins_content_vec_.push_back(r.content_);
J
jiaqi 已提交
1387
    for (auto& item : r.float_feasigns_) {
H
hutuxian 已提交
1388 1389
      batch_float_feasigns_[item.slot()].push_back(item.sign().float_feasign_);
      visit_[item.slot()] = true;
J
jiaqi 已提交
1390 1391
    }
    for (auto& item : r.uint64_feasigns_) {
H
hutuxian 已提交
1392 1393 1394
      batch_uint64_feasigns_[item.slot()].push_back(
          item.sign().uint64_feasign_);
      visit_[item.slot()] = true;
J
jiaqi 已提交
1395 1396 1397
    }
    for (size_t j = 0; j < use_slots_.size(); ++j) {
      const auto& type = all_slots_type_[j];
H
hutuxian 已提交
1398 1399
      if (visit_[j]) {
        visit_[j] = false;
J
jiaqi 已提交
1400 1401 1402
      } else {
        // fill slot value with default value 0
        if (type[0] == 'f') {  // float
H
hutuxian 已提交
1403
          batch_float_feasigns_[j].push_back(0.0);
J
jiaqi 已提交
1404
        } else if (type[0] == 'u') {  // uint64
H
hutuxian 已提交
1405
          batch_uint64_feasigns_[j].push_back(0);
J
jiaqi 已提交
1406 1407 1408 1409
        }
      }
      // get offset of this ins in this slot
      if (type[0] == 'f') {  // float
H
hutuxian 已提交
1410
        offset_[j].push_back(batch_float_feasigns_[j].size());
J
jiaqi 已提交
1411
      } else if (type[0] == 'u') {  // uint64
H
hutuxian 已提交
1412
        offset_[j].push_back(batch_uint64_feasigns_[j].size());
J
jiaqi 已提交
1413
      }
1414 1415 1416 1417
    }
  }

  for (size_t i = 0; i < use_slots_.size(); ++i) {
1418 1419 1420
    if (feed_vec_[i] == nullptr) {
      continue;
    }
H
hutuxian 已提交
1421
    int total_instance = offset_[i].back();
J
jiaqi 已提交
1422
    const auto& type = all_slots_type_[i];
1423
    if (type[0] == 'f') {  // float
H
hutuxian 已提交
1424
      float* feasign = batch_float_feasigns_[i].data();
1425 1426 1427
      float* tensor_ptr =
          feed_vec_[i]->mutable_data<float>({total_instance, 1}, this->place_);
      CopyToFeedTensor(tensor_ptr, feasign, total_instance * sizeof(float));
1428 1429
    } else if (type[0] == 'u') {  // uint64
      // no uint64_t type in paddlepaddle
H
hutuxian 已提交
1430
      uint64_t* feasign = batch_uint64_feasigns_[i].data();
1431
      int64_t* tensor_ptr = feed_vec_[i]->mutable_data<int64_t>(
1432 1433
          {total_instance, 1}, this->place_);
      CopyToFeedTensor(tensor_ptr, feasign, total_instance * sizeof(int64_t));
1434
    }
H
hutuxian 已提交
1435
    auto& slot_offset = offset_[i];
1436
    if (this->input_type_ == 0) {
W
wangguanqun 已提交
1437 1438 1439 1440
      if (!use_slots_is_dense_[i]) {
        LoD data_lod{slot_offset};
        feed_vec_[i]->set_lod(data_lod);
      }
1441 1442 1443 1444 1445 1446
    } else if (this->input_type_ == 1) {
      if (!use_slots_is_dense_[i]) {
        std::vector<size_t> tmp_offset;
        PADDLE_ENFORCE_EQ(slot_offset.size(), 2,
                          platform::errors::InvalidArgument(
                              "In batch reader, the sparse tensor lod size "
1447
                              "must be 2, but received %d.",
1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458
                              slot_offset.size()));
        const auto& max_size = slot_offset[1];
        tmp_offset.reserve(max_size + 1);
        for (unsigned int k = 0; k <= max_size; k++) {
          tmp_offset.emplace_back(k);
        }
        slot_offset = tmp_offset;
        LoD data_lod{slot_offset};
        feed_vec_[i]->set_lod(data_lod);
      }
    }
1459
    if (use_slots_is_dense_[i]) {
1460 1461 1462 1463
      if (inductive_shape_index_[i] != -1) {
        use_slots_shape_[i][inductive_shape_index_[i]] =
            total_instance / total_dims_without_inductive_[i];
      }
1464
      feed_vec_[i]->Resize(framework::make_ddim(use_slots_shape_[i]));
1465 1466
    }
  }
X
xjqbest 已提交
1467
#endif
1468 1469
}

