data_feed.cc 38.9 KB
Newer Older
W
Wang Guibao 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

D
dongdaxiang 已提交
15 16 17 18 19
#if defined _WIN32 || defined __APPLE__
#else
#define _LINUX
#endif

20
#include "paddle/fluid/framework/data_feed.h"
D
dongdaxiang 已提交
21
#ifdef _LINUX
D
dongdaxiang 已提交
22
#include <stdio_ext.h>
H
hutuxian 已提交
23 24 25
#include <sys/mman.h>
#include <sys/stat.h>
#include <sys/types.h>
D
dongdaxiang 已提交
26
#endif
27
#include <utility>
28
#include "gflags/gflags.h"
W
Wang Guibao 已提交
29 30 31
#include "google/protobuf/io/zero_copy_stream_impl.h"
#include "google/protobuf/message.h"
#include "google/protobuf/text_format.h"
32 33
#include "io/fs.h"
#include "io/shell.h"
W
Wang Guibao 已提交
34 35
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/feed_fetch_type.h"
36
#include "paddle/fluid/platform/timer.h"
W
Wang Guibao 已提交
37 38 39 40 41 42 43 44

namespace paddle {
namespace framework {

void DataFeed::AddFeedVar(Variable* var, const std::string& name) {
  CheckInit();
  for (size_t i = 0; i < use_slots_.size(); ++i) {
    if (name == use_slots_[i]) {
45
      feed_vec_[i] = var->GetMutable<LoDTensor>();
W
Wang Guibao 已提交
46 47 48 49 50
    }
  }
}

bool DataFeed::SetFileList(const std::vector<std::string>& files) {
51
  std::unique_lock<std::mutex> lock(*mutex_for_pick_file_);
W
Wang Guibao 已提交
52
  CheckInit();
53 54
  // Do not set finish_set_filelist_ flag,
  // since a user may set file many times after init reader
W
Wang Guibao 已提交
55 56 57 58 59 60 61 62 63 64 65 66
  filelist_.assign(files.begin(), files.end());

  finish_set_filelist_ = true;
  return true;
}

void DataFeed::SetBatchSize(int batch_size) {
  PADDLE_ENFORCE(batch_size > 0, "Illegal batch size: %d.", batch_size);
  default_batch_size_ = batch_size;
}

bool DataFeed::PickOneFile(std::string* filename) {
67 68 69 70 71 72
  PADDLE_ENFORCE(mutex_for_pick_file_ != nullptr,
                 "should call SetFileListMutex before PickOneFile");
  PADDLE_ENFORCE(file_idx_ != nullptr,
                 "should call SetFileListIndex before PickOneFile");
  std::unique_lock<std::mutex> lock(*mutex_for_pick_file_);
  if (*file_idx_ == filelist_.size()) {
73
    VLOG(3) << "DataFeed::PickOneFile no more file to pick";
W
Wang Guibao 已提交
74 75
    return false;
  }
76 77
  VLOG(3) << "file_idx_=" << *file_idx_;
  *filename = filelist_[(*file_idx_)++];
W
Wang Guibao 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
  return true;
}

void DataFeed::CheckInit() {
  PADDLE_ENFORCE(finish_init_, "Initialization did not succeed.");
}

void DataFeed::CheckSetFileList() {
  PADDLE_ENFORCE(finish_set_filelist_, "Set filelist did not succeed.");
}

void DataFeed::CheckStart() {
  PADDLE_ENFORCE(finish_start_, "Datafeed has not started running yet.");
}

H
hutuxian 已提交
93 94 95 96 97 98 99
void DataFeed::AssignFeedVar(const Scope& scope) {
  CheckInit();
  for (size_t i = 0; i < use_slots_.size(); ++i) {
    feed_vec_[i] = scope.FindVar(use_slots_[i])->GetMutable<LoDTensor>();
  }
}

W
Wang Guibao 已提交
100 101 102 103 104 105 106 107 108 109 110
template <typename T>
void PrivateQueueDataFeed<T>::SetQueueSize(int queue_size) {
  PADDLE_ENFORCE(queue_size > 0, "Illegal queue size: %d.", queue_size);
  queue_size_ = queue_size;
  queue_ = std::unique_ptr<paddle::operators::reader::BlockingQueue<T>>(
      new paddle::operators::reader::BlockingQueue<T>(queue_size_));
}

template <typename T>
bool PrivateQueueDataFeed<T>::Start() {
  CheckSetFileList();
111 112
  read_thread_ = std::thread(&PrivateQueueDataFeed::ReadThread, this);
  read_thread_.detach();
W
Wang Guibao 已提交
113 114 115 116 117 118 119

  finish_start_ = true;
  return true;
}

template <typename T>
void PrivateQueueDataFeed<T>::ReadThread() {
D
dongdaxiang 已提交
120
#ifdef _LINUX
121 122 123 124 125 126 127 128 129
  std::string filename;
  while (PickOneFile(&filename)) {
    int err_no = 0;
    fp_ = fs_open_read(filename, &err_no, pipe_command_);
    __fsetlocking(&*fp_, FSETLOCKING_BYCALLER);
    T instance;
    while (ParseOneInstanceFromPipe(&instance)) {
      queue_->Send(instance);
    }
W
Wang Guibao 已提交
130
  }
131
  queue_->Close();
D
dongdaxiang 已提交
132
#endif
W
Wang Guibao 已提交
133 134 135 136
}

template <typename T>
int PrivateQueueDataFeed<T>::Next() {
X
xjqbest 已提交
137
#ifdef _LINUX
W
Wang Guibao 已提交
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
  CheckStart();
  int index = 0;
  T instance;
  T ins_vec;
  while (index < default_batch_size_) {
    if (!queue_->Receive(&instance)) {
      break;
    }
    AddInstanceToInsVec(&ins_vec, instance, index++);
  }
  batch_size_ = index;
  if (batch_size_ != 0) {
    PutToFeedVec(ins_vec);
  }
  return batch_size_;
X
xjqbest 已提交
153 154 155
#else
  return 0;
#endif
W
Wang Guibao 已提交
156 157
}

158
// explicit instantiation
W
Wang Guibao 已提交
159 160
template class PrivateQueueDataFeed<std::vector<MultiSlotType>>;