1470
#if (defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)) && !defined(_WIN32)
H
hutuxian 已提交
1471 1472 1473 1474 1475 1476 1477 1478 1479
template <typename T>
void PrivateInstantDataFeed<T>::PutToFeedVec() {
  for (size_t i = 0; i < use_slots_.size(); ++i) {
    const auto& type = ins_vec_[i].GetType();
    const auto& offset = ins_vec_[i].GetOffset();
    int total_instance = static_cast<int>(offset.back());

    if (type[0] == 'f') {  // float
      const auto& feasign = ins_vec_[i].GetFloatData();
1480 1481 1482
      float* tensor_ptr =
          feed_vec_[i]->mutable_data<float>({total_instance, 1}, this->place_);
      CopyToFeedTensor(tensor_ptr, &feasign[0], total_instance * sizeof(float));
H
hutuxian 已提交
1483 1484 1485 1486
    } else if (type[0] == 'u') {  // uint64
      // no uint64_t type in paddlepaddle
      const auto& feasign = ins_vec_[i].GetUint64Data();
      int64_t* tensor_ptr = feed_vec_[i]->mutable_data<int64_t>(
1487 1488 1489
          {total_instance, 1}, this->place_);
      CopyToFeedTensor(tensor_ptr, &feasign[0],
                       total_instance * sizeof(int64_t));
H
hutuxian 已提交
1490 1491 1492 1493 1494 1495 1496 1497 1498
    }

    LoD data_lod{offset};
    feed_vec_[i]->set_lod(data_lod);
    if (use_slots_is_dense_[i]) {
      int64_t total_dims = 1;
      for (const auto e : use_slots_shape_[i]) {
        total_dims *= e;
      }
1499 1500 1501 1502 1503 1504 1505
      PADDLE_ENFORCE_EQ(
          total_dims, total_instance,
          platform::errors::InvalidArgument(
              "The actual data size of slot[%s] doesn't match its declaration. "
              "The actual data size of slot is %lld"
              ", and its declaration is %lld.",
              use_slots_[i].c_str(), total_dims, total_instance));
H
hutuxian 已提交
1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526
      feed_vec_[i]->Resize(framework::make_ddim(use_slots_shape_[i]));
    }
  }
}

template <typename T>
int PrivateInstantDataFeed<T>::Next() {
  if (ParseOneMiniBatch()) {
    PutToFeedVec();
    return ins_vec_[0].GetBatchSize();
  }
  Postprocess();

  std::string filename;
  if (!PickOneFile(&filename)) {
    return -1;
  }
  if (!Preprocess(filename)) {
    return -1;
  }

1527 1528 1529
  PADDLE_ENFORCE_EQ(
      true, ParseOneMiniBatch(),
      platform::errors::InvalidArgument("Fail to parse mini-batch data."));
H
hutuxian 已提交
1530 1531 1532 1533 1534 1535 1536 1537 1538 1539
  PutToFeedVec();
  return ins_vec_[0].GetBatchSize();
}

template <typename T>
void PrivateInstantDataFeed<T>::Init(const DataFeedDesc& data_feed_desc) {
  finish_init_ = false;
  finish_set_filelist_ = false;
  finish_start_ = false;

1540 1541 1542 1543
  PADDLE_ENFORCE_EQ(
      data_feed_desc.has_multi_slot_desc(), true,
      platform::errors::PreconditionNotMet(
          "Multi_slot_desc has not been set in PrivateInstantDataFeed."));
H
hutuxian 已提交
1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563
  paddle::framework::MultiSlotDesc multi_slot_desc =
      data_feed_desc.multi_slot_desc();
  SetBatchSize(data_feed_desc.batch_size());
  size_t all_slot_num = multi_slot_desc.slots_size();
  all_slots_.resize(all_slot_num);
  all_slots_type_.resize(all_slot_num);
  use_slots_index_.resize(all_slot_num);
  multi_inductive_shape_index_.resize(all_slot_num);
  use_slots_.clear();
  use_slots_is_dense_.clear();
  for (size_t i = 0; i < all_slot_num; ++i) {
    const auto& slot = multi_slot_desc.slots(i);
    all_slots_[i] = slot.name();
    all_slots_type_[i] = slot.type();
    use_slots_index_[i] = slot.is_used() ? use_slots_.size() : -1;
    if (slot.is_used()) {
      use_slots_.push_back(all_slots_[i]);
      use_slots_is_dense_.push_back(slot.is_dense());
      std::vector<int> local_shape;
      if (slot.is_dense()) {
1564
        for (int j = 0; j < slot.shape_size(); ++j) {
H
hutuxian 已提交
1565 1566 1567 1568 1569
          if (slot.shape(j) == -1) {
            multi_inductive_shape_index_[i].push_back(j);
          }
        }
      }
1570
      for (int j = 0; j < slot.shape_size(); ++j) {
H
hutuxian 已提交
1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585
        local_shape.push_back(slot.shape(j));
      }
      use_slots_shape_.push_back(local_shape);
    }
  }
  feed_vec_.resize(use_slots_.size());
  ins_vec_.resize(use_slots_.size());

  finish_init_ = true;
}

template class PrivateInstantDataFeed<std::vector<MultiSlotType>>;

bool MultiSlotFileInstantDataFeed::Preprocess(const std::string& filename) {
  fd_ = open(filename.c_str(), O_RDONLY);
1586 1587 1588 1589
  PADDLE_ENFORCE_NE(
      fd_, -1, platform::errors::Unavailable(
                   "Fail to open file: %s in MultiSlotFileInstantDataFeed.",
                   filename.c_str()));
H
hutuxian 已提交
1590 1591 1592 1593 1594 1595 1596

  struct stat sb;
  fstat(fd_, &sb);
  end_ = static_cast<size_t>(sb.st_size);

  buffer_ =
      reinterpret_cast<char*>(mmap(NULL, end_, PROT_READ, MAP_PRIVATE, fd_, 0));
1597 1598 1599 1600 1601
  PADDLE_ENFORCE_NE(
      buffer_, MAP_FAILED,
      platform::errors::Unavailable(
          "Memory map failed when create shared memory, error number is %s.",
          strerror(errno)));
H
hutuxian 已提交
1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632

  offset_ = 0;
  return true;
}

bool MultiSlotFileInstantDataFeed::Postprocess() {
  if (buffer_ != nullptr) {
    munmap(buffer_, end_);
    buffer_ = nullptr;
  }
  if (fd_ != -1) {
    close(fd_);
    fd_ = -1;
    end_ = 0;
    offset_ = 0;
  }
  return true;
}

bool MultiSlotFileInstantDataFeed::ParseOneMiniBatch() {
  if (offset_ == end_) {
    return false;
  }

  batch_size_ = 0;
  while (batch_size_ < default_batch_size_ && offset_ < end_) {
    for (size_t i = 0; i < use_slots_index_.size(); ++i) {
      int idx = use_slots_index_[i];
      char type = all_slots_type_[i][0];

      uint16_t num = *reinterpret_cast<uint16_t*>(buffer_ + offset_);
1633 1634 1635 1636 1637 1638 1639
      PADDLE_ENFORCE_NE(
          num, 0,
          platform::errors::InvalidArgument(
              "The number of ids can not be zero, you need padding "
              "it in data generator; or if there is something wrong with "
              "the data, please check if the data contains unresolvable "
              "characters."));
H
hutuxian 已提交
1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680
      offset_ += sizeof(uint16_t);