161 162 163
template <typename T>
InMemoryDataFeed<T>::InMemoryDataFeed() {
  cur_channel_ = 0;
164 165
  shuffled_ins_ = std::make_shared<paddle::framework::BlockingQueue<T>>();
  shuffled_ins_out_ = std::make_shared<paddle::framework::BlockingQueue<T>>();
D
dongdaxiang 已提交
166
  fleet_send_batch_size_ = 80000;  // hard code here
167 168 169 170
  memory_data_ = nullptr;
  mutex_for_update_memory_data_ = nullptr;
  this->file_idx_ = nullptr;
  this->mutex_for_pick_file_ = nullptr;
171
  fleet_send_sleep_seconds_ = 2;
172 173 174 175
}

template <typename T>
bool InMemoryDataFeed<T>::Start() {
X
xjqbest 已提交
176
#ifdef _LINUX
177
  DataFeed::CheckSetFileList();
178 179
  if (shuffled_ins_->Size() == 0 && shuffled_ins_out_->Size() == 0) {
    FillMemoryDataToChannel();
180
  }
X
xjqbest 已提交
181
#endif
182 183 184 185 186 187
  DataFeed::finish_start_ = true;
  return true;
}

template <typename T>
int InMemoryDataFeed<T>::Next() {
X
xjqbest 已提交
188
#ifdef _LINUX
189 190 191 192 193 194 195 196 197 198 199 200
  DataFeed::CheckStart();
  std::shared_ptr<paddle::framework::BlockingQueue<T>> in_channel = nullptr;
  std::shared_ptr<paddle::framework::BlockingQueue<T>> out_channel = nullptr;
  if (cur_channel_ == 0) {
    in_channel = shuffled_ins_;
    out_channel = shuffled_ins_out_;
  } else {
    in_channel = shuffled_ins_out_;
    out_channel = shuffled_ins_;
  }
  CHECK(in_channel != nullptr);
  CHECK(out_channel != nullptr);
X
xujiaqi01 已提交
201 202 203
  VLOG(3) << "in_channel size=" << in_channel->Size()
          << ", out_channel size=" << out_channel->Size()
          << ", thread_id=" << thread_id_;
204
  int index = 0;
D
dongdaxiang 已提交
205 206 207 208 209
  T instance;
  T ins_vec;
  while (index < DataFeed::default_batch_size_) {
    if (in_channel->Size() == 0) {
      break;
210
    }
211 212
    in_channel->Pop(&instance);

D
dongdaxiang 已提交
213 214 215 216
    AddInstanceToInsVec(&ins_vec, instance, index++);
    out_channel->Push(std::move(instance));
  }
  DataFeed::batch_size_ = index;
217 218
  VLOG(3) << "batch_size_=" << DataFeed::batch_size_
          << ", thread_id=" << thread_id_;
D
dongdaxiang 已提交
219 220 221 222 223 224
  if (DataFeed::batch_size_ != 0) {
    PutToFeedVec(ins_vec);
  } else {
    cur_channel_ = 1 - cur_channel_;
  }
  return DataFeed::batch_size_;
X
xjqbest 已提交
225 226 227
#else
  return 0;
#endif
228 229
}

230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
template <typename T>
void InMemoryDataFeed<T>::SetMemoryData(void* memory_data) {
  memory_data_ = static_cast<std::vector<T>*>(memory_data);
}

template <typename T>
void InMemoryDataFeed<T>::SetMemoryDataMutex(std::mutex* mutex) {
  mutex_for_update_memory_data_ = mutex;
}

template <typename T>
void InMemoryDataFeed<T>::SetThreadId(int thread_id) {
  thread_id_ = thread_id;
}

template <typename T>
void InMemoryDataFeed<T>::SetThreadNum(int thread_num) {
  thread_num_ = thread_num;
}

template <typename T>
void InMemoryDataFeed<T>::SetTrainerNum(int trainer_num) {
  trainer_num_ = trainer_num;
}

X
xjqbest 已提交
255 256 257 258 259
template <typename T>
void InMemoryDataFeed<T>::SetFleetSendBatchSize(int64_t size) {
  fleet_send_batch_size_ = size;
}

260 261
template <typename T>
void InMemoryDataFeed<T>::PutInsToChannel(const std::string& ins_str) {
X
xjqbest 已提交
262
#ifdef _LINUX
263
  std::vector<T> ins;
X
xujiaqi01 已提交
264
  DeserializeIns(&ins, ins_str);
265 266 267 268
  shuffled_ins_->Extend(std::move(ins));
  VLOG(3) << "PutInsToChannel put ins num=" << ins.size()
          << " to channel, channel size=" << shuffled_ins_->Size()
          << " thread_id=" << thread_id_;
X
xjqbest 已提交
269
#endif
270 271
}

272 273
template <typename T>
void InMemoryDataFeed<T>::FillMemoryDataToChannel() {
X
xjqbest 已提交
274
#ifdef _LINUX
X
xujiaqi01 已提交
275
  VLOG(3) << "FillMemoryDataToChannel, thread_id=" << thread_id_;
276 277
  auto interval = GetMemoryDataInterval();
  VLOG(3) << "memory data size=" << memory_data_->size()
278 279
          << ", fill data from  [" << interval.first << ", " << interval.second
          << "), thread_id=" << thread_id_;
280
  for (int64_t i = interval.first; i < interval.second; ++i) {
281 282 283
    T& t = (*memory_data_)[i];
    shuffled_ins_->Push(std::move(t));
  }
X
xjqbest 已提交
284
#endif
285 286 287 288
}

template <typename T>
void InMemoryDataFeed<T>::FillChannelToMemoryData() {
D
dongdaxiang 已提交
289
#ifdef _LINUX
X
xujiaqi01 已提交
290
  VLOG(3) << "FillChannelToMemoryData, thread_id=" << thread_id_;
291 292
  std::vector<T> local_vec;
  std::shared_ptr<paddle::framework::BlockingQueue<T>> channel = nullptr;
293
  std::shared_ptr<paddle::framework::BlockingQueue<T>> pre_channel = nullptr;
294 295
  if (cur_channel_ == 0) {
    channel = shuffled_ins_;
296
    pre_channel = shuffled_ins_out_;
297 298
  } else {
    channel = shuffled_ins_out_;
299
    pre_channel = shuffled_ins_;
300 301
  }
  CHECK(channel != nullptr);
302
  CHECK(pre_channel != nullptr);
303
  CHECK_EQ(pre_channel->Size(), 0);
X
xujiaqi01 已提交
304
  local_vec.resize(channel->Size());
305
  for (int64_t i = 0; i < local_vec.size(); ++i) {
306
    channel->Pop(&local_vec[i]);
307
  }
308
  VLOG(3) << "local_vec size=" << local_vec.size()
309
          << ", thread_id=" << thread_id_;
X
xujiaqi01 已提交
310 311 312 313
  {
    std::lock_guard<std::mutex> g(*mutex_for_update_memory_data_);
    VLOG(3) << "before insert, memory_data_ size=" << memory_data_->size()
            << ", thread_id=" << thread_id_;
314
    memory_data_->insert(memory_data_->end(), local_vec.begin(),
315
                         local_vec.end());
X
xujiaqi01 已提交
316 317 318
    VLOG(3) << "after insert memory_data_ size=" << memory_data_->size()
            << ", thread_id=" << thread_id_;
  }
319
  std::vector<T>().swap(local_vec);
D
dongdaxiang 已提交
320
#endif
321 322
}

323 324
template <typename T>
void InMemoryDataFeed<T>::LoadIntoMemory() {
D
dongdaxiang 已提交
325
#ifdef _LINUX
X
xujiaqi01 已提交
326
  VLOG(3) << "LoadIntoMemory() begin, thread_id=" << thread_id_;
327 328 329
  std::vector<T> local_vec;
  std::string filename;
  while (DataFeed::PickOneFile(&filename)) {
X
xujiaqi01 已提交
330 331
    VLOG(3) << "PickOneFile, filename=" << filename
            << ", thread_id=" << thread_id_;
332
    int err_no = 0;
D
dongdaxiang 已提交
333 334
    PrivateQueueDataFeed<T>::fp_ =
        fs_open_read(filename, &err_no, PrivateQueueDataFeed<T>::pipe_command_);
335
    CHECK(PrivateQueueDataFeed<T>::fp_ != nullptr);
336 337
    __fsetlocking(&*PrivateQueueDataFeed<T>::fp_, FSETLOCKING_BYCALLER);
    T instance;
338 339
    platform::Timer timeline;
    timeline.Start();
D
dongdaxiang 已提交
340
    while (ParseOneInstanceFromPipe(&instance)) {
341 342
      local_vec.push_back(instance);
    }
343
    timeline.Pause();
344 345
    VLOG(3) << "LoadIntoMemory() read all lines, file=" << filename
            << ", cost time=" << timeline.ElapsedSec()
346
            << " seconds, thread_id=" << thread_id_;
347 348
    {
      std::lock_guard<std::mutex> lock(*mutex_for_update_memory_data_);
349
      timeline.Start();
X
xujiaqi01 已提交
350
      memory_data_->insert(memory_data_->end(),
351 352 353 354
                           std::make_move_iterator(local_vec.begin()),
                           std::make_move_iterator(local_vec.end()));
      timeline.Pause();
      VLOG(3) << "LoadIntoMemory() memory_data insert, cost time="
355
              << timeline.ElapsedSec() << " seconds, thread_id=" << thread_id_;
356
    }
357
    local_vec.clear();
358
  }
359
  std::vector<T>().swap(local_vec);
X
xujiaqi01 已提交
360
  VLOG(3) << "LoadIntoMemory() end, thread_id=" << thread_id_;
D
dongdaxiang 已提交
361
#endif
362 363 364 365
}

template <typename T>
void InMemoryDataFeed<T>::LocalShuffle() {
X
xjqbest 已提交
366
#ifdef _LINUX
X
xujiaqi01 已提交
367
  VLOG(3) << "LocalShuffle() begin, thread_id=" << thread_id_;
368
  FillMemoryDataToChannel();
X
xujiaqi01 已提交
369
  VLOG(3) << "LocalShuffle() end, thread_id=" << thread_id_;
X
xjqbest 已提交
370
#endif
371 372
}

373
template <typename T>
374
void InMemoryDataFeed<T>::GlobalShuffle() {
D
dongdaxiang 已提交
375
#ifdef _LINUX
376
  VLOG(3) << "GlobalShuffle() begin, thread_id=" << thread_id_;
377
  auto fleet_ptr = FleetWrapper::GetInstance();
378
  std::vector<std::vector<T*>> send_vec(trainer_num_);
X
xjqbest 已提交
379
  std::vector<int> send_index(trainer_num_);
380
  uint64_t reserve_len = fleet_send_batch_size_ / trainer_num_ + 1;
381
  for (auto& vec : send_vec) {
X
xjqbest 已提交
382 383 384 385
    vec.reserve(reserve_len);
  }
  for (int i = 0; i < trainer_num_; ++i) {
    send_index[i] = i;
386 387 388 389 390
  }
  std::vector<std::future<int32_t>> total_status;
  auto interval = GetMemoryDataInterval();
  VLOG(3) << "global shuffle data from  [" << interval.first << ", "
          << interval.second << "), thread_id=" << thread_id_;
391 392 393 394 395 396 397 398

  for (int64_t i = interval.first; i < interval.second;
       i += fleet_send_batch_size_) {
    for (int64_t j = 0; j < fleet_send_batch_size_ && i + j < interval.second;
         ++j) {
      int64_t random_num = fleet_ptr->LocalRandomEngine()();
      int64_t node_id = random_num % trainer_num_;
      send_vec[node_id].push_back(&((*memory_data_)[i + j]));
399
    }
400 401 402 403 404 405 406 407
    total_status.clear();
    std::shuffle(send_index.begin(), send_index.end(),
                 fleet_ptr->LocalRandomEngine());
    for (int index = 0; index < send_index.size(); ++index) {
      int j = send_index[index];
      if (send_vec[j].size() == 0) {
        continue;
      }
408 409 410 411
      std::string send_str;
      SerializeIns(send_vec[j], &send_str);
      auto ret = fleet_ptr->SendClientToClientMsg(0, j, send_str);
      total_status.push_back(std::move(ret));
412
      send_vec[j].clear();
413
    }
414 415 416 417
    for (auto& t : total_status) {
      t.wait();
    }
    sleep(fleet_send_sleep_seconds_);
418
  }
419
  VLOG(3) << "GlobalShuffle() end, thread_id=" << thread_id_;
D
dongdaxiang 已提交
420
#endif
421 422 423 424 425 426 427 428 429 430 431 432 433 434
}

template <typename T>
std::pair<int64_t, int64_t> InMemoryDataFeed<T>::GetMemoryDataInterval() {
  int64_t start = 0;
  int64_t end = 0;
  int64_t size = memory_data_->size();
  for (int64_t i = 0; i <= static_cast<int64_t>(thread_id_); ++i) {
    int64_t len = size / static_cast<int64_t>(thread_num_) +
                  (i < (size % static_cast<int64_t>(thread_num_)));
    start = end;
    end += len;
  }
  return std::make_pair(start, end);
435 436
}