      if (idx != -1) {
        int inductive_size = multi_inductive_shape_index_[i].size();
        if (UNLIKELY(batch_size_ == 0)) {
          ins_vec_[idx].Init(all_slots_type_[i], default_batch_size_ * num);
          ins_vec_[idx].InitOffset(default_batch_size_);
          uint64_t* inductive_shape =
              reinterpret_cast<uint64_t*>(buffer_ + offset_);
          for (int inductive_id = 0; inductive_id < inductive_size;
               ++inductive_id) {
            use_slots_shape_[i][multi_inductive_shape_index_[i][inductive_id]] =
                static_cast<int>(*(inductive_shape + inductive_id));
          }
        }
        num -= inductive_size;
        offset_ += sizeof(uint64_t) * inductive_size;

        if (type == 'f') {
          ins_vec_[idx].AppendValues(
              reinterpret_cast<float*>(buffer_ + offset_), num);
          offset_ += num * sizeof(float);
        } else if (type == 'u') {
          ins_vec_[idx].AppendValues(
              reinterpret_cast<uint64_t*>(buffer_ + offset_), num);
          offset_ += num * sizeof(uint64_t);
        }
      } else {
        if (type == 'f') {
          offset_ += num * sizeof(float);
        } else if (type == 'u') {
          offset_ += num * sizeof(uint64_t);
        }
      }
    }
    ++batch_size_;
    // OPTIMIZE: It is better to insert check codes between instances for format
    // checking
  }

  PADDLE_ENFORCE(batch_size_ == default_batch_size_ || offset_ == end_,
1681 1682 1683 1684 1685 1686
                 platform::errors::InvalidArgument(
                     "The batch size id not equal to default batch size, or "
                     "the offset is not equal to end index."
                     "The batch size is %d, default batcch size is %d, offset "
                     "is %d, end index is %d.",
                     batch_size_, default_batch_size_, offset_, end_));
H
hutuxian 已提交
1687 1688 1689 1690
  return true;
}
#endif

1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842
bool PaddleBoxDataFeed::Start() {
#ifdef _LINUX
  int phase = GetCurrentPhase();  // join: 1, update: 0
  this->CheckSetFileList();
  if (enable_pv_merge_ && phase == 1) {
    // join phase : input_pv_channel to output_pv_channel
    if (output_pv_channel_->Size() == 0 && input_pv_channel_->Size() != 0) {
      std::vector<PvInstance> data;
      input_pv_channel_->Read(data);
      output_pv_channel_->Write(std::move(data));
    }
  } else {
    // input_channel to output
    if (output_channel_->Size() == 0 && input_channel_->Size() != 0) {
      std::vector<Record> data;
      input_channel_->Read(data);
      output_channel_->Write(std::move(data));
    }
  }
#endif
  this->finish_start_ = true;
  return true;
}

int PaddleBoxDataFeed::Next() {
#ifdef _LINUX
  int phase = GetCurrentPhase();  // join: 1, update: 0
  this->CheckStart();
  if (enable_pv_merge_ && phase == 1) {
    // join phase : output_pv_channel to consume_pv_channel
    CHECK(output_pv_channel_ != nullptr);
    CHECK(consume_pv_channel_ != nullptr);
    VLOG(3) << "output_pv_channel_ size=" << output_pv_channel_->Size()
            << ", consume_pv_channel_ size=" << consume_pv_channel_->Size()
            << ", thread_id=" << thread_id_;
    int index = 0;
    PvInstance pv_instance;
    std::vector<PvInstance> pv_vec;
    pv_vec.reserve(this->pv_batch_size_);
    while (index < this->pv_batch_size_) {
      if (output_pv_channel_->Size() == 0) {
        break;
      }
      output_pv_channel_->Get(pv_instance);
      pv_vec.push_back(pv_instance);
      ++index;
      consume_pv_channel_->Put(std::move(pv_instance));
    }
    this->batch_size_ = index;
    VLOG(3) << "pv_batch_size_=" << this->batch_size_
            << ", thread_id=" << thread_id_;
    if (this->batch_size_ != 0) {
      PutToFeedVec(pv_vec);
    } else {
      VLOG(3) << "finish reading, output_pv_channel_ size="
              << output_pv_channel_->Size()
              << ", consume_pv_channel_ size=" << consume_pv_channel_->Size()
              << ", thread_id=" << thread_id_;
    }
    return this->batch_size_;
  } else {
    this->batch_size_ = MultiSlotInMemoryDataFeed::Next();
    return this->batch_size_;
  }
#else
  return 0;
#endif
}