437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
template <typename T>
int64_t InMemoryDataFeed<T>::GetChannelDataSize() {
  if (cur_channel_ == 0) {
    return shuffled_ins_->Size();
  } else {
    return shuffled_ins_out_->Size();
  }
}

template <typename T>
void InMemoryDataFeed<T>::ReleaseChannelData() {
  if (cur_channel_ == 0) {
    shuffled_ins_->Clear();
  } else {
    shuffled_ins_out_->Clear();
  }
}

455 456 457
// explicit instantiation
template class InMemoryDataFeed<std::vector<MultiSlotType>>;

W
Wang Guibao 已提交
458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
void MultiSlotDataFeed::Init(
    const paddle::framework::DataFeedDesc& data_feed_desc) {
  finish_init_ = false;
  finish_set_filelist_ = false;
  finish_start_ = false;

  PADDLE_ENFORCE(data_feed_desc.has_multi_slot_desc(),
                 "Multi_slot_desc has not been set.");
  paddle::framework::MultiSlotDesc multi_slot_desc =
      data_feed_desc.multi_slot_desc();
  SetBatchSize(data_feed_desc.batch_size());
  SetQueueSize(data_feed_desc.batch_size());
  size_t all_slot_num = multi_slot_desc.slots_size();
  all_slots_.resize(all_slot_num);
  all_slots_type_.resize(all_slot_num);
  use_slots_index_.resize(all_slot_num);
474 475
  total_dims_without_inductive_.resize(all_slot_num);
  inductive_shape_index_.resize(all_slot_num);
W
Wang Guibao 已提交
476 477 478 479 480 481 482
  use_slots_.clear();
  use_slots_is_dense_.clear();
  for (size_t i = 0; i < all_slot_num; ++i) {
    const auto& slot = multi_slot_desc.slots(i);
    all_slots_[i] = slot.name();
    all_slots_type_[i] = slot.type();
    use_slots_index_[i] = slot.is_used() ? use_slots_.size() : -1;
483 484
    total_dims_without_inductive_[i] = 1;
    inductive_shape_index_[i] = -1;
W
Wang Guibao 已提交
485 486 487
    if (slot.is_used()) {
      use_slots_.push_back(all_slots_[i]);
      use_slots_is_dense_.push_back(slot.is_dense());
488 489
      std::vector<int> local_shape;
      if (slot.is_dense()) {
490 491 492
        for (size_t j = 0; j < slot.shape_size(); ++j) {
          if (slot.shape(j) > 0) {
            total_dims_without_inductive_[i] *= slot.shape(j);
493
          }
494 495
          if (slot.shape(j) == -1) {
            inductive_shape_index_[i] = j;
496
          }
497 498
        }
      }
499 500
      for (size_t j = 0; j < slot.shape_size(); ++j) {
        local_shape.push_back(slot.shape(j));
501 502
      }
      use_slots_shape_.push_back(local_shape);
W
Wang Guibao 已提交
503 504 505
    }
  }
  feed_vec_.resize(use_slots_.size());
506
  pipe_command_ = data_feed_desc.pipe_command();
W
Wang Guibao 已提交
507 508 509
  finish_init_ = true;
}

D
dongdaxiang 已提交
510
void MultiSlotDataFeed::ReadThread() {
511
#ifdef _LINUX
512 513 514 515
  std::string filename;
  while (PickOneFile(&filename)) {
    int err_no = 0;
    fp_ = fs_open_read(filename, &err_no, pipe_command_);
D
dongdaxiang 已提交
516
    CHECK(fp_ != nullptr);
517 518 519 520 521 522 523
    __fsetlocking(&*fp_, FSETLOCKING_BYCALLER);
    std::vector<MultiSlotType> instance;
    int ins_num = 0;
    while (ParseOneInstanceFromPipe(&instance)) {
      ins_num++;
      queue_->Send(instance);
    }
D
dongdaxiang 已提交
524
    VLOG(3) << "filename: " << filename << " inst num: " << ins_num;
D
dongdaxiang 已提交
525
  }
526
  queue_->Close();
527
#endif
D
dongdaxiang 已提交
528 529
}

W
Wang Guibao 已提交
530
bool MultiSlotDataFeed::CheckFile(const char* filename) {
531
#ifdef _LINUX
W
Wang Guibao 已提交
532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557
  CheckInit();  // get info of slots
  std::ifstream fin(filename);
  if (!fin.good()) {
    VLOG(1) << "error: open file<" << filename << "> fail";
    return false;
  }
  std::string line;
  int instance_cout = 0;
  std::string all_slots_alias = "";
  for (const auto& alias : all_slots_) {
    all_slots_alias += alias + " ";
  }
  std::string use_slots_alias = "";
  for (const auto& alias : use_slots_) {
    use_slots_alias += alias + " ";
  }
  VLOG(3) << "total slots num: " << all_slots_.size();
  VLOG(3) << "total slots alias: " << all_slots_alias;
  VLOG(3) << "used slots num: " << use_slots_.size();
  VLOG(3) << "used slots alias: " << use_slots_alias;
  while (getline(fin, line)) {
    ++instance_cout;
    const char* str = line.c_str();
    char* endptr = const_cast<char*>(str);
    int len = line.length();
    for (size_t i = 0; i < all_slots_.size(); ++i) {
X
xjqbest 已提交
558
      auto num = strtol(endptr, &endptr, 10);
W
Wang Guibao 已提交
559
      if (num < 0) {
560 561
        VLOG(0) << "error: the number of ids is a negative number: " << num;
        VLOG(0) << "please check line<" << instance_cout << "> in file<"
W
Wang Guibao 已提交
562 563 564
                << filename << ">";
        return false;
      } else if (num == 0) {
565
        VLOG(0)
W
Wang Guibao 已提交
566 567 568 569
            << "error: the number of ids can not be zero, you need "
               "padding it in data generator; or if there is something wrong"
               " with the data, please check if the data contains unresolvable "
               "characters.";
570
        VLOG(0) << "please check line<" << instance_cout << "> in file<"
W
Wang Guibao 已提交
571 572
                << filename << ">";
        return false;
X
xjqbest 已提交
573
      } else if (errno == ERANGE || num > INT_MAX) {
574 575
        VLOG(0) << "error: the number of ids greater than INT_MAX";
        VLOG(0) << "please check line<" << instance_cout << "> in file<"
W
Wang Guibao 已提交
576 577 578 579 580 581 582
                << filename << ">";
        return false;
      }
      if (all_slots_type_[i] == "float") {
        for (int i = 0; i < num; ++i) {
          strtof(endptr, &endptr);
          if (errno == ERANGE) {
583
            VLOG(0) << "error: the value is out of the range of "
W
Wang Guibao 已提交
584
                       "representable values for float";
585
            VLOG(0) << "please check line<" << instance_cout << "> in file<"
W
Wang Guibao 已提交
586 587 588 589
                    << filename << ">";
            return false;
          }
          if (i + 1 != num && endptr - str == len) {
590 591
            VLOG(0) << "error: there is a wrong with the number of ids.";
            VLOG(0) << "please check line<" << instance_cout << "> in file<"
W
Wang Guibao 已提交
592 593 594 595 596 597 598 599
                    << filename << ">";
            return false;
          }
        }
      } else if (all_slots_type_[i] == "uint64") {
        for (int i = 0; i < num; ++i) {
          strtoull(endptr, &endptr, 10);
          if (errno == ERANGE) {
600
            VLOG(0) << "error: the value is out of the range of "
W
Wang Guibao 已提交
601
                       "representable values for uint64_t";
602
            VLOG(0) << "please check line<" << instance_cout << "> in file<"
W
Wang Guibao 已提交
603 604 605 606
                    << filename << ">";
            return false;
          }
          if (i + 1 != num && endptr - str == len) {
607 608
            VLOG(0) << "error: there is a wrong with the number of ids.";
            VLOG(0) << "please check line<" << instance_cout << "> in file<"
W
Wang Guibao 已提交
609 610 611 612 613
                    << filename << ">";
            return false;
          }
        }
      } else {
614
        VLOG(0) << "error: this type<" << all_slots_type_[i]
W
Wang Guibao 已提交
615 616 617 618
                << "> is not supported";
        return false;
      }
    }
619 620 621
    // It may be added '\t' character to the end of the output of reduce
    // task when processes data by Hadoop(when the output of the reduce
    // task of Hadoop has only one field, it will add a '\t' at the end
622 623 624 625 626
    // of the line by default, and you can use this option to avoid it:
    // `-D mapred.textoutputformat.ignoreseparator=true`), which does
    // not affect the correctness of the data. Therefore, it should be
    // judged that the data is not normal when the end of each line of
    // data contains characters which are not spaces.
627 628 629 630 631 632 633 634
    while (endptr - str != len) {
      if (!isspace(*(endptr++))) {
        VLOG(0)
            << "error: there is some extra characters at the end of the line.";
        VLOG(0) << "please check line<" << instance_cout << "> in file<"
                << filename << ">";
        return false;
      }
W
Wang Guibao 已提交
635 636 637 638
    }
  }
  VLOG(3) << "instances cout: " << instance_cout;
  VLOG(3) << "The file format is correct";
639
#endif
W
Wang Guibao 已提交
640 641 642
  return true;
}

D
dongdaxiang 已提交
643 644
bool MultiSlotDataFeed::ParseOneInstanceFromPipe(
    std::vector<MultiSlotType>* instance) {
645
#ifdef _LINUX
646 647 648
  thread_local string::LineFileReader reader;

  if (!reader.getline(&*(fp_.get()))) {
D
dongdaxiang 已提交
649 650
    return false;
  } else {
651 652 653
    int use_slots_num = use_slots_.size();
    instance->resize(use_slots_num);

D
dongdaxiang 已提交
654 655
    const char* str = reader.get();
    std::string line = std::string(str);
656
    // VLOG(3) << line;
D
dongdaxiang 已提交
657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684
    char* endptr = const_cast<char*>(str);
    int pos = 0;
    for (size_t i = 0; i < use_slots_index_.size(); ++i) {
      int idx = use_slots_index_[i];
      int num = strtol(&str[pos], &endptr, 10);
      PADDLE_ENFORCE(
          num,
          "The number of ids can not be zero, you need padding "
          "it in data generator; or if there is something wrong with "
          "the data, please check if the data contains unresolvable "
          "characters.\nplease check this error line: %s",
          str);
      if (idx != -1) {
        (*instance)[idx].Init(all_slots_type_[i]);
        if ((*instance)[idx].GetType()[0] == 'f') {  // float
          for (int j = 0; j < num; ++j) {
            float feasign = strtof(endptr, &endptr);
            (*instance)[idx].AddValue(feasign);
          }
        } else if ((*instance)[idx].GetType()[0] == 'u') {  // uint64
          for (int j = 0; j < num; ++j) {
            uint64_t feasign = (uint64_t)strtoull(endptr, &endptr, 10);
            (*instance)[idx].AddValue(feasign);
          }
        }
        pos = endptr - str;
      } else {
        for (int j = 0; j <= num; ++j) {
D
dongdaxiang 已提交
685 686 687 688
          // pos = line.find_first_of(' ', pos + 1);
          while (line[pos + 1] != ' ') {
            pos++;
          }
D
dongdaxiang 已提交
689 690 691 692 693
        }
      }
    }
    return true;
  }
694 695 696
#else
  return true;
#endif
D
dongdaxiang 已提交
697 698
}

W
Wang Guibao 已提交
699
bool MultiSlotDataFeed::ParseOneInstance(std::vector<MultiSlotType>* instance) {
X
xjqbest 已提交
700
#ifdef _LINUX
W
Wang Guibao 已提交
701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718
  std::string line;
  if (getline(file_, line)) {
    int use_slots_num = use_slots_.size();
    instance->resize(use_slots_num);
    // parse line
    const char* str = line.c_str();
    char* endptr = const_cast<char*>(str);
    int pos = 0;
    for (size_t i = 0; i < use_slots_index_.size(); ++i) {
      int idx = use_slots_index_[i];
      int num = strtol(&str[pos], &endptr, 10);
      PADDLE_ENFORCE(
          num,
          "The number of ids can not be zero, you need padding "
          "it in data generator; or if there is something wrong with "
          "the data, please check if the data contains unresolvable "
          "characters.\nplease check this error line: %s",
          str);
719

W
Wang Guibao 已提交
720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742
      if (idx != -1) {
        (*instance)[idx].Init(all_slots_type_[i]);
        if ((*instance)[idx].GetType()[0] == 'f') {  // float
          for (int j = 0; j < num; ++j) {
            float feasign = strtof(endptr, &endptr);
            (*instance)[idx].AddValue(feasign);
          }
        } else if ((*instance)[idx].GetType()[0] == 'u') {  // uint64
          for (int j = 0; j < num; ++j) {
            uint64_t feasign = (uint64_t)strtoull(endptr, &endptr, 10);
            (*instance)[idx].AddValue(feasign);
          }
        }
        pos = endptr - str;
      } else {
        for (int j = 0; j <= num; ++j) {
          pos = line.find_first_of(' ', pos + 1);
        }
      }
    }
  } else {
    return false;
  }
X
xjqbest 已提交
743 744
#endif
  return false;
W
Wang Guibao 已提交
745 746 747 748 749
}

void MultiSlotDataFeed::AddInstanceToInsVec(
    std::vector<MultiSlotType>* ins_vec,
    const std::vector<MultiSlotType>& instance, int index) {
X
xjqbest 已提交
750
#ifdef _LINUX
W
Wang Guibao 已提交
751 752 753 754 755 756 757
  if (index == 0) {
    ins_vec->resize(instance.size());
    for (size_t i = 0; i < instance.size(); ++i) {
      (*ins_vec)[i].Init(instance[i].GetType());
      (*ins_vec)[i].InitOffset();
    }
  }
758