void PaddleBoxDataFeed::Init(const DataFeedDesc& data_feed_desc) {
  MultiSlotInMemoryDataFeed::Init(data_feed_desc);
  rank_offset_name_ = data_feed_desc.rank_offset();
  pv_batch_size_ = data_feed_desc.pv_batch_size();
}

void PaddleBoxDataFeed::GetRankOffset(const std::vector<PvInstance>& pv_vec,
                                      int ins_number) {
  int index = 0;
  int max_rank = 3;  // the value is setting
  int row = ins_number;
  int col = max_rank * 2 + 1;
  int pv_num = pv_vec.size();

  std::vector<int> rank_offset_mat(row * col, -1);
  rank_offset_mat.shrink_to_fit();

  for (int i = 0; i < pv_num; i++) {
    auto pv_ins = pv_vec[i];
    int ad_num = pv_ins->ads.size();
    int index_start = index;
    for (int j = 0; j < ad_num; ++j) {
      auto ins = pv_ins->ads[j];
      int rank = -1;
      if ((ins->cmatch == 222 || ins->cmatch == 223) &&
          ins->rank <= static_cast<uint32_t>(max_rank) && ins->rank != 0) {
        rank = ins->rank;
      }

      rank_offset_mat[index * col] = rank;
      if (rank > 0) {
        for (int k = 0; k < ad_num; ++k) {
          auto cur_ins = pv_ins->ads[k];
          int fast_rank = -1;
          if ((cur_ins->cmatch == 222 || cur_ins->cmatch == 223) &&
              cur_ins->rank <= static_cast<uint32_t>(max_rank) &&
              cur_ins->rank != 0) {
            fast_rank = cur_ins->rank;
          }

          if (fast_rank > 0) {
            int m = fast_rank - 1;
            rank_offset_mat[index * col + 2 * m + 1] = cur_ins->rank;
            rank_offset_mat[index * col + 2 * m + 2] = index_start + k;
          }
        }
      }
      index += 1;
    }
  }

  int* rank_offset = rank_offset_mat.data();
  int* tensor_ptr = rank_offset_->mutable_data<int>({row, col}, this->place_);
  CopyToFeedTensor(tensor_ptr, rank_offset, row * col * sizeof(int));
}

void PaddleBoxDataFeed::AssignFeedVar(const Scope& scope) {
  MultiSlotInMemoryDataFeed::AssignFeedVar(scope);
  // set rank offset memory
  int phase = GetCurrentPhase();  // join: 1, update: 0
  if (enable_pv_merge_ && phase == 1) {
    rank_offset_ = scope.FindVar(rank_offset_name_)->GetMutable<LoDTensor>();
  }
}

void PaddleBoxDataFeed::PutToFeedVec(const std::vector<PvInstance>& pv_vec) {
#ifdef _LINUX
  int ins_number = 0;
  std::vector<Record*> ins_vec;
  for (auto& pv : pv_vec) {
    ins_number += pv->ads.size();
    for (auto ins : pv->ads) {
      ins_vec.push_back(ins);
    }
  }
  GetRankOffset(pv_vec, ins_number);
  PutToFeedVec(ins_vec);
#endif
}

int PaddleBoxDataFeed::GetCurrentPhase() {
#ifdef PADDLE_WITH_BOX_PS
  auto box_ptr = paddle::framework::BoxWrapper::GetInstance();
1843 1844 1845 1846 1847
  if (box_ptr->Mode() == 1) {  // For AucRunner
    return 1;
  } else {
    return box_ptr->Phase();
  }
1848 1849 1850 1851 1852 1853 1854 1855
#else
  LOG(WARNING) << "It should be complied with BOX_PS...";
  return current_phase_;
#endif
}