W
Wang Guibao 已提交
759 760 761
  for (size_t i = 0; i < instance.size(); ++i) {
    (*ins_vec)[i].AddIns(instance[i]);
  }
X
xjqbest 已提交
762
#endif
W
Wang Guibao 已提交
763 764 765 766
}

void MultiSlotDataFeed::PutToFeedVec(
    const std::vector<MultiSlotType>& ins_vec) {
X
xjqbest 已提交
767
#ifdef _LINUX
W
Wang Guibao 已提交
768 769 770 771
  for (size_t i = 0; i < use_slots_.size(); ++i) {
    const auto& type = ins_vec[i].GetType();
    const auto& offset = ins_vec[i].GetOffset();
    int total_instance = static_cast<int>(offset.back());
772

W
Wang Guibao 已提交
773 774
    if (type[0] == 'f') {  // float
      const auto& feasign = ins_vec[i].GetFloatData();
775 776 777
      float* tensor_ptr = feed_vec_[i]->mutable_data<float>(
          {total_instance, 1}, platform::CPUPlace());
      memcpy(tensor_ptr, &feasign[0], total_instance * sizeof(float));
W
Wang Guibao 已提交
778 779 780
    } else if (type[0] == 'u') {  // uint64
      // no uint64_t type in paddlepaddle
      const auto& feasign = ins_vec[i].GetUint64Data();
781 782 783 784
      int64_t* tensor_ptr = feed_vec_[i]->mutable_data<int64_t>(
          {total_instance, 1}, platform::CPUPlace());
      memcpy(tensor_ptr, &feasign[0], total_instance * sizeof(int64_t));
    }
785

786 787 788
    LoD data_lod{offset};
    feed_vec_[i]->set_lod(data_lod);
    if (use_slots_is_dense_[i]) {
789 790 791 792
      if (inductive_shape_index_[i] != -1) {
        use_slots_shape_[i][inductive_shape_index_[i]] =
            total_instance / total_dims_without_inductive_[i];
      }
793
      feed_vec_[i]->Resize(framework::make_ddim(use_slots_shape_[i]));
W
Wang Guibao 已提交
794 795
    }
  }
X
xjqbest 已提交
796
#endif
W
Wang Guibao 已提交
797 798
}

799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814
void MultiSlotInMemoryDataFeed::Init(
    const paddle::framework::DataFeedDesc& data_feed_desc) {
  finish_init_ = false;
  finish_set_filelist_ = false;
  finish_start_ = false;

  PADDLE_ENFORCE(data_feed_desc.has_multi_slot_desc(),
                 "Multi_slot_desc has not been set.");
  paddle::framework::MultiSlotDesc multi_slot_desc =
      data_feed_desc.multi_slot_desc();
  SetBatchSize(data_feed_desc.batch_size());
  SetQueueSize(data_feed_desc.batch_size());
  size_t all_slot_num = multi_slot_desc.slots_size();
  all_slots_.resize(all_slot_num);
  all_slots_type_.resize(all_slot_num);
  use_slots_index_.resize(all_slot_num);
815 816
  total_dims_without_inductive_.resize(all_slot_num);
  inductive_shape_index_.resize(all_slot_num);
817 818 819 820 821 822 823
  use_slots_.clear();
  use_slots_is_dense_.clear();
  for (size_t i = 0; i < all_slot_num; ++i) {
    const auto& slot = multi_slot_desc.slots(i);
    all_slots_[i] = slot.name();
    all_slots_type_[i] = slot.type();
    use_slots_index_[i] = slot.is_used() ? use_slots_.size() : -1;
824 825
    total_dims_without_inductive_[i] = 1;
    inductive_shape_index_[i] = -1;
826 827 828
    if (slot.is_used()) {
      use_slots_.push_back(all_slots_[i]);
      use_slots_is_dense_.push_back(slot.is_dense());
829 830
      std::vector<int> local_shape;
      if (slot.is_dense()) {
831 832 833
        for (size_t j = 0; j < slot.shape_size(); ++j) {
          if (slot.shape(j) > 0) {
            total_dims_without_inductive_[i] *= slot.shape(j);
834
          }
835 836
          if (slot.shape(j) == -1) {
            inductive_shape_index_[i] = j;
837
          }
838 839
        }
      }
840 841
      for (size_t j = 0; j < slot.shape_size(); ++j) {
        local_shape.push_back(slot.shape(j));
842 843
      }
      use_slots_shape_.push_back(local_shape);
844 845 846 847 848 849 850 851 852
    }
  }
  feed_vec_.resize(use_slots_.size());
  pipe_command_ = data_feed_desc.pipe_command();
  finish_init_ = true;
}

bool MultiSlotInMemoryDataFeed::ParseOneInstanceFromPipe(
    std::vector<MultiSlotType>* instance) {
X
xjqbest 已提交
853
#ifdef _LINUX
854 855 856 857 858 859 860 861 862 863
  thread_local string::LineFileReader reader;

  if (!reader.getline(&*(fp_.get()))) {
    return false;
  } else {
    int use_slots_num = use_slots_.size();
    instance->resize(use_slots_num);

    const char* str = reader.get();
    std::string line = std::string(str);
864
    // VLOG(3) << line;
865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901
    char* endptr = const_cast<char*>(str);
    int pos = 0;
    for (size_t i = 0; i < use_slots_index_.size(); ++i) {
      int idx = use_slots_index_[i];
      int num = strtol(&str[pos], &endptr, 10);
      PADDLE_ENFORCE(
          num,
          "The number of ids can not be zero, you need padding "
          "it in data generator; or if there is something wrong with "
          "the data, please check if the data contains unresolvable "
          "characters.\nplease check this error line: %s",
          str);
      if (idx != -1) {
        (*instance)[idx].Init(all_slots_type_[i]);
        if ((*instance)[idx].GetType()[0] == 'f') {  // float
          for (int j = 0; j < num; ++j) {
            float feasign = strtof(endptr, &endptr);
            (*instance)[idx].AddValue(feasign);
          }
        } else if ((*instance)[idx].GetType()[0] == 'u') {  // uint64
          for (int j = 0; j < num; ++j) {
            uint64_t feasign = (uint64_t)strtoull(endptr, &endptr, 10);
            (*instance)[idx].AddValue(feasign);
          }
        }
        pos = endptr - str;
      } else {
        for (int j = 0; j <= num; ++j) {
          // pos = line.find_first_of(' ', pos + 1);
          while (line[pos + 1] != ' ') {
            pos++;
          }
        }
      }
    }
    return true;
  }
X
xjqbest 已提交
902 903 904
#else
  return false;
#endif
905 906
}

D
dongdaxiang 已提交
907 908
bool MultiSlotInMemoryDataFeed::ParseOneInstance(
    std::vector<MultiSlotType>* instance) {
X
xjqbest 已提交
909
#ifdef _LINUX
910 911 912 913
  std::string line;
  if (getline(file_, line)) {
    int use_slots_num = use_slots_.size();
    instance->resize(use_slots_num);
914
    VLOG(3) << line;
915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952
    // parse line
    const char* str = line.c_str();
    char* endptr = const_cast<char*>(str);
    int pos = 0;
    for (size_t i = 0; i < use_slots_index_.size(); ++i) {
      int idx = use_slots_index_[i];
      int num = strtol(&str[pos], &endptr, 10);
      PADDLE_ENFORCE(
          num,
          "The number of ids can not be zero, you need padding "
          "it in data generator; or if there is something wrong with "
          "the data, please check if the data contains unresolvable "
          "characters.\nplease check this error line: %s",
          str);

      if (idx != -1) {
        (*instance)[idx].Init(all_slots_type_[i]);
        if ((*instance)[idx].GetType()[0] == 'f') {  // float
          for (int j = 0; j < num; ++j) {
            float feasign = strtof(endptr, &endptr);
            (*instance)[idx].AddValue(feasign);
          }
        } else if ((*instance)[idx].GetType()[0] == 'u') {  // uint64
          for (int j = 0; j < num; ++j) {
            uint64_t feasign = (uint64_t)strtoull(endptr, &endptr, 10);
            (*instance)[idx].AddValue(feasign);
          }
        }
        pos = endptr - str;
      } else {
        for (int j = 0; j <= num; ++j) {
          pos = line.find_first_of(' ', pos + 1);
        }
      }
    }
  } else {
    return false;
  }
X
xjqbest 已提交
953 954
#endif
  return false;
955 956 957 958 959
}

void MultiSlotInMemoryDataFeed::AddInstanceToInsVec(
    std::vector<MultiSlotType>* ins_vec,
    const std::vector<MultiSlotType>& instance, int index) {
X
xjqbest 已提交
960
#ifdef _LINUX
961 962 963 964 965 966 967 968 969 970 971
  if (index == 0) {
    ins_vec->resize(instance.size());
    for (size_t i = 0; i < instance.size(); ++i) {
      (*ins_vec)[i].Init(instance[i].GetType());
      (*ins_vec)[i].InitOffset();
    }
  }

  for (size_t i = 0; i < instance.size(); ++i) {
    (*ins_vec)[i].AddIns(instance[i]);
  }
X
xjqbest 已提交
972
#endif
973 974 975 976
}

void MultiSlotInMemoryDataFeed::PutToFeedVec(
    const std::vector<MultiSlotType>& ins_vec) {
X
xjqbest 已提交
977
#ifdef _LINUX
978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998
  for (size_t i = 0; i < use_slots_.size(); ++i) {
    const auto& type = ins_vec[i].GetType();
    const auto& offset = ins_vec[i].GetOffset();
    int total_instance = static_cast<int>(offset.back());

    if (type[0] == 'f') {  // float
      const auto& feasign = ins_vec[i].GetFloatData();
      float* tensor_ptr = feed_vec_[i]->mutable_data<float>(
          {total_instance, 1}, platform::CPUPlace());
      memcpy(tensor_ptr, &feasign[0], total_instance * sizeof(float));
    } else if (type[0] == 'u') {  // uint64
      // no uint64_t type in paddlepaddle
      const auto& feasign = ins_vec[i].GetUint64Data();
      int64_t* tensor_ptr = feed_vec_[i]->mutable_data<int64_t>(
          {total_instance, 1}, platform::CPUPlace());
      memcpy(tensor_ptr, &feasign[0], total_instance * sizeof(int64_t));
    }

    LoD data_lod{offset};
    feed_vec_[i]->set_lod(data_lod);
    if (use_slots_is_dense_[i]) {
999 1000 1001 1002
      if (inductive_shape_index_[i] != -1) {
        use_slots_shape_[i][inductive_shape_index_[i]] =
            total_instance / total_dims_without_inductive_[i];
      }
1003
      feed_vec_[i]->Resize(framework::make_ddim(use_slots_shape_[i]));
1004 1005
    }
  }
X
xjqbest 已提交
1006
#endif
1007 1008 1009
}

// todo serialize ins in global shuffle
D
dongdaxiang 已提交
1010
void MultiSlotInMemoryDataFeed::SerializeIns(
1011
    const std::vector<std::vector<MultiSlotType>*>& ins, std::string* str) {
1012 1013
  auto fleet_ptr = FleetWrapper::GetInstance();
  fleet_ptr->Serialize(ins, str);
1014 1015
}
// todo deserialize ins in global shuffle
1016
void MultiSlotInMemoryDataFeed::DeserializeIns(
1017
    std::vector<std::vector<MultiSlotType>>* ins, const std::string& str) {
1018 1019
  auto fleet_ptr = FleetWrapper::GetInstance();
  fleet_ptr->Deserialize(ins, str);
1020 1021
}

H
hutuxian 已提交
1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
template <typename T>
void PrivateInstantDataFeed<T>::PutToFeedVec() {
  for (size_t i = 0; i < use_slots_.size(); ++i) {
    const auto& type = ins_vec_[i].GetType();
    const auto& offset = ins_vec_[i].GetOffset();
    int total_instance = static_cast<int>(offset.back());

    if (type[0] == 'f') {  // float
      const auto& feasign = ins_vec_[i].GetFloatData();
      float* tensor_ptr = feed_vec_[i]->mutable_data<float>(
          {total_instance, 1}, platform::CPUPlace());
      memcpy(tensor_ptr, &feasign[0], total_instance * sizeof(float));
    } else if (type[0] == 'u') {  // uint64
      // no uint64_t type in paddlepaddle
      const auto& feasign = ins_vec_[i].GetUint64Data();
      int64_t* tensor_ptr = feed_vec_[i]->mutable_data<int64_t>(
          {total_instance, 1}, platform::CPUPlace());
      memcpy(tensor_ptr, &feasign[0], total_instance * sizeof(int64_t));
    }