void PaddleBoxDataFeed::PutToFeedVec(const std::vector<Record*>& ins_vec) {
#ifdef _LINUX
H
hutuxian 已提交
1856 1857 1858 1859 1860 1861
  for (size_t i = 0; i < batch_float_feasigns_.size(); ++i) {
    batch_float_feasigns_[i].clear();
    batch_uint64_feasigns_[i].clear();
    offset_[i].clear();
    offset_[i].push_back(0);
  }
1862 1863 1864 1865 1866 1867 1868 1869 1870
  ins_content_vec_.clear();
  ins_content_vec_.reserve(ins_vec.size());
  ins_id_vec_.clear();
  ins_id_vec_.reserve(ins_vec.size());
  for (size_t i = 0; i < ins_vec.size(); ++i) {
    auto r = ins_vec[i];
    ins_id_vec_.push_back(r->ins_id_);
    ins_content_vec_.push_back(r->content_);
    for (auto& item : r->float_feasigns_) {
H
hutuxian 已提交
1871 1872
      batch_float_feasigns_[item.slot()].push_back(item.sign().float_feasign_);
      visit_[item.slot()] = true;
1873 1874
    }
    for (auto& item : r->uint64_feasigns_) {
H
hutuxian 已提交
1875 1876 1877
      batch_uint64_feasigns_[item.slot()].push_back(
          item.sign().uint64_feasign_);
      visit_[item.slot()] = true;
1878 1879 1880
    }
    for (size_t j = 0; j < use_slots_.size(); ++j) {
      const auto& type = all_slots_type_[j];
H
hutuxian 已提交
1881 1882
      if (visit_[j]) {
        visit_[j] = false;
1883 1884 1885
      } else {
        // fill slot value with default value 0
        if (type[0] == 'f') {  // float
H
hutuxian 已提交
1886
          batch_float_feasigns_[j].push_back(0.0);
1887
        } else if (type[0] == 'u') {  // uint64
H
hutuxian 已提交
1888
          batch_uint64_feasigns_[j].push_back(0);
1889 1890 1891 1892
        }
      }
      // get offset of this ins in this slot
      if (type[0] == 'f') {  // float
H
hutuxian 已提交
1893
        offset_[j].push_back(batch_float_feasigns_[j].size());
1894
      } else if (type[0] == 'u') {  // uint64
H
hutuxian 已提交
1895
        offset_[j].push_back(batch_uint64_feasigns_[j].size());
1896 1897 1898 1899 1900 1901 1902 1903
      }
    }
  }

  for (size_t i = 0; i < use_slots_.size(); ++i) {
    if (feed_vec_[i] == nullptr) {
      continue;
    }
H
hutuxian 已提交
1904
    int total_instance = offset_[i].back();
1905 1906
    const auto& type = all_slots_type_[i];
    if (type[0] == 'f') {  // float
H
hutuxian 已提交
1907
      float* feasign = batch_float_feasigns_[i].data();
1908 1909 1910 1911 1912
      float* tensor_ptr =
          feed_vec_[i]->mutable_data<float>({total_instance, 1}, this->place_);
      CopyToFeedTensor(tensor_ptr, feasign, total_instance * sizeof(float));
    } else if (type[0] == 'u') {  // uint64
      // no uint64_t type in paddlepaddle
H
hutuxian 已提交
1913
      uint64_t* feasign = batch_uint64_feasigns_[i].data();
1914 1915 1916 1917
      int64_t* tensor_ptr = feed_vec_[i]->mutable_data<int64_t>(
          {total_instance, 1}, this->place_);
      CopyToFeedTensor(tensor_ptr, feasign, total_instance * sizeof(int64_t));
    }
H
hutuxian 已提交
1918
    auto& slot_offset = offset_[i];
1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931
    LoD data_lod{slot_offset};
    feed_vec_[i]->set_lod(data_lod);
    if (use_slots_is_dense_[i]) {
      if (inductive_shape_index_[i] != -1) {
        use_slots_shape_[i][inductive_shape_index_[i]] =
            total_instance / total_dims_without_inductive_[i];
      }
      feed_vec_[i]->Resize(framework::make_ddim(use_slots_shape_[i]));
    }
  }
#endif
}

W
Wang Guibao 已提交
1932 1933
}  // namespace framework
}  // namespace paddle