    LoD data_lod{offset};
    feed_vec_[i]->set_lod(data_lod);
    if (use_slots_is_dense_[i]) {
      int64_t total_dims = 1;
      for (const auto e : use_slots_shape_[i]) {
        total_dims *= e;
      }
      PADDLE_ENFORCE(
          total_dims == total_instance,
          "The actual data size of slot[%s] doesn't match its declaration",
          use_slots_[i].c_str());
      feed_vec_[i]->Resize(framework::make_ddim(use_slots_shape_[i]));
    }
  }
}

template <typename T>
int PrivateInstantDataFeed<T>::Next() {
  if (ParseOneMiniBatch()) {
    PutToFeedVec();
    return ins_vec_[0].GetBatchSize();
  }
  Postprocess();

  std::string filename;
  if (!PickOneFile(&filename)) {
    return -1;
  }
  if (!Preprocess(filename)) {
    return -1;
  }

  PADDLE_ENFORCE(true == ParseOneMiniBatch(), "Fail to parse mini-batch data");
  PutToFeedVec();
  return ins_vec_[0].GetBatchSize();
}

template <typename T>
void PrivateInstantDataFeed<T>::Init(const DataFeedDesc& data_feed_desc) {
  finish_init_ = false;
  finish_set_filelist_ = false;
  finish_start_ = false;

  PADDLE_ENFORCE(data_feed_desc.has_multi_slot_desc(),
                 "Multi_slot_desc has not been set.");
  paddle::framework::MultiSlotDesc multi_slot_desc =
      data_feed_desc.multi_slot_desc();
  SetBatchSize(data_feed_desc.batch_size());
  size_t all_slot_num = multi_slot_desc.slots_size();
  all_slots_.resize(all_slot_num);
  all_slots_type_.resize(all_slot_num);
  use_slots_index_.resize(all_slot_num);
  multi_inductive_shape_index_.resize(all_slot_num);
  use_slots_.clear();
  use_slots_is_dense_.clear();
  for (size_t i = 0; i < all_slot_num; ++i) {
    const auto& slot = multi_slot_desc.slots(i);
    all_slots_[i] = slot.name();
    all_slots_type_[i] = slot.type();
    use_slots_index_[i] = slot.is_used() ? use_slots_.size() : -1;
    if (slot.is_used()) {
      use_slots_.push_back(all_slots_[i]);
      use_slots_is_dense_.push_back(slot.is_dense());
      std::vector<int> local_shape;
      if (slot.is_dense()) {
        for (size_t j = 0; j < slot.shape_size(); ++j) {
          if (slot.shape(j) == -1) {
            multi_inductive_shape_index_[i].push_back(j);
          }
        }
      }
      for (size_t j = 0; j < slot.shape_size(); ++j) {
        local_shape.push_back(slot.shape(j));
      }
      use_slots_shape_.push_back(local_shape);
    }
  }
  feed_vec_.resize(use_slots_.size());
  ins_vec_.resize(use_slots_.size());

  finish_init_ = true;
}

template class PrivateInstantDataFeed<std::vector<MultiSlotType>>;

bool MultiSlotFileInstantDataFeed::Preprocess(const std::string& filename) {
  fd_ = open(filename.c_str(), O_RDONLY);
  PADDLE_ENFORCE(fd_ != -1, "Fail to open file: %s", filename.c_str());

  struct stat sb;
  fstat(fd_, &sb);
  end_ = static_cast<size_t>(sb.st_size);

  buffer_ =
      reinterpret_cast<char*>(mmap(NULL, end_, PROT_READ, MAP_PRIVATE, fd_, 0));
  PADDLE_ENFORCE(buffer_ != MAP_FAILED, strerror(errno));

  offset_ = 0;
  return true;
}

bool MultiSlotFileInstantDataFeed::Postprocess() {
  if (buffer_ != nullptr) {
    munmap(buffer_, end_);
    buffer_ = nullptr;
  }
  if (fd_ != -1) {
    close(fd_);
    fd_ = -1;
    end_ = 0;
    offset_ = 0;
  }
  return true;
}

bool MultiSlotFileInstantDataFeed::ParseOneMiniBatch() {
  if (offset_ == end_) {
    return false;
  }

  batch_size_ = 0;
  while (batch_size_ < default_batch_size_ && offset_ < end_) {
    for (size_t i = 0; i < use_slots_index_.size(); ++i) {
      int idx = use_slots_index_[i];
      char type = all_slots_type_[i][0];

      uint16_t num = *reinterpret_cast<uint16_t*>(buffer_ + offset_);
      PADDLE_ENFORCE(
          num,
          "The number of ids can not be zero, you need padding "
          "it in data generator; or if there is something wrong with "
          "the data, please check if the data contains unresolvable "
          "characters.");
      offset_ += sizeof(uint16_t);

      if (idx != -1) {
        int inductive_size = multi_inductive_shape_index_[i].size();
        if (UNLIKELY(batch_size_ == 0)) {
          ins_vec_[idx].Init(all_slots_type_[i], default_batch_size_ * num);
          ins_vec_[idx].InitOffset(default_batch_size_);
          uint64_t* inductive_shape =
              reinterpret_cast<uint64_t*>(buffer_ + offset_);
          for (int inductive_id = 0; inductive_id < inductive_size;
               ++inductive_id) {
            use_slots_shape_[i][multi_inductive_shape_index_[i][inductive_id]] =
                static_cast<int>(*(inductive_shape + inductive_id));
          }
        }
        num -= inductive_size;
        offset_ += sizeof(uint64_t) * inductive_size;

        if (type == 'f') {
          ins_vec_[idx].AppendValues(
              reinterpret_cast<float*>(buffer_ + offset_), num);
          offset_ += num * sizeof(float);
        } else if (type == 'u') {
          ins_vec_[idx].AppendValues(
              reinterpret_cast<uint64_t*>(buffer_ + offset_), num);
          offset_ += num * sizeof(uint64_t);
        }
      } else {
        if (type == 'f') {
          offset_ += num * sizeof(float);
        } else if (type == 'u') {
          offset_ += num * sizeof(uint64_t);
        }
      }
    }
    ++batch_size_;
    // OPTIMIZE: It is better to insert check codes between instances for format
    // checking
  }

  PADDLE_ENFORCE(batch_size_ == default_batch_size_ || offset_ == end_,
                 "offset_ != end_");
  return true;
}
#endif

W
Wang Guibao 已提交
1222 1223
}  // namespace framework
}  // namespace paddle